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Abstract

The exponential growth in digital transactions has created a pressing demand
for scalable, reliable, and real-time payment platforms. This thesis explores the
transition from a monolithic architecture to a microservices-based and event-
driven architecture using Mollie, a high-frequency payment platform. By ana-
lyzing the challenges of scalability, fault tolerance, and performance in tradi-
tional monolithic systems, this research proposes a modular approach applying
microservices and asynchronous communication with event-driven architecture.
The architecture is designed to enhance operational efficiency, ensure real-time
processing, and adapt to the growing demands of diverse payment methods.
Tools like DataDog and GCP are used for real-time monitoring and deployment,
demonstrating improved reliability and maintainability. Despite advancements,
challenges such as event duplication, external API dependencies, and resource
overhead are also discussed. The findings contribute valuable insights into scal-
able and adaptable architecture for digital payment platforms.

Keywords— Payment Platform, Microservices Architecture, Event-Driven Archi-
tecture (EDA), Real-Time Monitoring, Scalability, Fault Tolerance
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1

Introduction

As the digital development reshapes the financial landscape, it has significantly changed

the way payments are processed, leading to an exponential rise in the variety and volume

of payment options worldwide. Consumers nowadays demand fast, secure, and flexible

payment methods, while merchants seek solutions that are reliable and capable of adapt-

ing to evolving market dynamics. Payment Service Providers (PSPs), such as Mollie(1),

play a pivotal role in bridging this gap, ensuring seamless transaction experiences for both

merchants and consumers. However, integrating diverse payment methods into a unified

platform presents critical challenges in scalability, efficiency, and real-time performance

(2). As a multi-market payment company, Mollie strives to meet these goals. Serving mer-

chants across every industry and country in Europe, Mollie simplifies payment processing

by enabling businesses to accept a wide range of payment methods, including credit cards,

direct debit, Paypal, and local options tailored to specific markets. However, challenges ex-

ist alongside opportunities. As the platform scales to integrate new payment methods and

handle increasing transaction volumes, it must overcome obstacles related to performance,

reliability, and flexibility.

Initially based on a monolithic architecture, the Mollie platform shows several limitations,

such as tightly coupled components, scalability bottlenecks, and increased risk of failures

across services when adding new features. Monolithic systems struggle with performance

issues as they grow, exhibit a lack of modularity, and make even minor updates complicated.

For rapidly expanding domains like financial technology, where agility and adaptability are

key, these limitations are unsustainable. Each new feature or payment integration requires

extensive testing and development resources, even risks downtime. Additionally, monolithic

systems face challenges in maintaining compliance with dynamic financial regulations and

ensuring secure data management as transactions scale globally.
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1. INTRODUCTION

To overcome these challenges, we decide to adopt a microservices-based architecture to

decouple functionalities, enhance fault tolerance, and enable more agile development prac-

tices. Microservices divide the platform into smaller, autonomous units, each responsible

for a specific function, enabling faster development cycles, reduced downtime, and fault

isolation. Additionally, an event-driven architecture (EDA) has been introduced to opti-

mize real-time data processing and ensure responsiveness across its distributed systems.

Together, these architectural shifts aim to improve Mollie’s growth in the future, allowing

it to handle increasing transaction volumes while integrating diverse payment methods

more quickly and seamlessly.

This thesis focuses on the following research questions:

• How can microservices architecture be effectively applied to enhance the scalability

and fault tolerance of payment platforms?

• What role does event-driven architecture play in enhancing real-time processing and

decoupling within payment systems?

• How can monitoring and deployment pipelines be implemented to ensure system

reliability?

These questions are essential to addressing the above challenges faced by Mollie’s pay-

ment platform, such as the need for scalability to handle growing transaction volumes

against faults to maintain uninterrupted service, and efficient error management to en-

sure a seamless user experience. Moreover, these issues are not unique to Mollie but are

representative of broader challenges faced by PSPs and other high-frequency transaction

systems across industries. By delving into these questions, the research not only pro-

vides solutions tailored to Mollie but also develops generic methodologies that applicable

to large-scale problems involving scalable and real-time transaction processing platforms.

Solving these challenges will largely expand the broader for Mollie growth, offering insights

into designing scalable, fault-tolerant, and efficient systems in dynamic environments.

This thesis explores the transition from a monolithic to a microservices architecture with

event-driven mechanism, using Mollie’s payment platform as a case study. The research

investigates how architectural changes can enhance scalability, fault tolerance, and perfor-

mance in a high-frequency transaction environment. By applying tools like Apache Kafka

for event streaming and DataDog (3) for real-time monitoring, the study aims to demon-

strate practical methodologies for achieving a reliable, efficient, and adaptable platform.
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However, designing and developing such scalable system pose significant challenges, includ-

ing ensuring fault tolerance, maintaining data integrity, and handling real-time transaction

processing in a distributed environment. This thesis first delves into these challenges and

emerging technologies which can be utilized to address those challenges, and then pro-

vides better solutions and improvements to Mollie’s existing payment platform. The main

objectives of this thesis are to achieve the following features:

• Scalability: This thesis aims to employ a microservices framework that decouples

core payment services, allowing individual services—such as transaction processing

and notifications—to scale independently. This refining enhances the system’s ability

to meet the demands of high-frequency transactions and provides flexibility for future

growth.

• Deployment: Deployment has always been a tricky problem for large company with

large code base. The pipeline is source-consuming and can be risky, especially in en-

vironments with frequent updates. This thesis addresses deployment challenges by

implementing orchestration, making sure each microservice can be deployed and up-

dated independently. By utilizing tools like Docker and Kubernetes, this framework

supports continuous integration and deployment (CI/CD), reducing downtime and

enabling rapid iteration (4).

• Security: As data grow exponentially, ensuring data security is crucial in financial

technology. This thesis integrates layered security protocols to protect user data,

with a focus on meeting standards such as GDPR(5), and other special requirements

of payment method partners from different countries. By building compliance and

data privacy into the decentralized architecture, the platform is better at protecting

data from obtaining by malicious entities.

• Fault Tolerance: Fault tolerance is critical to maintaining uninterrupted service

in distributed systems. Unexpected incidents could dramatically damage user ex-

perience and customer trust. This thesis leverages event-driven architecture (EDA)

(6) principles and Apache Kafka for asynchronous communication and load redis-

tribution. By applying real-time monitoring, the system can detect subtle failures

before users are aware of them. Moreover, it aims to manage service failures without

disrupting core operations, ensuring that payment processing remains resilient under

load or partial service interruptions.
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1. INTRODUCTION

• Performance: Real-time transaction processing requires optimized performance

across all services. Although computational resources can be determining factors,

the software efficiency also plays a necessary role here. The thesis focuses on reduc-

ing latency and enhancing throughput through efficient data streaming and active

monitoring according to microservice architecture. Such optimizations allow for a re-

sponsive user experience, even under peak transaction volumes, while ensuring data

is processed quickly and efficiently.

• Maintainability & Extensibility: As the payment ecosystem continues to develop,

more and more payment providers and customers generate higher demands. Thus the

platform must be adaptable to new technologies and business requirements. In this

paper, we emphasize maintainability through modular design, clear documentation,

and automated testing. Additionally, by making each service modular, the system

can seamlessly integrate additional payment gateways, analytics tools, or compliance

features, supporting ongoing innovation and evolution.

The scope of this research includes comprehensive analysis of the architectural shift,

focusing on key aspects such as the design of modular microservices, event-driven com-

munication strategies, and the integration of monitoring and deployment pipelines. It

also addresses challenges such as managing distributed systems and maintaining data con-

sistency across services. This thesis contributes valuable insights to the fields of financial

technology and software engineering by providing design and implementation process of the

transition. It highlights the advantages of microservices and event-driven architectures and

offer potential challenges and future directions of the project. Additionally, the research

underscores the importance of real-time monitoring and proactive fault management in

sustaining high-performance systems. These findings are expected to guide industry prac-

titioners and researchers in addressing similar challenges in digital payment ecosystems,

supporting innovation and growth in an increasingly complex financial landscape(7).

Through this exploration, the thesis not only improves Mollie’s capabilities to meet

present and future demands but also provides a scalable and adaptable architectural model

applicable to all large-scale platforms navigating the dynamic and competitive environ-

ments.
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2

Background

The rapid digitalization of financial services has led to an explosion of payment options,

each catering to different markets and customer needs. Payment service providers (PSPs),

like Mollie, must integrate a variety of payment methods into their platforms to offer a

seamless experience to merchants and consumers. As new payment methods emerge across

different regions, the ability to integrate these methods into a unified, scalable, and efficient

system has become a core challenge for payment platforms.

2.1 Microservices Architecture

Traditionally, payment platforms were designed using monolithic architectures, where all

functionalities—such as payment processing, security, user management, and API integra-

tions—were tightly coupled within a single system. While this design offers simplicity and

centralization, it struggles to scale effectively as new payment methods and features are

added. Monolithic systems typically face performance bottlenecks, are difficult to main-

tain, and become increasingly complex over time, making it challenging to integrate new

payment methods without disrupting existing services.

To overcome these limitations, many organizations have shifted toward microservices

architectures, where functionalities are divided into smaller, independently deployable ser-

vices. Microservices enable better scalability, fault isolation, and easier maintenance, allow-

ing organizations to integrate new features or services (such as payment methods) without

affecting the entire system. As shown in the figure 2.1 , in the context of payment systems,

microservices can be highly beneficial by allowing the addition of new payment APIs or

methods, like GoCardless, without altering the entire platform’s architecture (8). Unlike

monolithic architectures, where all components are interconnected and must be deployed

5



2. BACKGROUND

Figure 2.1: Monolithic vs Microservices

as a single unit, microservices are independent services that can be developed, deployed,

and scaled separately. This architectural style has gained prominence in recent years,

particularly for large-scale platfroms, due to its flexibility, scalability, and fault-tolerant

properties. Below are some key Characteristics of Microservices:

• Modularity: For each microservice, it encapsulates a specific business functionality,

such as payment processing, user management, or notification handling. This mod-

ularity ensures that changes or upgrades to one service can be made independently

without affecting the entire system.

• Independent Deployment: Microservices can be deployed independently, allow-

ing developers to update or revert specific services without redeploying the entire

system. This feature is especially useful and powerful when it comes to large pay-

ment platforms like Mollie, where issues can be resolved or payment methods can be

integrated without disrupting other functionalities and users’ experience.

• Scalability: One of the core advantages of microservices is horizontal scalability.

Individual services can be scaled independently based on the load showed on moni-

toring applications. For instance, a payment service processing transactions can scale

up during high-demand periods (e.g., Black Friday) without impacting other services

like reporting or customer management.

• Polyglot Development: Microservices architectures allow for the use of different

programming languages and databases tailored to the specific needs of each service.

This flexibility is crucial in heterogeneous systems where services can be designed
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2.1 Microservices Architecture

based on their needs for performance, scalability, or security, without significant

dependencies.

• Fault Isolation: Because microservices operate independently, failures in one service

do not necessarily cause the entire system to fail. This fault isolation ensures better

system resilience, which is critical in payment platforms where transaction processing

must be always reliable and continuous.

The integration of multiple payment methods into a unified platform like Mollie requires

an architecture that can support flexibility and scalability. Traditional monolithic sys-

tems, where all features are tightly coupled into one huge codebase, often struggle to meet

these demands due to their inherent limitations. First, they are difficult in scaling. In

a monolithic architecture, scaling requires duplicating the entire system, even if only one

component requires additional resources. This leads to inefficiencies and increased oper-

ational costs which can significantly affect the performance as the system grows larger

and larger. Besides, modifying or adding new functionality in a monolithic system can

require extensive changes to the entire codebase, increasing the risk of introducing bugs

or downtime during deployment. This can be particularly troublesome in the dynamic

fintech domain. There are large volumes of data and backend processing services are in-

volved for each customer. For continuous deployment, it is more challenging in monolithic

architectures. The entire system must be tested and deployed as a single unit, even for

small code changes. Microservices allow for quicker development cycles, enabling faster

adaptation and require less copmutational resources to market and regulatory changes.

On the other, a microservices-based architecture supports the modularity and indepen-

dence, which perfectly resolve the problems faced by traditional large-scale systems. By

breaking down different functionalities into smaller, self-contained services, each service

can be developed, deployed, and scaled independently. It improves agility and reduces

complexity. This approach decreases the dependencies between teams and allow them to

choose the best tools and technologies for each service, optimizing the system performance.

Moreover, microservices enable faster, more frequent updates through independent deploy-

ments. Organizations are able to adapt to new requirements and make the teamwork more

efficient.

While microservices offer numerous advantages, there are still some certain challenges

have to be considered and addressed, from design, monitoring, to testing (9). Managing

numerous independent services requires sophisticated collaboration and monitoring tools

to ensure smooth operation. Payment platforms must implement robust infrastructure to
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2. BACKGROUND

manage communication and load balancing across microservices. Moreover, in a microser-

vices architecture, services often need to communicate with each other. This introduces

complexity. During development, developers have to start different mircoservices to make

sure the changes work for the communications between them. It also means ensuring

reliable, secure, and low-latency communication is crucial. Event-driven communication,

which will be discussed in the following section, is one solution to this challenge. Another

chalenge is the data consistency. Achieving data consistency across distributed services can

be complex, especially there are some data shared through different platforms. Payment

platforms often deal with real-time data, and ensuring consistency between various pay-

ment services requires careful design, particularly when adhering to regulatory standards.

2.2 Event-Driven System

Event-driven system is an architectural pattern in which system components communicate

by producing and consuming events or inputs that trigger the system to respond. In this

type of system, different components communicate through events, and the system reacts

to those events as they occur. In this kind of systems, services respond to events, which

are signals indicating that a change has occurred, such as the completion of a payment

transaction, a user action, or a webhook. Event-driven architectures (EDA) offer significant

advantages in systems that require real-time processing and high scalability, making them

particularly well-suited for payment platforms that handle numerous transactions.

2.2.1 Key Features

As the name indicates, event-driven systems are based on events. An event represents

a change in the system’s state. For example, a successful payment authorization, from

the partner like Ideal, would generate an event that can trigger downstream processes

or services. Those entities generate or publish events are called event producers. For

example, in the context of integrating a payment method, the event producers can be both

the payment solution provider and the partners who engage in the payment and transaction

process and generate events for each transaction status. Event consumers, on the other

hand, are those services or components listen for and respond to events. Their positions

can be reversed. Once an event is produced, it is consumed by one or more services

responsible for handling the event, such as updating payment status, sending notifications,

or triggering follow-up actions like refunds or chargebacks.
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2.2 Event-Driven System

For large-scale payment platforms that need to process thousands of transactions across

multiple markets and payment methods, an event-driven system provides several critical

advantages:

• Asynchronous Communication: Event-driven architectures allow components

to communicate asynchronously, meaning they can continue processing other tasks

without waiting for a single response. This reduces bottlenecks and improves sys-

tem efficiency, which is important in a high-performance environment like payment

processing (? ).

• Scalability: The asynchronous communication feature enables event-driven systems

to achieve scalability (? ). As transaction volume increases, event producers can

continue generating events while consumers scale horizontally to process those events.

This enables the systems to reduce latency and enhance the overall throughput by

handling multiple events concurrently.

• Real-Time Processing: EDA is ideal for systems that require real-time data han-

dling. In payment systems, real-time transaction processing is critical to ensure fast

responses to customer actions. EDA enables payment platforms to process and con-

firm transactions instantly, providing a seamless user experience for both merchants

and consumers.

• Decoupling of Services: EDA decouples event producers and consumers, allowing

each service to evolve independently. This is particularly beneficial for payment

platforms integrating multiple payment methods. For instance, the integration of

GoCardless does not necessitate changes in other payment-related services on Mollie’s

platform.

2.2.2 Apache Kafka

Nowadays, event-driven systems are usually powered by technologies like Apache Kafka

(10). Apache Kafka is a distributed event streaming platform that plays a central role

in implementing event-driven architectures. It was originally introduced by LinkedIn and

later open-sourced, Kafka has become a popular choice for event-driven systems, especially

in domains like financial services where real-time data processing is crucial.

Kafka decouples communication between services through the use of producers and con-

sumers. Producers send event data to Kafka, and consumers retrieve that data by subscrib-

ing to specific Kafka topics. Kafka’s simple yet powerful client library enables producers

9



2. BACKGROUND

and consumers to interact with Kafka clusters via transparent communication APIs. One of

Kafka’s key strengths lies in its ecosystem, which includes additional tools such as Kafka

Streams and Kafka Connect, extending Kafka’s functionality to meet various data pro-

cessing and integration needs. These tools enable powerful stream processing capabilities

and seamless integration with other data systems, making Kafka a versatile solution for

real-time data pipelines (11).

Kafka’s event storage is structured as an append-only log, and consumers can retrieve

events using offsets, which track the position of the event within the partition. This allows

for reliable, ordered event processing. Each Kafka cluster is composed of Kafka brokers,

with each broker holding one or more partitions of a topic. Kafka ensures redundancy and

fault tolerance through topic replication. This allows Kafka to tolerate up to n-1 broker

failures (where n is the number of replicas) without losing data or compromising message

delivery. In comparison to other message brokers, such as RabbitMQ, Kafka excels in

handling high-throughput workloads with shorter message payloads, which is beneficial for

platforms, especially for payment systems where many small transactions are processed

rapidly.

Kafka is crucial for managing real-time payment events. When a payment is initiated,

Kafka ensures that the event is distributed to all necessary services, enabling independent

processing of transactions, notifications etc. By adopting Apache Kafka and EDA, we can

ensure seamless integration of payment methods like Ideal while maintaining scalability,

responsiveness, and resilience. This approach allows fintech companies to decouple services,

respond to real-time events efficiently, and meet the diverse and evolving needs of merchants

and consumers in a dynamic payment domain.

2.3 Real-Time Data Monitoring and System Performance

As reliability and efficiency of transactions is essential in payment systems, real-time data

monitoring and system performance management play a critical role in maintaining the

stability, security, and responsiveness. With all kinds of payment methods integrated into

one platform, monitoring becomes even more important to manage increased complexity

and traffic. It enables payment platforms to proactively identify and address issues before

they impact users. By continuously tracking key metrics such as transaction latency,

error rates, and resource utilization, the system can detect anomalies early, enabling quick

intervention to minimize downtime or transaction failures.
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2.3 Real-Time Data Monitoring and System Performance

In payment processing, the most important issues are high—transaction delays or failures

can lead to significant financial losses, compliance issues, or customer losses (12). Therefore,

an effective monitoring solution must provide comprehensive visibility into all parts of the

system, from API requests to database interactions. Modern monitoring tools like Datadog,

Prometheus, and Grafana provides concurrent insights into the health of the system by

tracking key metrics such as transaction throughput, latency, resource utilization, and error

rates. This real-time visibility is essential for:

• Centralized Monitoring: Aggregating logs and performance data from all mi-

croservices in a centralized dashboard helps identify different causes of issues in-

stantly. This is important when dealing with distributed architectures like microser-

vices and event-driven architectures.

• Real-Time Alerts and Notifications: By setting up alerts based on predefined

thresholds (e.g., transaction latency), the platform can notify engineers immediately

when something goes wrong, reducing response times. Whenever an unexpected

event occurs in the application, the error is logged to an error reporting service for

debugging.

• Performance Metrics Tracking: Monitoring critical metrics such as transaction

response times, request throughput, database performance, and server resource usage

ensures that the platform remains within acceptable performance bounds. Moreover,

Real-time insights into resource utilization enable dynamic scaling of services. This

is particularly useful in microservices architectures, where different services can scale

independently based on current transaction loads.

Regarding the monitoring tools, there are many platforms can be used to address the

problem.

• Datadog: A cloud-scale monitoring and analytics platform, Datadog offers real-time

insights into the performance of microservices. It integrates seamlessly with cloud

infrastructure and supports automatic scaling and alerting based on custom-defined

performance indicators. Datadog’s modular pricing allows users to select the specific

monitoring capabilities they need, providing flexibility for organizations of any size,

especially those managing microservices and dynamic cloud infrastructures.
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2. BACKGROUND

• Dynatrace: A software intelligence platform focused on full-stack monitoring with

AI-powered automation and root-cause analysis. It offers automatic discovery and

real-time visibility across applications, infrastructure, and user experience. Dyna-

trace’s AI engine, Davis, automates the detection of performance issues and corre-

lates them to root causes, making it ideal for complex cloud-native environments.

It is particularly suited for enterprises needing deep observability, automated trou-

bleshooting, and end-to-end tracing across hybrid and cloud infrastructures.

• Prometheus: An open-source monitoring solution, Prometheus specializes in time-

series data collection and real-time alerting. It can be integrated with services to

collect performance data in real time, making it ideal for monitoring event-driven

architectures. Prometheus stores data locally and provides flexible alerting, making

it a go-to choice for infrastructure and application performance monitoring, especially

in Kubernetes environments. It integrates well with visualization tools like Grafana

and is widely adopted for monitoring microservices and dynamic infrastructures.

Real-time data monitoring is an indispensable part for payment platforms, ensuring that

they can handle the growing demands of merchants and consumers. By leveraging the

advantages of real-time monitoring, fintech companies can meet SLAs, optimize resource

utilization, and provide reliable and efficient service to users.

This chapter introduces the primary concepts applied to the new architecture, including

microservices architecture, event-driven systems, and real-time monitoring. The integra-

tion of these technologies can form a cohesive strategy to address the critical challenges

of scalability, fault tolerance, and system responsiveness. Microservices architecture en-

ables independent scaling and development of services, reducing bottlenecks and increasing

modularity. Event-driven system, powered by tools like Apache Kafka, decouples service

interactions and enable asynchronous, real-time communication for high-throughput sce-

narios. Meanwhile, real-time monitoring tools, as we use Datadog for Mollie Platform,

offer essential visibility into system health, facilitating proactive error management and

performance optimization. Together, these concepts lay the foundation for the scalable

and reliable payment platform. The following chapters will discuss further on how they

are applied and implemented.
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Related Work

The growing complexity of payment systems and the need for scalable, fault-tolerant so-

lutions have driven significant research into backend architecture designs, event-driven

systems, and modularity through microservices. This section reviews relevant studies and

highlights their contributions, limitations, and applicability to the research problem.

3.1 Backend API Design for Cashless Transactions

Adam et al.(13) developed a REST API-based backend server to support cashless payment

systems for small-scale retail communities. Their design included critical features such as

user registration, balance management, and transaction processing etc. The system utilized

Node.js for server-side logic and MongoDB for data management. A token-based authen-

tication mechanism (JWT) was implemented to ensure secure API interactions. Their

system aims to enable seamless integration across diverse client platforms via a centralized

backend, based on the flexibility of REST APIs for inter-service communication. They

tested their backend system under high API traffic, simulating 100 concurrent requests per

second, achieving a 76.92% success rate across 13 features. Transaction-related features

showed lower reliability—45% for reducing buyer balances and 65% for adding seller bal-

ances—highlighting scalability issues and inefficiencies in database query handling under

heavy loads.

While REST APIs offered flexibility for small-scale systems, their stateless nature re-

quired frequent database interactions, introducing latency and limiting scalability. These

issues become critical in high-frequency payment environments, where thousands of trans-

actions per second demand real-time processing (14). This research addresses these chal-

lenges by designing a backend optimized for high-frequency data processing. Instead of
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3. RELATED WORK

Figure 3.1: API Flow at Mollie

relying solely on REST APIs, the system integrates event-driven communication (discussed

later) to reduce database dependencies, enhance throughput, and improve fault tolerance.

By extending Adam et al.’s foundational work to a large-scale platform, this study offers

a robust backend architecture tailored to the demands of modern payment systems.

Another study by Aué et al.(15) on faults in web API integration within a large-scale

payment system, analyzing over 2.43 million API error responses from Adyen’s payment

platform. The study categorized API integration faults into 11 general causes. For exam-

ple, invalid or missing user input, insufficient permissions, and internal errors. They found

that most faults stemmed from invalid or missing data, with third-party integration issues

also matter. The study concluded that API consumers often rely on official documenta-

tion, but they face different challenges due to inadequate guidance on error handling and

recovery processes.

While their study focused on diagnosing faults in existing APIs, this research addresses

these issues by a more robust and fault-tolerant API design for payment platforms. Us-

ing an event-driven architecture, the system proactively minimizes errors by decoupling

services and validating API requests before processing. Feature flag is also introduced to

meet special requirements of different payment methods and merchants. Some payment
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Figure 3.2: Event-driven Architecture for Payment Services by Vangala et al.

methods require more information, such as billing and shipping address when creating a

payment, for instance. Real-time monitoring tools further enhance fault detection and

provide immediate alerts, enabling rapid error resolution and reducing downtime. This

approach ensures scalable, reliable API integration for high-frequency payment systems,

overcoming the limitations of traditional REST-based designs.

3.2 Event-Driven and Streaming Architectures

Event-driven and streaming architectures have become essential in financial services due

to their ability to handle real-time data flows and enhance system efficiency. Vangala et

al.(16) investigate Apache Kafka’s role in managing high-throughput transactions. Not

only did it highlight Kafka’s ability to decouple services, but it also reduced latency and

enhances fault tolerance. Their study shows that Kafka’s event-streaming model enables

each service to process transaction events independently as shown in figure 3.2, improving

resilience by eliminating synchronous dependencies that could otherwise cause bottlenecks.

Building on Vangala et al.’s findings, this thesis leverages Kafka within Mollie’s payment

integration to handle transaction events across diverse payment providers. By adopting a

Kafka-based event-streaming approach, the integration can achieve low latency and high

scalability, providing a flexible foundation for handling real-time transactions. Expanding
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on this, Vyas et al.(17) evaluate Apache Kafka’s performance in real-time data stream-

ing. Their study highlights Kafka’s efficiency in handling large data volumes with minimal

memory utilization by leveraging disk-based message storage. They also explore critical

performance metrics like throughput and latency to demonstrating how configuration pa-

rameters like partitioning and polling intervals influence system performance.

Despite its benefits, however, the application of EDAs in high-volume financial transac-

tion systems also presents challenges, including event duplication, out-of-sequence events,

and load balancing, as mentioned in the paper. During development, similar issues were ob-

served, particularly when repeated event notifications caused redundant operations, leading

to false alerts and reduced efficiency. To solve the conflicts, idempotency strategies (unique

event identifiers and time-stamping) are introduced.

Real-time monitoring and distributed tracing, as recommended by both teams, play

an important role in ensuring system performance. In this thesis, monitoring tools are

deployed to track performance metrics such as latency, throughput, and error rates. These

metrics provide actionable insights for identifying and resolving bottlenecks, ensuring stable

transaction handling. Such proactive measures not only enhance system reliability but also

offer a seamless payment experience, meeting the rigorous demands of financial services.

3.3 Monolithic & Microservice Architecture

In recent years, microservices have become a popular architectural approach for organiza-

tions transitioning from traditional monolithic systems. A case study (18) on redesigning

a real estate sector integration platform from a Service-Oriented Architecture (SOA) to

microservices highlights key benefits from this shift. The transition allowed independent

scaling of services, which enables resource allocation to specific bottlenecks without af-

fecting the entire platform at the same time. Deployment cycles became much shorter,

with updates applied to individual services without resulting in the system-wide down-

time. Additionally, the queue-based communication inherent to microservices improved

fault tolerance by isolating failures to specific services, preventing widespread disruptions.

Enhanced resource management and the ability to use specific technologies for different

services further increased scalability and operational efficiency.

However, the study showed transition to microservices also presents challenges, includ-

ing the complexity of managing inter-service dependencies and asynchronous communi-

cation flows. The study proposed using service mesh technologies to streamline service

interactions and distributed tracing tools for improved observability and troubleshooting.
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Building on these findings, microservices are particularly advantageous for high-frequency

transaction environments in fintech. Event-driven communication, in turn, reduces service

coupling and improves fault isolation. This modular design makes sure the integration of

new payment methods or onboarding functionalities without destabilizing the system. By

separating database interactions within a dedicated microservice, as demonstrated in the

study, transaction consistency is maintained while simplifying data access and manage-

ment. This approach keeps the flexibility and resilience, making them an ideal choice for

dynamic, scalability-driven domains.

Besides, such a architecture can significantly improve the security and privacy of data.

Li(19) presents a robust design framework for electronic payment systems tailored to fi-

nancial institutions, emphasizing stringent security protocols, scalability, and transaction

speed—core requirements in high-stakes environments like finance. The study discusses

several design principles including multi-layered access control, data encryption, and end-

to-end security for compliance with regulatory standards like PSD2 and GDPR. The re-

search outlines the high-level security demands that must be met in any payment system,

which provides invaluable insights for our study. However, it remains focused on traditional

payment processing models and lacks emphasis on modularity.

In contrast, this thesis builds on their security framework by employing a microservices

architecture specifically for integrating different sevices within Mollie’s ecosystem. This

approach leverages microservices to isolate sensitive financial functions, ensuring that the

security protocols around each module align with compliance needs while supporting real-

time processing. Furthermore, this research introduces event-driven architecture (EDA)

as an additional layer to handle asynchronous transactions, providing both resilience and

enhanced security in real-time processing environments.

3.4 Reflection

The previous studies above have addressed individual aspects of backend design, event-

driven systems, and microservices. However, our research combines these elements to pro-

pose a holistic solution for the high-frequency transaction system. Based on asynchronous

event handling and modularizing services, this work bridges gaps in scalability, fault isola-

tion, and real-time performance. Unlike prior works, which primarily focus on diagnosing

existing issues, this research proactively designs and implements a system that mitigates

common challenges such as event duplication and inter-service dependencies.

17



3. RELATED WORK

This thesis contributes by providing a scalable and reliable architecture specifically de-

signed for the increasing demands of payment platforms. It addresses not only the technical

challenges but also operational issues, such as ease of deployment and maintainability. This

study offers a comprehensive framework applicable not just to payment platforms but to

any large-scale system requiring robust performance and scalability.
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Design

In this chapter, we provide a high-level overview of the system architecture, detailing the

previous monolithic structure and the proposed modular approach. We focus on the transi-

tion from a monolithic architecture to Independent Autonomous Services (IAS), highlight-

ing the benefits in scalability, fault tolerance, and operational efficiency. These services

communicate through event streams and APIs, ensuring data consistency, efficient process-

ing, and fault isolation.

4.1 Previous Architecture

The previous architecture was based on a monolithic structure, where various functionali-

ties, such as payment processing, onboarding, risk assessment, and accounting, were tightly

integrated within a single codebase and database environment. While this setup provided

a straightforward deployment model and simplified some aspects of data sharing across

modules.

As shown in the figure 4.1, all the sevices and functionalities were integrated into the

monolithic architecture, which causes low latency and operational complexity. As trans-

action volumes increased, it was difficult for the monolithic architecture to handle the

huge data input/output efficiently. Scaling required adding resources to the entire system,

rather than to individual services. This vertical scaling approach was costly and ineffi-

cient. It failed to balance resources based on specific components. For example, payment

processor requires more computational resources than other services. However, it did not

provide enough resources which caused long response time. Besides, the monolithic archi-

tecture lacked isolation between services. A failure in one component could damage and

bring down the entire system. For instance, if the accounting service experienced a error
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Figure 4.1: Monolithic Architecture of Mollie Platform

while a merchant onboarding, it could potentially influence the whole system, disrupting

other critical services, such as payment processing. This can lead to a high risk to service

reliability.

For developers, updating or deploying new features required redeploying the entire mono-

lithic application. It costed approximately 40 minutes to run the pipeline on GitLab at

first. Even minor code errors forced developers to wait for the lengthy deployment pipeline

to identify issues, slowing down the development cycle. It also means development teams

had to work in a shared codebase, which created bottlenecks in the development process.

When I first joined the company, I spent almost three months to get familiar with the

code base because it was too huge to understand every parts including unit test and in-

tegration tests. Furthermore, as all services shared a common database and environment,

it was challenging to implement security protocols effectively. Sensitive data used by the

banking system or risk management was accessible across modules since everyone can use

the same encrypted token, increasing the risk of data exposure. The monolithic structure

complicated efforts to meet compliance standards, and it was difficult to isolate and secure

specific data flows.

In conclusion, while the monolithic architecture initially provided a simple and central-

ized approach when first creating the platform, it became struggling to handle growing
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needs as time passes. The low fault tolerance, lack of scalability, and security limitations

draw the needs for a more modular, scalable, and resilient architecture. Although transi-

tioning is complex, adopting a microservices-based structure, or Independent Autonomous

Services (IAS), would provide a more robust foundation for the company’s growth.

4.2 Architecture Design

This section describes a high-level architecture for Mollie platform. The focus is on the

large components and the interaction between them. The proposed solution contains both

the point on the horizon and a strategic way to get there. The primary objective is to deal

with the growing number of transactions and to limit incidents. As the number of users

grows, we face both external and internal challenges have to be addressed. For the external

factors, there are more and more transactions and higher demands of transaction processing

per second and peak usage of our platform. Addtionally, high-volume customers expecting

a higher level of quality and stability. On the other hand, the growing engineering workforce

that needs to work independently and autonomously for internal teams. Furthermore, The

desire to lower the complexity and coupling of the current code-base in order to speed up

time to competency for new engineers as we face a fast growth phase, as well as assisting

the current teams to be able to move more quickly and with less risk. Thus the new

architecture has to match requirements that remove the current constraints and provide a

stable foundation for future development. The following high-level functional requirements

must be met:

4.2.1 Primary Requirements

• Component Resilience: Individual components should be able to fail without impact-

ing critical business processes such as payment processing.

• Fault Tolerance: The system should be designed to handle failures gracefully while

payment processing.

• Scalability: The architecture should support horizontal scaling to handle increased

transaction volumes predictably.

• Availability: The system should span multiple availability zones and support failover

across regions.
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• Governance Friendly: The architecture should apply solutions that simplify the gov-

ernance of systems and infrastructure.

• Tool Standardization: Minimize the use of redundant tools with similar functionality.

• Security: Solutions should enable the creation of secure components by default. The

system should provide tools for engineers and DevOps that expose security defects

early in the development lifecycle.

4.2.2 Secondary Goals

• Modularity: A modular structure enables higher predictability and faster delivery of

new functionality.

• Cloud-Native Design: Leverage cloud-native solutions to enhance scalability and

reliability.

• Simplified Debugging: The architecture should minimize time spent on production

debugging.

• Service Boundaries: Clear boundaries between services allow consumers to remain

unaffected by internal changes.

• Standard Solutions: Favor industry-standard solutions over custom-built ones.

• Pattern Consistency: Prefer repeatable patterns over one-off implementations.

4.2.3 Proposed Architecture

Following the above rules and goals, the proposed architecture is shown as figure 4.2, by

splitting up the monolith, services are divided into areas that provide the most value to the

customers. These areas of value are influenced by Mollie’s operational domain (online pay-

ments) and the services provided to merchants. Payment processing is at the core of these

services. Additional tools support the Onboarding & Risk, allowing them to assess risks

and manage merchant payment capabilities. The architecture also separates accounting,

which underpins secondary business processes, from the primary payment services.

By identifying these key areas and their dependencies, we can define the distinct bound-

aries. The diagram illustrates a high-level overview, showing how the huge monolithic

platform is segmented into smaller, logical units with clear interaction boundaries. Each of

these units, or containers, represents an independent service. Containers are self-contained,
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Figure 4.2: Proposed Architecture of Mollie Platform

with their own resources, and communicate with each other. Each service and functionality

is exposed externally through a load balancer.

Inter-service communication is achieved through event streams and APIs. Each service

has its own resources, such as databases and storage. Communication between services

follows a transactional protocol (e.g., HTTP). Asynchronous data is transferred by event

streams, which allow a publish-subscribe model for communication. Rather than integrat-

ing via shared database access, event streams enable decoupled communication. Messages

within the system are immutable, and data cannot be queried directly. This structure

enhances decoupling and enables flexible scalability.

The event stream mechanism will be a shared resource for all the contexts. Access

to the information is organized around streams. Streams can be represented as topics,

queues, or exchanges. Event streams are used for communication, they are not job queues.

All communication contained within the events streams should conform to a common

format. The implementation will be chosen based on the highest common denominator.

The mechanism must be horizontally scalable and have user-based permissions. The goal

of using this common format is governance. Therefore, the permissions should be managed

in a configuration-as-code way, ensuring we can audit it and get a deterministic overview

of the access of information. We would like to create a set of tools ensuring components
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Figure 4.3: GCP-Based Service Architecture for Payment Processing

are secure and compliant by default. Resource isolation, standardized communication, and

access control all play a big part to achieve that.

In summary, the proposed architecture is based on Independent Autonomous Services

(IAS) and microservices. These are self-contained units aligned with Mollie’s value streams,

providing a scalable, resilient, and modular structure that supports future growth and

adaptability.

4.3 Optimizing Event Dispatching

In the current architecture, each domain provides event streams to allow asynchronous

integration across services. We distinguish between public and private events using a

marker interface, yet there remains some ambiguity about which delivery channels (topics,

exchanges, or queues) are intended for general or internal consumption. The existing setup

caused significant delays (up to 80 seconds) for downstream systems to consume events,

which is unacceptable for new use cases that require near real-time processing, particularly

for payment-related events. This delay in dispatch compromises the effectiveness of public

events in use cases that demand minimal latency. To clarify and streamline this distinction,
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Figure 4.4: Optimized Event Dispatching Architecture

this RFC proposes a standardized convention to explicitly differentiate between public and

private channels.

To address the delay, a direct publishing mechanism for the event-dispatching system is

introduced. This would involve adding a secondary outbox table to handle direct publish-

ing as part of the business processes that trigger these events. Leveraging data already

generated during payment processing and transaction workflows, public events will be di-

rectly dispatched to new public channels using this outbox setup. During the migration,

we will continue the existing process for converting private events to public ones and re-

distributing public events from RMQ to Pub/Sub, minimizing disruption while gradually

adopting the new setup.

For implementation, a new outbox table is created to log public events. This table

will be used to dispatch events directly to designated public channels, bypassing the main

RMQ-based dispatch path, thus eliminating delays in event consumption for downstream

systems. Besides, new public channels are introduced specifically for near real-time events.

Downstream consumers would gradually adapt to these channels, ensuring a smooth tran-

25



4. DESIGN

sition with minimal impact. To reduce risks, both the existing RMQ-to-Pub/Sub dispatch

and the new direct dispatch still work with each other. This provides a fallback while

ensuring reliability for consumers who are yet to transition to the new channels.
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Implementation

In response to the complex challenges presented by the previous architecture, we continu-

ously adopted a modular, decoupled architecture to simplify the development (integration

of new payment methods for our team) and optimize system scalability. This implementa-

tion section outlines the steps taken to decouple core components, design a plugin-based

architecture, and integrate new payment methods in a straight forward way. Key tech-

nologies and methodologies—including the gateway, microservices, and plugin integration

layers—were employed to ensure robustness and flexibility in Mollie’s ecosystem.

5.1 Decoupling the Architecture

Because the previous architecture was so huge and complicated, we constantly tried to de-

couple the coupled monolithic structure that previously governed Mollie’s platform with-

out affecting current functionalities. The existing monolithic system required extensive

resources to scale or update, making it costly and time-consuming. Moving to a modular,

decoupled architecture allows each component to function independently, reducing techni-

cal debt and enhancing scalability. The following shows the decoupling process followed in

three steps.

5.1.1 Move By Namespace

Two distinct main services we usually involve in, Payments and Onboarding, were identified

as core modules essential for financial transaction management and user access control.

Each service was designed as an autonomous module capable of future transition to a

fully-fledged microservice if required by scaling demands. The Payment service manages
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all aspects of financial transactions, including API interactions for refunds and webhook

handling. In contrast, the Onboarding service focuses on user authentication.

Code from the application/classes directory is moved into a dedicated folder for each

domain. Ownership of code is clarified, code that has co-ownership would need to be

untangled. During this stage there will still be cross-domain coupling. Code that uses

code from another domain is still allowed at this stage. We unlock quantifying domain

entanglement by counting the cross-domain imports and class usage. There are four rules

here:

• Move all code from the application/classes directory to domain-specific namespaces

(e.g., Payments, Onboarding).

• Business logic related code has to be moved to its respective domain-specific names-

pace to ensure that domain-specific logic remained encapsulated.

• Database-dependent code was placed exclusively within domain-specific namespaces

to eliminate cross-domain database access.

• Foundational functionalities essential across domains were migrated to an overarching

application namespace.

5.1.2 Eliminate Cross-Domain Direct Database Access

The next step aims to remove direct database access across domains, transitioning each

domain’s data dependencies to an independent storage system. By separating databases,

each service could maintain its own database without cross-domain interference, which is

crucial for scaling and security.

The goal is to reach zero direct database access between domains. Progress can be

tracked on GCP that monitored database dependencies. These metrics, visualized on a

dashboard. It allows real-time monitoring and ensured that each service adhered strictly to

its domain’s boundaries. This step builds the foundation for a fully modular system where

each domain can be scaled up and operated independently without direct cross-references.

5.1.3 Reimplement integration points over the network

With code and database being divided into different modules, it is time to reimplement

all integration points using network-based APIs or event streams. This transition enables

real-time communication between services while ensuring decoupling, as integration points
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Figure 5.1: E-commerce Gateway

no longer involves direct calls across domain boundaries. By leveraging API endpoints or

message queues for interactions, integration becomes scalable and location-independent.

It potentially supports migration to cloud-based services such as GCP in the long run.

The API or event-driven structure allowed each domain to communicate asynchronously,

providing resilience and flexibility.

In order to make sure the successful transition, the tracking progress is necessary. The

effectiveness of this transition requires monitoring for zero violations of direct integration

between sub-domains. This ensures that each domain operates as a self-contained unit,

ready for independent scaling and deployment.

5.1.4 Gateway and Workflow Management

To manage and coordinate workflows across decoupled services, the gateway plays an

important role. This gateway processes high-level business events into actionable Mollie

workflows. It perfectly abstracts the underlies logic and enabling seamless handoff between

services.

For instance, if a payment event triggers a split-payment workflow, the gateway spots
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this need and initiates the appropriate steps. This centralization of workflow management

simplifies service interactions. As long as the gateway, as shown in figure 5.1, handles them

in advance, the services do not need to know the specific implementation details of each

workflow. The gateway enhances modularity by serving as an abstraction layer, which

allows for flexible workflow modifications without direct changes to core components.

5.1.5 Event-Driven Architecture

To support real-time interactions between decoupled components, we choose event-driven

architecture (EDA) as the solution. Using Apache Kafka for event management, EDA fa-

cilitates asynchronous communication. It minimizes dependencies between services at the

same time. By applying Kafka for inter-service communication, we ensure each service op-

erates independently. When one action produces or received, then it consums or generates

an event as the intermediate without impacting the entire system.

5.2 Partner Integration

A main part I work on in this project is the maintenance of current payment methods

and integration of new payment methods into the platform. The decoupled architecture

provides support for streamlined integration of payment methods. The previous integration

process required significant code changes and manual configuration, leading to extended

development timelines. Under the new architecture, each payment method is treated as a

plugin module, encapsulating all platform-specific requirements. Each team can collaborate

with consistent APIs, focusing on their own domains. This makes the integration of new

payment methods more efficient and ensures consistency across integrations.

5.2.1 Plugin-Based Architecture

Each supported e-commerce platform (e.g., Shopify, Lightspeed, Wix), as the upstream of

the whole process, operates via a plugin module (20). This module serves as an interme-

diary between Mollie’s internal systems and the specific e-commerce platform. The plugin

module structure follows an 80/20 model, where 80% of the functionality is shared across

integrations, with the remaining 20% tailored to individual platform requirements. This

approach enables Mollie’s internal systems to communicate efficiently with external plat-

forms. It not only isolates platform-specific logic within each plugin, but it also allows for

consistent performance across different environments. Within this architecture, external

platforms can communicate with Mollie platform seamlessly, without changing any API
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Figure 5.2: Mandate Creation Workflow - GoCardless

requirements through the transition. Each plugin module manages platform-specific config-

urations internally, thereby decoupling the setup requirements from Mollie’s core systems.

This structure minimizes the need for custom adaptations in Mollie’s primary codebase.

This architecture supports that each plugin module to independently connect to custom

services via REST APIs, offering flexible customization for diverse e-commerce platform

requirements. Furthermore, it speeds up the process of new external platform but also

provides a scalable, modular framework that aligns with Mollie’s strategic goal of creating

a resilient e-commerce integration system.

5.2.2 Workflow-Based Payment Method Integration

Payment methods, on the other hand, play as the downstream for us, handling the following

payment and transcations on a more bank-related foundation. As for the development pro-

cess, once a new payment method is identified, a workflow is initiated within the gateway

to manage the payment lifecycle, ensuring that it flows smoothly from initial authorization

to settlement and any subsequent refund processing. This process is driven by interactions

with the Payment Service and event-driven components. The integration of new payment
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methods follows a clear and structured workflow. Our team work on the payment service

and onboarding service to support various steps within the workflow, providing standard-

ized handling for tasks such as creating and processing payments/mandates, managing

recurring payments, and handling refunds and chargebacks. However, different payment

methods may have different requirements when it comes to the payment details. I take the

workflow stages of integration of a UK-based payment method, GoCardless, as an example

to illustrate here 5.1.

Beside the general steps mentioned above, there are still several other possible stages

need to be done, such as settlement, reconciliation, and notification services, which ensure

that all funds are correctly transferred and provide customized services according to rules

or policies of different countries. For GoCardless, it is mandatory to send notification for

direct debits to customers due to the UK bank regulations.

5.3 Monitoring & Continuous Deployment

To support the high availability and reliability required in payment domain, monitoring

and deployment processes are necessary for multiple services in the new architecture.

5.3.1 Automating Deployment and Testing

A continuous integration and deployment (CI/CD) pipeline is widely used for platform

deployment and testing (21). When the architecture is established, the deployment and

automated testing for each service can be processed independently. The modularity of the

new architecture supports a rolling release strategy. Each module is able to be updated

without impacting other services. This pipeline accelerates the development cycle and

minimizes downtime, improving the user experience and facilitating faster response to

market demands.

Every merge request (MR) into the master branch triggers an automatic deployment

pipeline. This enables traceability for each release, with commit identifiers make sure

it possible to rollback in emergencies. Feature toggles are used to control the release of

specific features to targeted users or groups, enhancing deployment flexibility and risk

management.

Besides, every service has logging, monitoring, and alerting configured, as we will discuss

in the following part. Datadog and other tools track critical metrics such as error rates

and response times, with alerts set for any unexpected failure in the pipeline. This ensures

rapid response to issues during deployment.
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Stage Description
Onboarding Merchant Onboarding merchants can be manually or

automatically, including the setup of necessary
credentials and configurations for payment

processing. Besides, there is a payment method
activation check based on the merchants’ information
and the payment method company’s requirements.

Creating Mandates For methods requiring mandate-based authorization
(such as direct debits), the workflow starts by
creating mandates to collect payments and the

following payments can be deducted on the same
mandates. As shown in 5.2

Payment Processing Once the mandate is set, the payment can be created
and processed using Mollie’s Payment API. This

involves making an authorization request, capturing
the payment, and performing any necessary fraud

checks.
Recurring Payments The system must support recurring payments if

mandates are allowed, particularly for
subscription-based services or memberships. This
involves creating recurring payment instructions,

managing payment schedules, and handling
automatic renewals.

Webhook Handling Webhooks play an important role in the
communication with external systems. To process
webhooks, the system is abole to receive incoming
events such as payment authorization, mandate
activation, or other updates related to payment

transactions (including payments, mandates, and
activation). These events trigger follow-up actions to

update transaction status, notify users, or initiate
refunds and chargebacks.

Refund and Chargeback
Processing

Refunds and chargebacks are handled through
specific workflows that react to events such as

customer disputes or payment errors, ensuring the
correct funds are returned to customers or deducted

from merchants. What should be noticed is that
refund is more generic than chargeback. Chargeback

is not always supported by all payment methods.

Table 5.1: Payment Method Integration Stages
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Figure 5.3: DataDog Dashboard - Payment Methods Overview

5.3.2 Real-Time Monitoring

To ensure the robustness, performance, and reliability of all services within Mollie’s plat-

form, real-time monitoring tool, DataDog, has been utilized across both core systems and

plugins. Datadog serves as the primary monitoring tool at Mollie, where key performance

metrics, such as transaction latency, error rates, and system health, are visualized on

centralized dashboards. These dashboards allow for rapid issue detection and resolution,

which provides a comprehensive view of operational performance across different payment

methods and integration points.

With the centralized dashboards, we can obtain insights into real-time operations and the

health of various services. First and most important, the real-Time operations overview.

There is a dashboard displays live data on payment volumes and processing times across

different payment methods as in figure 5.3, allowing quick visibility into any operational

fluctuations. Moreover, it tracks authorization rates, declines, and errors for every pay-

ment, enabling proactive troubleshooting at the scheme or acquirer level. Additionally,

there are dashboards monitor the performance and reliability of command operations, es-

sential for orchestrating asynchronous events across the platform. These dashboards serve

as crucial tools for Mollie’s engineering teams, allowing us to monitor operational health,

react to unexpected failures timely.

Based on Kubernetes, we deploy services expose Prometheus metrics (22), which are

scraped by the Datadog Agent. Kubernetes pod annotations are used to specify which
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Figure 5.4: DataDog Dashboard - Technical Metrics

metrics to collect, allowing selective and efficient monitoring. Some key metrics used by

Mollie platform include: 1. response time: measures latency for critical API calls (e.g.,

payments, authorizations) to track performance and spot slowdowns, as shown in figure

5.4. 2. error rates: tracks the number of errors encountered in service interactions, which

indicates potential issues in services or external dependencies. 3. transaction volume: pro-

vides insights into transaction load by counting payment or authentication events, allowing

Mollie to monitor system usage and scale accordingly. 4. computational resource: mea-

sures CPU, memory, and other resource usage across services to ensure efficient resource

allocation.

Overall, this real-time monitoring framework ensures that Mollie maintains high service

quality and meets performance standards. The modular architecture helps manage different

service and spot and resolve potential errors more efficiently.
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Evaluation

This chapter aims to evaluate the performance, reliability, and scalability of the proposed

microservices and event-driven architecture, using real-time metrics from Datadog (23). By

examining key metrics, such as API response times, database latency, and error alarming,

this section validates the architecture’s effectiveness in supporting high-frequency payment

processing. The findings also highlight areas for both performance and computational

resource improvement, contributing to the system’s ongoing optimization.

6.0.1 API Response Time

To begin with, the current architecture has contributed significantly to improved API

performance (24), as shown in the Datadog response time dashboard for multiple APIs

6.1.

We take one of the detailed API response time dashboards as an example. The updated

response time graph for the "Get Method Selection" API indicates significant improvement

compared to the previous data, as shown in figure 6.2 and figure 6.3. Currently, the 99th

percentile response time is stabilizing between 600-700 milliseconds, the 95th percentile

around 350-450 milliseconds, and the 50th percentile approximately 200-250 milliseconds.

Figure 6.1: API Response Time Overview
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Figure 6.2: Previous Response Time for
Get Method Selection API

Figure 6.3: Current Response Time for Get
Method Selection API

This is a substantial reduction from prior peaks of 1 second and above in the earlier data,

suggesting that recent optimizations have been effective.

The improvements illustrate that the system has effectively mitigated earlier bottlenecks

that were impacting performance. The improvements are considered coming from three

aspects. First, because of the decoupled architecture, frequently accessed data can be

cached, reducing the load on backend services. Second, distributing traffic more evenly

across API instances improves stability and load balance. Furthermore, the optimization

of database and queries reduce data retrieval times and directly contribute to improved API

response. This evaluation and improvement demonstrate the architecture’s resilience and

adaptability in handling transaction volumes efficiently. However, continued monitoring is

recommended to ensure these improvements hold under varying load conditions.

6.1 Database Performace

This section shows how performance changes from database level. Evaluating database per-

formance is crucial in understanding the efficiency and reliability of the system, especially

in a high-frequency transaction platform. Key aspects of database performance include

query latency, resource allocation, and workload management (25). Efficient handling of

these elements ensures that the system can support real-time processing with minimal

delays, which is essential for maintaining a responsive user experience.

Figure 6.4 and 6.5 show the slot allocation of underlying database. In the previous data,

slot allocation showed high variability, with peaks up to 1.5k slots during certain periods.

This fluctuation suggested inefficiencies in query management, potentially leading to delays

and increased query latency during high-demand periods. Recent dashboard indicates a

more stable and reduced slot allocation pattern, with peaks now barely reaching around
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Figure 6.4: Previous Database Slot Alloca-
tion

Figure 6.5: Current Database Slot Alloca-
tion

250 slots. This change illustrates that improvements in workload distribution and query

optimization have reduced the need for excessive resource allocation. As a result, the query

latency is lower. More stable slot usage has contributed to faster query processing, which,

in turn, supports efficient API response times. The more consistent slot allocation prevents

resource waste and allows the database to handle peak loads more predictably.

6.2 Error Handling and Alerting in Event-Driven Architec-
ture

Although overall platform performance has been improved, there are still some unexpected

errors caused by code issues or incorrect operations. Therefore, it is important to catch

those errors instantly, especially in high-stakes environments like a payment platform.

In order to make timely remedies like revets or quick fixes, real-time error detection is

essential.

To achieve this, we use the Slack notification service, integrated with Datadog, allowing

the team to receive immediate alerts for critical errors. Figure 6.6 shows how Datadog

bot alerts teams of a HTTP 500 error for Payment Method Activation API. The Slack

alert suggests it is potentially caused by unhandled exceptions or server-side issues. In

an event-driven architecture, error handling is critical to maintain smooth communication

between services.

To reduce these errors, the error handling mechanisms by implementing detailed logging

also help resolve root causes faster. Furthermore, setting up more modular alerts in Data-

dog would allow for early detection of errors without excessive false positives. It largely

improves fault tolerance at long run. Besides, key metrics such as load time, error rates,

and resource utilization were used to identify performance bottlenecks and improve system
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Figure 6.6: Datadog Slack Alert for HTTP 500 Error in Payment Method Activation API

reliability. These insights validate the applicability of the monitoring in real-world scenar-

ios and align with our findings on integrating hybrid monitoring strategies for enhanced

performance (26).
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Discussion

This chapter provides a comprehensive discussion of the project’s key reflections, addresses

the challenges & limitations, and outlines potential directions for future development and

enhancement of the platform.

7.1 Reflections

The transition from monolithic to microservices and event-driven architecture has signif-

icantly enhanced the Mollie payment platform’s performance, scalability, and resilience.

By decoupling the huge system, this project succeeded in independent scaling and greater

fault tolerance. The adoption of an event-driven approach with Apache Kafka further en-

ables real-time and asynchronous data processing, essential in handling high transaction

volumes efficiently. The results underscore the advantages of microservices. Because of

the greater modularity, it improves fault isolation and reduces development cycles. This

modular structure allows the platform to deploy more easily and respond quickly to evolv-

ing market demands. Meanwhile, the event-driven system enhances data flow between

services, which also lower the latency and maintain system responsiveness.

With the help of the real-time monitoring with tool DataDog, it has been invaluable

for providing deep insights into system performance and supporting proactive error man-

agement. Engineers are able to spot the error or failure within a short time, helping

the platform to maintain high availability and minimize downtime. These architectural

enhancements have proven effective in fulfilling the project’s core goals of substantially

boosting reliability and supporting Mollie’s sustained growth and future scalability.
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7.2 Challenges and Limitations

Even though the architectural improvements have brought many benefits, several chal-

lenges and limitations still remain. A lot of adaptions have been implemented to decouple

the architecture without disrupting the functionalities, yet certain issues persist (27). One

key issue is event duplication and out-of-sequence processing. Duplicate events result in re-

dundant triggers, affecting downstream systems, while out-of-sequence events may lead to

inconsistencies in workflows. Although we tried to apply different anti-duplication strate-

gies and timestamp-based ordering, these solutions sometimes are not enough, which pro-

duces new errors and we need to fix. Besides, it adds computational overhead and increases

complexity. Another technical weakness is the real-time performance. The payment sys-

tem requires real-time nature which needs API response times and event handling latencies

to stay within strict thresholds. Certain external dependencies, such as third-party APIs,

occasionally fail to meet these requirements, causing bottlenecks in workflows. Achieving

consistent latency remains an ongoing challenge. In other saying, one delayed response

can cause the following communications more delayed due to the increasing internal API

communications.

On the other hand, it also brings operational challenges such as the resource overhead.

The modular character of microservices demands dedicated resources for each service,

including isolated databases, independent deployment pipelines, and monitoring config-

urations. This setup brings huge benefits for scalability and fault isolation, but it also

increases the overall resource footprint and operational costs meanwhile. In other words,

although modular approaches simplify scaling and flexibility, integrating multiple payment

gateways can introduce complexity in handling diverse workflows (28). Additionally, tran-

sitioning from a monolithic to a microservices architecture requires substantial training for

engineering teams. While modularity enables teams to specialize in specific areas, they

are not able to understand how the system work as a whole. Instead, understanding new

paradigms such as event-driven communication and distributed database management may

cause a hard time learning.

In summary, while the platform has made significant strides in addressing its legacy

limitations, these challenges highlight areas that require ongoing attention. Addressing

these limitations will be crucial to sustaining growth, improving operational efficiency, and

meeting the increasing demands of users and partners.
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7.3 Future Works

Based on the limitations discussed above, several areas for improvement and future direc-

tions are proposed to further enhance the platform’s performance, scalability, and adapt-

ability.

• Advanced Event Management: Develop more efficient and lightweight algorithms

for event deduplication to reduce computational overhead. Leveraging unique event

classifier or implementing distributed consensus protocols can help mitigate dupli-

cation and out-of-sequence issues without sacrificing performance. For events with

higher priority, mechanisms can be applied to prioritize high-priority events in the

processing queue to ensure critical workflows maintain sub-second latency even under

peak load conditions. As suggested by Petrov et al. (29), future advancements in

event processing can benefit significantly from the integration of artificial intelligence

and adaptive load balancing.

• Enhanced Developer Tools: The staging environment cannot support some online

APIs, which causes much trouble doing after-deployment testing. Building tools to

simulate complex inter-service interactions in a test environment would help develop-

ers identify and resolve issues more quickly. Besides, comprehensive documentation

is crucial for a company like Mollie to grow at this point. For all microservices and

workflows, detailed and centralized documentation should be used to facilitate faster

onboarding for new engineers and improve cross-team collaboration.

• Real-Time Performance: Because when we try to investigate into an specific

transaction failure or error, it is difficult to spot the related logs on GCP or DataDog.

Therefore, it is necessary to detect the system’s real-time performance with detailed

information and logs which can help solve the issues more efficiently. Moreover,

to optimize the API gateway to handle high traffic with reduced latency, we may

try some cutting-edge technologies like HTTP/3 and adaptive rate limiting. Retry

mechanisms and local caching for third-party API calls will also be considered to

minimize the impact of external delays on internal workflows.
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Conclusion

This paper illustrates the transition from a monolithic architecture to a modular microser-

vices and event-driven architecture in the context of a high-frequency payment platform at

Mollie. By employing a modular approach, the research addresses key challenges of scal-

ability, fault tolerance, and operational efficiency, making sure the system is suitable for

real-time, high-volume transaction processing. Through the design and implementation of

an optimized architecture, this work demonstrates how asynchronous communication and

modularization enhance performance while reducing latency. Real-time monitoring tools

like DataDog, implemented with Google Cloud Platform (30), further facilitate proactive

error management, contributing to the system’s reliability and maintainability.

The findings first demonstrate that adopting a microservices architecture successfully de-

coupled tightly integrated functionalities. This transition facilitated independent scaling

and enhanced modularity. The performance results of DataDog confirm that the microser-

vices architecture effectively addressed the challenges of scalability and fault tolerance. Sec-

ond, event-driven architecture (EDA) also played a significant role in optimizing real-time

processing and decoupling services. By leveraging Apache Kafka for asynchronous commu-

nication and event streaming, the platform reduced latency, improved responsiveness, and

minimized dependencies between services. Furthermore, the integration of real-time moni-

toring tools like DataDog instantly reflected system’s health and greatly enhanced system

reliability. Real-time alerting mechanisms allowed for proactive issue resolution, while in-

dependent deployment pipelines enabled seamless updates without service interruptions,

which addressed the third research question.

Despite the significant improvements achieved, this research highlights areas requiring

ongoing attention, such as event duplication, limited error logs collection, and external

API dependency bottlenecks. The challenges of resource overhead and the complexity of
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transitioning to a microservices model also underscore the need for continued refinement

(31). Looking forward, the findings of this thesis proposes a good solution for innovations

in payment platform architecture. Advanced event management, enhanced developer tool-

ing, and optimized real-time performance monitoring stand out as key areas for ongoing

exploration. These improvements offers valuable insights for both academia and industry

in the evolving financial technology landscape.
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