Vrije Universiteit Amsterdam Universiteit van Amsterdam

X

g z VRIJE
V U UNIVERSITEIT u
AN° AMSTERDAM X

Master Thesis

Blueprint for Institutional LLM Adoption:
On-Premise, Open-Source, and
Domain-Aware

Author: Victor Wie (2828546)

Supervisor: Adam Belloum

2nd reader: Marios Avgeris

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 1, 2025

Adam Belloum
Cross-Out

Abstract

Large Language Models (LLMs) like ChatGPT are widely adopted across sec-
tors, but their often closed-source and externally hosted nature poses challenges
for data sovereignty, transparency, and compliance, especially in settings involv-
ing sensitive or domain-specific information. This thesis explores the viability of
open-source LLLMs deployed entirely on-premise as alternatives to commercial,
cloud-based systems. It surveys the current landscape of open-source models,
outlines their suitability for on-premise deployment, and examines methods
for domain adaptation including prompt engineering, retrieval-augmented gen-
eration (RAG), and fine-tuning. To operationalize these ideas, a fully local
RAG-based assistant was implemented and evaluated using structured univer-
sity policy documents. The system runs without internet access, using a com-
pact open-source model for inference, local embedding for semantic retrieval,
and a modular interface for constrained document-grounded generation. Eval-
uation across two hardware profiles demonstrates high retrieval accuracy, low
semantic error rates, and acceptable latency under resource-constrained condi-
tions. The case study confirms that domain-specific, private LLM deployment
is technically feasible on consumer hardware and offers practical advantages in

transparency, data control, and adaptability.

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

Contents

List of Figures il
List of Tables ™
1 Introduction il
1.1 Motivation and Context m
1.2 Problem Statement and Research Gap
1.3 Research Questions (RQs) [
1.4 Approach and Contributions 1]
1.5 Thesis Structure

2 Background]
2.1 Introduction to Large Language Models 8]
2.1.1 LLM Families 1

2.1.2 The Open vs. Closed-Source LLM Paradigm 14

2.2 Methods for Domain Adaptation 1G]
2.2.1 General Overview 17

3 Overview 23]
3.1 System Overview 23l
3.2 Use Case and User Interaction Flow 24
3.2.1 Student Flow

4 Design 27
4.1 Design Rationale and Goals oL 27]
4.2 System Architecture and Data Flow
4.3 Component-Level Design Decisions 31

CONTENTS

Implementation

5.1 Overview and Codebase,
5.2 Data Ingestion and Preprocessing L.
5.3 Retrieval and Generation Engine L.

5.4 User Interface

5.5 Evaluation Infrastructure

Evaluation

6.1 Experimental Setup and Design
6.2 Evaluation Results

6.3 Summary and Findings oL

Discussion

7.1 Landscape of Open-Source LLMs and Tools
7.2 Domain Adaptation and Integration
7.3 Comparative Viability of On-Premise Deployment
7.4 Limitations and Future Work oL

Related Work

8.1 Building UniGPT (Radas et al., 2023)
8.2 Chat With OPD (Bhise, 2024)« v ovoe oo
8.3 UvA AI Chat (Pepijn Stoop, 2025)
8.4 On-Premises Knowledge Repository (Dobur et al., 2024)
8.5 Towards On-Premise Hosted LLM (Hedlund, 2024)

8.6 On-Site Deployment (Schillaci, 2024)

8.7 MedAide (Basit et al., 2024) oL

8.8 Summary and Alignment with Research Questions

8.8.1 Honorable Mentions and Implementation Influences

8.8.2 Research Gap and Contribution

Conclusion

9.1 Summary of Approach and Findings

9.2 Answering the Research Questions
9.3 Outlook and Future Work

ii

List of Figures

2.1 Retrieval and generation flow. Adapted from LangChain documentation [47]. I8

2.2 LLM Agent Architecture. Courtesy of [48].. 20]
3.1 (Prospective) Student User Flow 2061
4.1 High-level System Architecture 29]
5.1 Codebase layout with functional annotations. 36l

5.2 Ingestion pipeline with four core stages. Adapted from LangChain docu-
mentation [47]. 37

5.3 Chatbot interface [42]

5.4 Automatically generated support inquiry based on chat history. @44

il

LIST OF FIGURES

v

List of Tables

2.1
2.2

4.1

6.1
6.2
6.3
6.4

Characteristics of Major LLM Families

Comparison of open-source and closed-source LLMs

Design goals and their implementation in the system architecture.

Passrates desktop

Average latency by topic and execution mode on desktop (n=30 per row).

Average similarity scores by topic and execution mode (desktop).

Cross-system comparison of evaluation metrics (n=10 per laptop row, n=30

per desktop row)

I

LIST OF TABLES

vi

Introduction

This chapter establishes the foundation for the thesis. It begins by outlining the broader
context in which large language models are deployed and the institutional challenges they
pose. It then defines the specific research gap this work addresses, formulates the guiding
questions, and describes the approach taken. Finally, it summarizes the thesis structure,

setting the stage for the technical and practical work that follows.

1.1 Motivation and Context

The rapid advancement of LLMs has driven their widespread adoption across industries,
offering new opportunities for productivity, automation, and content generation. According
to the 2024 Stack Overflow Developer Survey [1], approximately 75% of developers already
use LLMs during code development. In parallel, recent market research estimates that by
the end of 2025, over 750 million applications will rely on LLMs, with 50% of digital work
expected to be automated through such tools [2]. Despite concerns around cost, accuracy,
and data privacy, the global LLM market is projected to grow at a CAGR of nearly 80%
through 2030, reflecting sustained momentum and enterprise interest in deploying these
models operationally.

Despite their advantages, LLMs delivered through external, closed-source platforms raise
critical concerns about transparency, auditability, and organizational control over data
processing. This is particularly important for organizations that handle sensitive data that
cannot be freely shared with external parties due to legal restrictions. Beyond the risks
posed by closed-source models, the very act of transmitting data to third-party providers
introduces undesirable exposure, creating vulnerabilities that could be avoided with local

deployed. Although industry leaders like OpenAl state that user data is not used to train

1. INTRODUCTION

or improve their models unless users explicitly opt in, users must ultimately trust these
assurances without the ability to verify them [3|, [4]. Furthermore, regulations like the
European Union’s AT Act [5], and other data protection frameworks like GDPR [6] and
HIPAA [7], further underscore the need for transparent and accountable Al solutions [8].

In addition to legal and governance risks, large-scale commercial LLMs carry substantial
environmental costs |9]. Recent analyses highlight that cloud-based AI systems, including
popular services like ChatGPT, consume considerable energy and water per query due to
centralized, GPU-intensive infrastructure and data center cooling requirements [10], [11].
Empirical studies estimate that training and serving foundation models like GPT-3 and
GPT-4 involve tens to hundreds of megawatt-hours of electricity and generate nontrivial
greenhouse gas emissions [12]. Moreover, the environmental footprint scales with both
model size and the general-purpose scope of such systems, most of which are trained on
broad, internet-scale corpora designed to support nearly universal knowledge domains.
However, in institutional settings such as universities, assistants rarely require compre-
hensive coverage of, for example, culinary recipes or insect taxonomy. Deploying such
overgeneralized models for constrained tasks introduces both unnecessary computational
overhead and inflates energy use without corresponding benefit. From this perspective,
task-specific, locally hosted models present a more sustainable alternative: they reduce
emissions, minimize resource draw, and better align compute intensity with real-world
application scope.

In sum, open-source alternatives enable internal deployment and oversight, reducing
reliance on external infrastructure and limiting data exposure. Recent regulatory perspec-
tives, such as those from the Furopean Insurance and Occupational Pensions Authority,
highlight the strategic role of open-source tooling in managing systemic risks, including
those related to energy use and climate impact [13]. In well-scoped domains, local deploy-
ment avoids overprovisioning and aligns resource use with task requirements.

The challenge, then, is not merely to switch from commercial to open-source solutions,
but to determine how organizations can deploy, customize, and govern these models inter-
nally without compromising data protection or operational effectiveness. While interest in
on-premise LLMs is growing, existing research rarely offers end-to-end guidance on how to
select, integrate, and adapt open-source models in institutional settings.

This thesis addresses these gaps by examining how organizations can bring LLM de-
ployment in-house, retain full control over data flows, and increase efficiency in regulated

contexts by allowing open-source models to access domain-specific data. For example, in a

1.2 Problem Statement and Research Gap

university setting, a locally hosted and domain-adapted LLM could streamline administra-
tive tasks, all while preserving the confidentiality of student and faculty data. Although
this work draws on a university use case, the roadmap is intended to be broadly appli-
cable: private individuals, government agencies, small-to-medium enterprises, and heavily
regulated industries can similarly benefit from a well-defined strategy for secure, domain-

relevant LLM deployments that uphold data sovereignty.

1.2 Problem Statement and Research Gap

Existing academic efforts in on-premise LLM deployment tend to address only parts of
the broader challenge. Some works focus only on using RAG to increase domain-specific
knowledge without allowing for reproducibility [14], while others demonstrate generic de-
ployments of non-adapted models [15], |16]. Although each contribution provides great
value, none delivers a single end-to-end framework that guides on-premise LLM adoption,
from initial model and tool selection to domain-specific knowledge integration and data
sovereignty. This thesis aims to close that gap by consolidating the practical steps needed
for secure, high-performance, domain-relevant deployments.

Bhise et al. [14] propose a conceptual RAG pipeline for privacy-sensitive settings, but
the system lacks source code, reproducible deployment steps, and empirical evaluation.
It also omits model selection, architectural modularity, and generalization beyond the
initial domain. Radas et al. [15] present UniGPT, a university-hosted assistant using
open-source models, but focus mainly on infrastructure setup. While they briefly refer-
ence the potential for RAG, no retrieval pipeline is implemented, nor are the implications
of document-grounded responses or domain adaptation discussed. Finally, the Univer-
sity of Amsterdam chatbot [16] relies on Microsoft’s Azure-hosted GPT models, explicitly
sidestepping on-premise deployment. While pedagogically innovative, their system does
not address transparency, reproducibility, or institutional control over model behavior and
data exposure.

This thesis closes those gaps by delivering a fully self-contained, reproducible implemen-
tation that includes: (i) documented model and tool selection, (ii) a functioning document-
grounded RAG pipeline tailored to a structured regulatory domain, and (iii) a modular
architecture designed for local deployment without reliance on third-party APIs. It syn-
thesizes retrieval, deployment, and privacy control into a coherent, end-to-end blueprint

for domain-specific, locally hosted LLM applications.

1. INTRODUCTION

1.3 Research Questions (RQs)

To address the challenges outlined above, this thesis is guided by one main RQ:

How can organizations adopt and adapt open-source LLMs on-premise to achieve
data sovereignty and domain-specific performance, while overcoming the limi-

tations of closed-source alternatives?

In support of this overarching RQ, the work is structured around three sub-questions, each

mapping to a distinct set of objectives and practical tasks:

RQ1.1 Landscape of LLM Options: What open-source LLM models and supporting tools
are available for on-premise deployment, and what are their characteristics in terms

of architecture, model sizes and performance?

RQ1.2 Domain Adaptation: What methods are available for domain adaptation in on-
premise LLMs, and how can internal documents be securely incorporated to improve

domain-specific performance under hardware and privacy constraints?

RQ1.3 Comparative Analysis: Under what conditions do on-premise open-source LLM
solutions offer strategic advantages over commercial LLM services, and how do model
size and optimization strategies influence these trade-offs in domain-specific applica-

tions?

1.4 Approach and Contributions

Each of the following points will describe their respective sub-RQ’s approach and contri-

butions.

1. [RQ1.1} To address this question, the thesis surveys the current landscape of open-
source LLMs and supporting tools suitable for on-premise deployment. It identifies
prominent model families and outlines their architectural characteristics, parameter

scales, hardware requirements, and performance benchmarks.

The contribution is a structured, implementation-oriented overview of the open-
source LLM ecosystem. It serves as a foundational reference for organizations ex-
ploring local deployments, offering guidance on models and tools suited to specific

hardware, modularity, and offline inference constraints.

1.5 Thesis Structure

2. To address this question, the thesis first surveys major methods for domain
adaptation: prompt engineering, fine-tuning, and RAG, analyzing their technical re-
quirements, privacy implications, and suitability for on-premise use. This conceptual
analysis informs the system design, which implements a document-grounded RAG
pipeline using static prompt templates and scoped retrieval over structured institu-
tional texts. Prompt engineering is used to constrain model outputs to retrieved
content, while short-term chat history supports follow-up queries. The contribution
is twofold: a comparative review of adaptation strategies in the context of local de-
ployment, and a practical demonstration of how RAG can be applied securely and

effectively in a resource-constrained institutional setting.

3. [RQ1.3F This question investigates the conditions under which on-premise open-
source LLMs offer strategic advantages over commercial LLM services, with a focus
on latency, retrieval accuracy, data sovereignty, and control over model behavior.
The analysis draws on empirical results from the implemented system, including
performance variation across hardware profiles, prompt sensitivity, and the impact

of model scale on response quality and transparency.

The central hypothesis is that smaller, domain-adapted open-source models - when
optimized for constrained environments - can match or exceed the practical effective-
ness of commercial alternatives for well-scoped institutional tasks. This includes not
only examining whether such models are viable, but when and why they should be

preferred.

The contribution is a comparative framework based on real-world deployment scenar-
ios, offering guidance on how trade-offs in auditability, privacy, and domain alignment

influence the choice between local and externally hosted LLMs.

1.5 Thesis Structure

The chapters that follow reflect the steps taken in this work, beginning with the technical

background and ending with an evaluation of the system and its broader implications.

e Chapter [2| - Background: Introduces the technical and conceptual foundations
necessary for understanding the rest of the thesis. It outlines the core principles of
LLMs, contrasts open-source and closed-source approaches, and reviews methods for

domain adaptation.

. INTRODUCTION

Chapter [3] - Overview: Presents a high-level view of the proposed student desk
chatbot system from the user’s perspective. It outlines the system’s purpose, archi-
tecture, key components, and intended interaction flow, establishing the context for

later technical detail.

Chapter 4] - Design: Explains the methodological decisions behind the system
architecture and how they map to the research questions. It covers the rationale
for model and tool selection, strategies for on-premise deployment, the approach to
domain adaptation, and the evaluation design used to assess system behavior under

realistic constraints.

Chapter [5| - Implementation: Describes how the system was developed and as-
sembled in practice. It includes details on local setups, document ingestion, RAG
logic, interface behavior, and steps taken to maintain privacy, traceability, and mod-

ularity.

Chapter [6] - Evaluation: Describes the experimental setup and presents empirical
results from testing the system across multiple domains and runtime conditions. It
evaluates the pipeline’s retrieval fidelity, generation correctness, and latency under
both cold and warm execution modes on two hardware profiles. The chapter also
analyzes failure cases, the role of prompt design and chunking in retrieval precision,
and reflects on the effectiveness of an automated LLM-based judge for semantic

evaluation.

Chapter [7] - Discussion: Analyzes how the implemented system answers each
research question, based on empirical results. It discusses the suitability of open-
source models for local deployment , the effectiveness and limitations of
RAG-based domain adaptation , and the trade-offs between open and closed
LLMs in practical settings (RQ1.3|). The chapter also reflects on system limitations

and outlines opportunities for future refinement.

Chapter (8 - Related Work: Reviews scientific and applied efforts in local LLM
deployment, with a focus on RAG pipelines, privacy-preserving inference, and insti-
tutional use cases. It identifies limitations in scope, reproducibility, and evaluation
across existing systems, and clarifies how this thesis contributes a fully implemented,

domain-grounded, and benchmarked alternative.

1.5 Thesis Structure

e Chapter [9]- Conclusion: Synthesizes the thesis findings and answers the research
questions in light of the system design and evaluation. It restates the viability of
on-premise, open-source LLMs for domain-specific tasks, and proposes directions
for extending the architecture through fine-tuning, real-world testing, and broader

institutional deployment.

1. INTRODUCTION

Background

This chapter is meant to set a common ground of understanding when it comes to the
main topics discussed in this thesis. Firstly, we will provide a brief introduction to LLMs
and how they work, before discussing the two paradigms, open vs. closed-source LLMs.
Further, we define a focus and cover three foundational LLM families, before providing a

taxonomy of domain adaptation methods.

2.1 Introduction to Large Language Models

Language models (LMs) include both statistical and neural models trained to predict the
likelihood of a sequence of words, making it possible to generate coherent and contextu-
ally appropriate text |17]. Traditional LMs, such as n-gram models, rely on fixed-length
contexts and struggle with capturing long-range dependencies or semantic structure [18].
The development of large language models was made possible by advances in neural archi-
tectures, most notably the transformer, which supports scalable capacity and data-driven
learning in natural language tasks. LLMs like GPT-3 and PaLM are typically autore-
gressive, predicting each token based on preceding context, and are trained using mas-
sive corpora to learn general language patterns. LLM capabilities are further extended
through mechanisms such as in-context learning, reinforcement learning from human feed-
back (RLHF), and retrieval-based augmentation. The latter, used in this thesis, enhances
response quality by injecting external, domain-specific context at inference time, without

altering the model’s weights.

Four Waves of Language Modeling According to Minaee et al. [19|, the development
of LLMs can be traced through four distinct phases: (1) statistical models, (2) neural

2. BACKGROUND

models, (3) pre-trained models, and (4) LLMs.

1. Statistical models: Early statistical models, such as n-gram Markov models, esti-
mated word sequences using co-occurrence counts and relied heavily on smoothing

to counter data sparsity |20].

2. Neural models: Neural models replaced discrete counts with dense embeddings
learned from context 21|, allowing for semantic generalization across tasks such as

search and translation 22|, |23].

3. Pre-trained models: Pre-trained models like BERT decoupled task-specific su-
pervision from language modeling, using large-scale unlabeled data for transfer to

downstream tasks [24].

4. LLMs: LLMs extend this pipeline, scaling both parameters and corpora to reach

emergent performance regimes [25|, |26].

Transformer Architectures and Scaling Transformers are neural architectures built
around self-attention, a mechanism that models relationships between all tokens in a se-
quence at once [27]. Unlike recurrent models, which process input step-by-step, transform-
ers handle entire sequences in parallel, enabling more efficient training on large datasets.
Most LLMs use a decoder-only variant tailored for autoregressive text generation. Refine-
ments such as rotary embeddings, RMS normalization, and SwiGLU activations have been
introduced to improve training stability and speed during inference |28|. These architec-
tural choices affect how well a model performs under fine-tuning, quantization, or hardware

constraints.

Emergent Capabilities As LLMs grow in size, they begin to exhibit behaviors that
weren’t explicitly programmed. One example is in-context learning, shown by GPT-3,
where the model can solve new tasks by following examples given at inference time—without
any additional training [29]. Instruction tuning, used in models like InstructGPT and
Flan-PaLM, helps align outputs with user intent by training on curated prompts [30], [31].
Larger models, such as GPT-4 and PaLM-540B, also show stronger reasoning abilities when
guided by chain-of-thought prompting [32|, [33]. These emergent capabilities make it pos-
sible to steer models through prompting rather than retraining—a practical advantage in

domains where resources or data access are limited.

10

2.1 Introduction to Large Language Models

Training Data and Domain Coverage LLMs are typically trained on large-scale, fil-
tered datasets drawn from the web. GPT-3, for example, was trained on 300 billion tokens
from sources like Common Crawl, Books, and Wikipedia [29], while PaLM-2 expanded
this to 3.6 trillion tokens covering broader domains such as code and dialogue [26], [34].
The LLaMA models, in contrast, rely solely on publicly available data, curated to balance
scale with licensing transparency [28]. Although these datasets enable broad generaliza-
tion, they offer limited coverage of structured institutional content—such as legal texts,
education policies, or internal administrative workflows. In such contexts, where accuracy,

terminology, and formal structure matter, domain adaptation becomes necessary.

2.1.1 LLM Families

LLMs are often categorized into families, each defined by shared architecture, training
scale, and development lineage. These families influence how models can be adapted,
deployed, or extended in practice. Open families—with transparent design and released
weights—are more suitable for local use, especially in privacy-sensitive settings. Closed
models, though strong on benchmarks, are typically restricted by opaque training methods
and proprietary licensing, limiting their use in controlled environments.

Following the taxonomy proposed by Minaee et al. |19], this section outlines three core
families that shape much of today’s model ecosystem: GPT, LLaMA, and PaLM. Each
serves as the foundation for a range of derivatives now used across research and applied

domains.

GPT Family OpenAl’s GPT models are decoder-only, autoregressive architectures trained
for next-token prediction. GPT-1 and GPT-2 were released with open weights and code,
making them important early resources for research and experimentation. Later versions—GPT-
3 (175B), Codex, WebGPT, InstructGPT, ChatGPT, and GPT-4—are proprietary and
accessible only via API. GPT-3 marked a shift by demonstrating in-context learning, en-
abling models to generalize across tasks using prompt examples without retraining [29].
Subsequent models extended this capability: Codex focused on code generation, WebGPT
on retrieval-augmented answers [35], [36]. Instruction-tuned variants like InstructGPT
and ChatGPT introduced alignment through reinforcement learning from human feedback
(RLHF) [30]. However, the lack of open access to models beyond GPT-2 limits their
reproducibility, adaptability, and suitability for on-premise deployment.

11

2. BACKGROUND

LLaMA Family Meta’s LLaMA models are open-weight and intended for broad acces-
sibility. LLaMA-1 and LLaMA-2 span 7B to 70B parameters and are trained on filtered
public datasets |28]. They follow a decoder-only Transformer design like GPT, but incorpo-
rate refinements such as rotary embeddings, SwiGLU activations, and RMS normalization
to improve efficiency on smaller hardware. Ollama’s registry currently supports LLaMA-
2 (7B/13B/70B) and LLaMA-3 (1B/3B/8B/70B/405B), including instruction-tuned and
multimodal variants, making them practical for local deployment [37].

The release of weights - albeit under non-commercial terms - has led to a growing ecosys-
tem of instruction-tuned derivatives, including Alpaca [38], Vicuna, Guanaco [39], and
Koala [40]. These variants adapt the LLaMA architecture for dialogue tasks using rela-
tively modest resources. Architectural transparency, community support, and integration
with local tooling were key reasons for selecting LLaMA-3.2 in this system. It provides a

stable base for domain-specific, on-premise adaptation.

PaLM Family Google’s PaLM models are designed for scale and multilingual coverage.
The original PaLM (540B), along with PaLM-2 and Flan-PaLM, are decoder-only Trans-
formers trained on large, high-quality datasets using the Pathways infrastructure 26|, [34].
While they perform well on reasoning and generation tasks, the models are closed-source.
Weights, training data, and fine-tuning methods are not publicly available, making them

unsuitable for on-premise deployment or reproducible research.

Independent Open Models Outside the major families, several independent models
expand the open-source ecosystem with distinct design goals. Mistral-7B [41], Falcon-180B,
and BLOOM emphasize efficiency, scale, and multilingual coverage, respectively [19]. Mis-
tral follows a LLaMA-like architecture but is trained from scratch and released under
Apache 2.0. Falcon, trained on RefinedWeb, is optimized for large-scale performance and
released under a permissive license. BLOOM, based on the ROOTS corpus, focuses on
transparency and language diversity. These projects show that open-weight innovation is
no longer confined to a few core lineages; independent releases now play a central role in

shaping the model landscape.
Representative Releases from Major LLM Families Table[2.T]summarizes selected

models from the GPT, LLaMA, and PaLM families. It includes key attributes relevant to

deployment: parameter count, release year, weight availability, and licensing terms. Rather

12

2.1 Introduction to Large Language Models

than listing all variants, the table focuses on prominent examples that reflect the diversity

of scale and release practices across these three major lineages.

Model Family Params Release Open License
Name Year Weights
GPT-3 [19] | GPT 125M, 2020 No Proprietary
350M, (OpenAl)
760M, 1.3B,
9.7B, 6.7B,
13B, 1758
GPT-4 [19] | GPT 1.76T 2023 No Proprietary
(OpenAl)
LLaMA-2 LLaMA 7B, 13B, 2023 Yes, non- Meta Non-
[37] 34B, 70B commercial | Commercial
License
LLaMA-3 LLaMA 1B, 3B, 8B, 2024 Yes, non- Meta Non-
[37] 70B, 405B commercial | Commercial
License
LLaMA-4 LLaMA 16x17B 2025 Yes, non- Meta Non-
[37] (Scout), commercial | Commercial
128x17B License
(Maverick)
PaLM [19] PaLM 8B, 62B, 2022 No Proprietary
540B (Google)
PalLM-2 |19] | PaLM 340B 2023 No Proprietary
(Google)

Table 2.1: Characteristics of Major LLM Families

The release status and licensing terms across LLM families introduce a more fundamental
divide: the open-source versus closed-source paradigm. This distinction is legal and archi-
tectural, but it also affects how models are deployed, adapted, trusted, and maintained.

Table summarizes the operational and strategic trade-offs between these two classes.

13

2. BACKGROUND

2.1.2 The Open vs. Closed-Source LLM Paradigm

The distinction between open- and closed-source language models shapes how systems are
accessed, adapted, and governed. It directly impacts deployment strategy, especially in
contexts that require transparency, control, or compliance with internal constraints. While
closed models often outperform in benchmarks, open alternatives offer clearer trade-offs in

institutional settings where auditability, customization, and privacy are critical.

Open-Source LLMs Models like LLaMA, Mistral, Falcon, and BLOOM release their
weights, training configurations, and in some cases, data provenance. This enables full cus-
tomization, including fine-tuning, quantization, retrieval integration, and offline inference.
Open models can be deployed on local infrastructure without relying on external services,
making them suitable for regulated domains where traceability and control are required.
However, they assume local resources and ML expertise. For teams without that capacity,
deployment may be complex. In addition, performance on complex reasoning tasks may

lag behind state-of-the-art proprietary systems.

Closed-Source LLMs Closed models are accessed solely via proprietary APIs. Their
internal architecture, training data, and alignment procedures remain opaque. While they
deliver strong default performance and are easy to integrate, they offer no access to model
internals, no local inference, and no ability to adapt behavior beyond prompting. They
are attractive for quick prototyping or where infrastructure is lacking. But they introduce
recurring token-based costs, vendor lock-in, and structural limitations on adaptation and

deployment.

The dilemma Though not deeply theorized in formal literature, this divide is widely de-
bated in practitioner communities. Most academic surveys emphasize model performance;
few address governance, legal alignment, or control. Practitioner writing, however, high-
lights these operational trade-offs as central to real-world decision-making [42|-|44]. To
structure this comparison, Table 2.2] summarizes key dimensions relevant to institutional
use: transparency, deployment, cost, control, and adaptability.

The comparison shows a consistent pattern: open-source models offer more control,
transparency, and deployment flexibility, especially when institutional language, internal
data, or compliance requirements are involved [45]. Proprietary models, by contrast, limit
adaptation and expose organizations to external dependencies. These constraints are es-

pecially relevant in domain-specific settings, where alignment with internal semantics and

14

2.1 Introduction to Large Language Models

governance regimes is critical. The next section explores how domain adaptation tech-

niques address these gaps and enable specialization without compromising deployment

boundaries.
Dimension Open-Source LLMs Closed-Source LLMs
Transparency Full or partial access to No access to architecture,
architecture, weights, training | weights, or training corpus
corpus, and logs
Prompting Fully supported; same or Fully supported; limited by

greater flexibility than closed
models

API capabilities

Fine-Tuning

Fully supported

Not possible

Quantization &
Optimization

Full control

Not accessible

Inference-Time
Control

Fully customizable

Limited: some tool plugins,
no custom stack

RAG

Full pipeline customization

Only through vendor UI (e.g.
uploading docs to ChatGPT);
not controllable

Tool Use / Agents

Full integration

Limited to plugin frameworks
provided by vendor

Deployment

Any environment: on-prem,
cloud, edge, air-gapped
systems

Remote only; runs on vendor
infrastructure

Cost Predictability

One-time compute +
hardware investment; no
per-query costs

Variable or per-token pricing;
vendor lock-in

Scalability

Scalable across consumer
GPUs, HPC, clusters, edge
devices

Not user-controllable

Privacy & Data

Full data locality

User data passes through

tuning

Sovereignty vendor servers; regulatory
misalignment risk

Security / Full model access allows Model internals not

Auditability auditing, red-teaming, safety inspectable or auditable

Legal & Licensing

Varies by model

Proprietary terms; no
redistribution or
reverse-engineering

Reproducibility

Supports reproducible
research and independent
evaluation

No way to replicate training
setup or alignment methods

15

2. BACKGROUND

Dimension Open-Source LLMs Closed-Source LLMs
Adaptability to Full control over weights, Limited to few-shot
Domain data, tools — easier to prompting; no parameter-level
specialize adaptation
Community Hugging Face, Ollama, LM Closed ecosystems
Ecosystem Studio, vLLM, LangChain,
open benchmarks

Table 2.2: Comparison of open-source and closed-source LLMs

The comparison highlights a consistent pattern: closed models often lead in benchmarks,
but open models offer greater transparency, control, and deployment flexibility. For insti-
tutions with domain-specific data or regulatory constraints, this control is critical. Open
models allow fine-grained adaptation—through tuning or retrieval—aligned with internal
formats, semantics, and governance. The next section explores how such domain adapta-
tion techniques compensate for the limitations of general-purpose pretraining in localized

deployments.

2.2 Methods for Domain Adaptation

Pretrained LLMs, while broadly capable, often underperform in domain-specific settings
where institutional language, structured formats, or procedural knowledge are required.
This gap stems from the training data: models like GPT-40 are trained on large, hetero-
geneous web corpora rather than curated, domain-specific texts [19]. As a result, when
asked detailed questions about internal policies, niche entities, or localized procedures,
their responses may be vague, speculative, or incorrect. General-purpose training lacks the
semantic grounding and contextual familiarity needed for reliable inference in specialized
domains.

Domain adaptation addresses this limitation by exposing models to targeted data through
methods such as fine-tuning, instruction tuning, or retrieval augmentation. These tech-
niques allow the model to internalize relevant language patterns, constraints, and decision
logic, reducing reliance on prompt design alone. In privacy-sensitive environments, adap-
tation also enables the use of internal data that cannot be shared externally due to legal
or ethical restrictions. This thesis explores how such techniques can support relevance,
control, and local execution in institutional contexts.

Adaptation is necessary because pretrained LLMs are stateless, probabilistic, and prone

to hallucination when operating outside their training distribution. They lack access to

16

2.2 Methods for Domain Adaptation

current or private information and are often too large for efficient use in constrained en-
vironments. Adaptation narrows the model’s scope and grounds its behavior in verifiable

context, improving performance and control in specialized applications.

2.2.1 General Overview

In sum, domain adaptation methods can be grouped by the degree of model modification
and infrastructure complexity they require. The three most prominent classes include

prompt-based methods, retrieval-augmented generation (RAG), and model fine-tuning [19]:

Prompt engineering Prompt-based methods guide model behavior through carefully
constructed input instructions. They require no modification of model weights and are rel-
atively easy to implement, making them a common starting point for domain adaptation.
Prompts are written text that frame the task in ways the model can interpret, often lever-
aging knowledge of the model’s capabilities and limitations. Prompt design is inherently
iterative and exploratory, and can be used alone or alongside other adaptation techniques.

Several structured strategies have been developed to improve prompt effectiveness. One
of the most widely used is Chain-of-Thought (CoT) prompting, which encourages the model
to reason through intermediate steps before arriving at a final answer. CoT exists in two
main forms: zero-shot, which uses general cues like "let’s think step by step”, and example-
based, which embeds explicit reasoning paths in the prompt. While the latter tends to yield
better results, it is more labor-intensive to construct. Tree-of-Thought (ToT) extends this
approach by prompting the model to generate and compare multiple reasoning paths in
parallel, selecting the most coherent outcome—a useful mechanism for tasks involving
ambiguity or multiple plausible answers.

Other approaches target different aspects of control. Self-Consistency reduces output
variability by sampling multiple completions and aggregating their results. Reflection
prompts the model to critique and revise its own outputs. FEzpert Prompting positions
the model as speaking from the perspective of a specialist, simulating domain-specific
knowledge. Chains break complex tasks into sequential prompts, while Rails constrain
output format and content using templates or predefined rules. Finally, Automatic Prompt
Engineering (APE) uses LLMs themselves to generate, evaluate, and refine prompts auto-

matically based on performance.

17

2. BACKGROUND

Retrieval-Augmented Generation (RAG) RAG combines prompting with access to
an external knowledge base, and works by the LLM receiving input retrieved from a corpus
(typically vector-indexed internal documents) that is semantically aligned with the user
query. This retrieved context is added to the prompt, grounding the response in the given
domain data. In sum, the three main components of the system lies in its name: retrieval,

augmentation, and generation [46].

e Retrieval phase: The system first converts the user query into an embedding and
compares it against a pre-indexed collection of vectorized documents. These doc-
uments typically consist of semantically segmented internal texts relevant to the
domain, such as regulations, policies, or organizational records. The top-k most

similar segments are selected based on similarity metrics.

e Augmentation phase: Retrieved segments are merged with the user query to con-
struct an augmented prompt. This prompt acts as the model’s context window,
allowing it to condition its output on external, task-relevant data without modifying

internal parameters.

e Generation phase: The augmented prompt is then passed to a language model,
which generates a response based on both the retrieved information and the query.

The model remains fixed, and the adaptation occurs dynamically at inference time.

1

BB e-®

>

Figure 2.1: Retrieval and generation flow. Adapted from LangChain documentation [47].

Figure illustrates this retrieval-augmented inference loop in abstract terms. A user
question is first processed through a retrieval component, which identifies and selects rel-

evant documents from a knowledge base. These documents, represented as semantically

18

2.2 Methods for Domain Adaptation

indexed chunks, serve as context to augment the original query. The combined input is
then passed to the language model, which generates a response conditioned on both the
retrieved content and the user’s prompt. This architecture captures the core structure of
RAG systems: the model itself remains unchanged, while external knowledge is injected

at runtime to guide and constrain its output.

Tool-Augmented LLMs and Agent Architectures While retrieval provides one
mechanism for augmenting LL.Ms with external information, it is part of a broader class of
strategies in which models interface with external tools. In this context, a “tool” refers to
any external function or system, such as APIs, calculators, databases, or file systems, that
the model can call to enhance its capabilities. Retrieval-Augmented Generation (RAG) is a
specialized instance of tool use, where the tool is a semantic search mechanism over a text
corpus. More general tool-use enables LLMs to extend beyond static generation, allowing

for dynamic data access, computation, or environment interaction [19].

A complementary class of strategies involves modifying the model itself through fine-
tuning. Full fine-tuning adjusts all model parameters using domain-specific labeled data,
but is computationally expensive and typically requires high-end hardware. More common
are parameter-efficient fine-tuning methods, such as LoRA (Low-Rank Adaptation), prefix
tuning, and adapter layers, which introduce a small number of trainable weights while
keeping the base model frozen. These methods reduce memory and compute requirements,
making them feasible for constrained environments. Fine-tuning enables the model to
internalize domain knowledge and task-specific behavior, especially in cases where static

prompting or tool use alone is insufficient.

19

2. BACKGROUND

i | LLM-Augmenter ;
l o Utility AN !
: ! i (utility score & feedback) i
| | 7 :
i . < i N Policy ., Working i
| - i (action selection) Memory :
| | ' ;
: External | i Action Executor !
| Knowledge ——> - Knowledge Consolidator [« !
i (e.g., news, wiki, ! i - Prompt Engine i
: proprietary o 1]
i databases) L v i
: D LLM !
! Environment | | (e.g., ChatGPT) Al Agent !
L e e e - :
— dataflow * update flow

Figure 2.2: LLM Agent Architecture. Courtesy of .

Figure depicts a modular agent framework that integrates external tool use into an
LLM-driven decision loop. The architecture consists of four main components: a memory
module to track dialog state or intermediate context; a policy module that determines
which action to take given the current state; an executor that performs the selected action,
such as retrieving external knowledge or calling an API; and a utility module that evaluates
outputs based on alignment with task goals or user expectations. This structure enables
the model to iteratively reason, retrieve, act, and revise its behavior across multiple steps.
While such agent systems can generalize across tasks, their implementation in closed en-
vironments is limited by interface complexity, auditability requirements, and control over
tool behavior.

While agent-based systems offer general-purpose task coordination through tool inte-
gration, their deployment in on-premise settings is constrained by interface complexity,
control requirements, and infrastructure overhead. Partial implementations may adopt
fixed tool sets, predefined action flows, or minimal reasoning modules. In this context,
retrieval-based methods remain a more tractable form of augmentation: they require less

orchestration, preserve model determinism, and are easier to audit and constrain. Agent

20

2.2 Methods for Domain Adaptation

architectures, while more expressive, are less suited to constrained environments without

significant simplification.

Summary

This chapter introduced the key concepts that inform the rest of the thesis. It outlined how
large language models are built, how they differ across families, and how the choice between
open- and closed-source models shapes deployment strategy. It also reviewed the main
approaches for adapting general-purpose models to domain-specific tasks. Among these,
prompt engineering and RAG stand out for their low resource demands and suitability for
local use. These methods form the basis for the system developed in this thesis, which is

introduced in the next chapter.

21

2. BACKGROUND

22

Overview

This chapter introduces the proposed system in broad terms, focusing on its purpose,
architecture, components, and user-facing flow. It sets up the technical depth of Chapter

Design, by providing a high-level understanding of what is being built and why.

3.1 System Overview

The system is a locally deployed assistant for answering domain-specific questions related
to university regulations. It integrates document retrieval with controlled prompting to
ensure that responses remain grounded in officially ingested source material. All inference
and data processing are performed entirely on-premise, without dependence on external
APIs or cloud infrastructure.

The system ingests structured policy documents, like enrolment and application regula-
tions, extracts semantic representations of their content, and indexes them in a vector store
for similarity search. At runtime, user questions are embedded into the same vector space,
and the most relevant document chunks are retrieved and passed to the LLM for answer
generation. The language model is explicitly constrained to base its responses solely on
these retrieved contexts.

The application stack consists of a lightweight Streamlit frontend, a LangChain-based
orchestration layer, and two local Ollama models: a small LLaMA 3-based generative
model (11ama3.2:3b) and an embedding model (mxbai-embed-large) for semantic search.
ChromaDB is used as the persistent vector store. The architecture is modularized to allow
additional documents to be incorporated without modifying the system logic. Prompts,
chunking strategies, and model parameters are isolated and configurable, making system-

atic evaluation and adaptation possible. The system is designed to function within con-

23

3. OVERVIEW

strained compute environments while maintaining acceptable responsiveness and accuracy
for user queries grounded in a fixed document corpus. A 3-billion-parameter model was
selected to accommodate limited local hardware. For improved reasoning, coherence, and

response quality, deployment on more capable systems using larger models is recommended.

3.2 Use Case and User Interaction Flow

While the architecture supports substitution of both model and data components, the
current deployment is centered on policy documents and FAQs from Vrije Universiteit
Amsterdam. The use case was motivated by the recurring delays students face when
interacting with the university’s student desk, where responses often reference publicly
available documents. By automating access to this information, the system aims to reduce
workload for staff, shorten student wait times, and demonstrate the feasibility of local LLM
infrastructure in institutional settings.

The primary users are current or prospective students seeking procedural information
regarding application deadlines, tuition fees, admission requirements, and related adminis-
trative topics. These questions are typically addressed by university staff via email, often
after several days. The chatbot replicates this functionality using RAG, backed by a lo-
cal vector store and a constrained language model that is prompted only with grounded
document content.

Figure illustrates the core interaction flow. Users access the chatbot through a web-
based interface served by Streamlit. Upon landing, they are presented with a general
prompt input field, a selectable topic dropdown for narrowing query scope (e.g., “Applica-
tion and Enrolment”), and a short list of example questions to guide usage. The interface
clearly indicates that an Al language model is used, notes its limitations, and provides
a fallback button to contact the university directly. If the fallback is used, the system
can optionally generate a summary of the conversation to help students formulate a more
precise inquiry.

All user input is processed as free-text queries. When a query is submitted, it is em-
bedded using a local embedding model and compared against document chunks stored
in ChromaDB. The top matches are ranked by similarity score, and if the best match
exceeds a predefined threshold, the associated context is passed to the generative model
alongside the user’s original question and previous dialogue turns. The output includes
a natural language answer followed by an expandable citation panel listing the document

title, page number, reference snippet, and link. If no match meets the threshold, the model

24

3.2 Use Case and User Interaction Flow

is prompted to return an explicit fallback message indicating that it could not confidently

answer the query.

Session memory is maintained throughout the chat to support follow-up questions. The

model receives a trimmed conversation history to preserve context while respecting token

limits. In all cases, responses are strictly grounded in retrieved content, with prompt

instructions designed to suppress hallucination and reject unsupported answers.

3.2.1 Student Flow

This subsection focuses students and prospective students and traces the complete user

journey from system entry to resolution or escalation. The corresponding interaction flow

is shown in Figure

25

3. OVERVIEW

1. Student opens chatbot
interface via authenticated
university portal.

2. User optionally selects
topic from dropdown to
narrow scope
(default: Global Search). v

12 User writes their own
message manually.

3. System shows example
questions to guide usage.

10. Does the user

4. User submits a query want to Lhe_syste(n to
—»and communicates with the generate their inquiry to
chatbot. the student desk?
Yes No

b

5. Uses dense retrieval
over locally embedded

documents stored in

ChromaDB. 11. Chat history

summarized into formal 12 User writes their own
inquiry and pre-filled in message manually.
form.

!
6. Retrieved text passed to
local LLM. Answer is
generated with citations.

13. User sends the inquiry
to the Student Desk

7. Answer returned,
citations are shown.

8. Was the chatbot’s
answer and dialogue

sufficient to resolve
the user's inguiry?

4

\ End session |

.

Figure 3.1: (Prospective) Student User Flow

26

4
Design

This chapter explains the rationale behind the system’s design choices, covering structural
decisions, modularity, and deployment strategy. It connects design goals to implementation

details, preparing for the next phase of technical analysis.

4.1 Design Rationale and Goals

The system is designed to demonstrate how open-source LLMs can be adopted and adapted
for fully local deployment. Its architecture, component choices, and execution model are all
shaped by the central goal of addressing [RQI.I}-namely, how organizations can achieve
data sovereignty, privacy compliance, and domain-specific performance without reliance on
proprietary LLM services.

The selected use case is illustrative rather than limiting. The architecture is domain-
agnostic, with modular components and swappable interfaces designed to generalize across
institutional deployments. The guiding principles are locality, modularity, transparency,

and constrained reasoning, each selected to support one or more of the thesis sub-questions.

Research Questions as Design Drivers

. guided the selection of all system components: a 3B parameter open-weight
model served via Ollama, a dense embedding model for vector search, and a lightweight
vector store (Chroma) for on-premise indexing. All components are open source and
locally deployed, ensuring architectural transparency and allowing experimentation

beyond the limits of proprietary APIs.

e |[RQ1.2|shaped the ingestion and retrieval pipeline. Policy documents are segmented

and embedded into topic-specific indexes, which support domain-relevant retrieval.

27

4. DESIGN

Prompt formatting and chunking are tuned to maintain source grounding and reduce
context leakage. This setup supports document alignment and secure integration of

internal content into the retrieval-augmented generation flow.

e [RQ1.3|informed trade-offs between model scale, latency, and deployment constraints.
The use of a quantized 3B model balances performance and efficiency, allowing in-
ference without a GPU. The system architecture mirrors core functionality offered
by commercial LLM APIs, while demonstrating under what conditions open models

offer a viable and privacy-preserving alternative.

The mapping between each design goal and its corresponding implementation strategy is
summarized in Table This table defines the core priorities embedded into the system

architecture and how each is operationalized at runtime.

Design Goal Mechanism in System

Data sovereignty No remote APIs; all inference and storage
are local

Domain adaptation Per-topic document indices; isolated

retrieval pipelines

Low-latency inference Quantized 3B model served via Ollama;

fast local embedding

Transparency Prompt-grounded generation with inline

citations and traceable chunks

Modularity Decoupled embedding, retrieval,

prompting, and Ul components

Deployment flexibility All dependencies are local; no internet

connection required

Table 4.1: Design goals and their implementation in the system architecture.

4.2 System Architecture and Data Flow

Figure provides a high-level overview of the system architecture and data flow. It sep-
arates the document ingestion pipeline, used to process and embed regulatory documents

prior to runtime, from the main execution-time components that handle user interactions

28

4.2 System Architecture and Data Flow

and query resolution. Each numbered step in the diagram corresponds to a distinct data or

control flow within the system. The following list describes the key phases of the pipeline.

Local Deployment Environment
Vector DB
. Document Indexing Pipeline | (Chroma)

S O—8—e—Q

Load & Chunk Generate Embeddings

Domain-Specifief Documents (mxbai-embed-large)

@:110%2H@ O LQ

1
T Query Processor Retriever
L 11 Chat Interface (topic, history (Dense Search)
(streamlit) and embedding) l

i ©
| X |
8; . o—@—— B —

P l . LLM Prompt Constructor Similarity check
12 | (llama3.2:3b) (k=5)

Figure 4.1: High-level System Architecture

Document Ingestion Pipeline (Steps P1-P3)

Before deployment, all relevant regulatory PDFs are processed through an offline ingestion

pipeline. This stage is executed once per update to the document corpus:

¢ P1 — Load and Chunk Documents: PDF files placed in the data/ directory
are parsed and segmented into overlapping text chunks using a fixed-size window.

Overlap ensures contextual continuity between adjacent chunks.

e P2 — Generate Embeddings: FEach chunk is transformed into a dense vector using
the local embedding model mxbai-embed-large, served via Ollama. All computation

occurs locally, with no external API calls.

e P3 — Index into Vector Store: The embeddings are stored in a local ChromaDB
instance under topic-specific collections. Chunk-level metadata (e.g., filename, page

number, position) is preserved for use during response citation.

29

4. DESIGN

Once indexed, the system can answer queries without reprocessing the documents unless

the underlying corpus is modified.

Runtime Interaction Flow (Steps 1-12)

1. User Input: The user enters a natural language query into the web-based Streamlit

chat interface. A dropdown menu allows optional scoping to a document category.

2. Query Processor: The query, topic scope, and trimmed chat history are received by
the backend. The query is embedded using a local embedding model (mxbai-embed-large),

and relevant metadata is attached.

3. Embedding Dispatch: The computed query vector is passed forward for similarity-

based retrieval.

4. Retriever (Dense Search): The retriever performs a dense similarity search over

the ChromaDB vector store.

5. Top-k Selection The top 5 document chunks are retrieved based on cosine similarity

and passed to the next stage for filtering and prompt construction.

6. Similarity Check: A hard threshold is applied to the similarity score of the top-
ranked chunk. If it falls below this threshold, no context is provided to the model,
and a fallback message is generated indicating that the system cannot confidently

answer the query.

7. Prompt Constructor: If context is valid, the top chunks are concatenated with
the user query and prior chat history to construct a structured prompt. Grounding

instructions are included to limit generation to retrieved evidence only.

8. LLM (llama3.2:3b): The prompt is passed to a locally running open-source lan-
guage model via Ollama. The model returns a natural language answer, constrained
by the contextual evidence. The generated response is returned to the frontend for

display to the user.

9. Response Return: The generated response is returned to the frontend for display

within the chat interface.

10. View message: The generated response is being read by the user, and can now

decide to continue conversation or contact the student desk if needed.

30

4.3 Component-Level Design Decisions

11. Contact Administration: The user is offered the option to forward their ques-
tion to the university administration via a built-in contact form. The system can
automatically generate a well-formed inquiry message based on the user’s original

question and chat history, which the user can review and submit.

12. Send Inquiry: The user chooses to either submit the automatically generated mes-
sage (based on the prior conversation) or manually write their own. The finalized

inquiry is then forwarded to the administration through the contact interface.

While the chat interface is accessed through a web browser, no data is transmitted
beyond the host machine. New domain-specific documents can be incorporated at any
time by adding them to the data/ directory and rerunning the ingestion pipeline—mno code

modifications are required.

4.3 Component-Level Design Decisions

This section details the concrete design decisions made across key system components.
While the implementation is original, elements of the architecture were initially informed
by community tutorials on local RAG systems, particularly those by Dutch YouTuber
Thomas Janssen [49], [50]

Two tutorials in particular were used as early reference points: one focused on end-to-
end RAG with Ollama and LangChain using web-scraped content [51], [52], and another
demonstrating a PDF-based RAG chatbot with OpenAl APIs [52], [53]. While the current
system diverges significantly, particularly in modularization, how RAG is organized, and

evaluation-design, the ingestion script remains structurally similar to the original example.

Model Selection and Quantization

The generative model used in the deployed system is 11lama3.2:3b, a 3-billion parameter
instruction-tuned model served locally through Ollama. This model was selected for its
balance between generative capability and hardware feasibility. It supports quantized
inference with acceptable latency on CPU-only machines, making it well suited for edge or
constrained environments.

Only models below 7B parameters were considered, constrained further to 4-bit and
5-bit quantized variants. These thresholds were selected to ensure compatibility with
development machines limited to 8GB RAM and to reduce cold-start latency. Larger

models were excluded due to extended load times, increased token throughput cost, and

31

4. DESIGN

memory instability in longer sessions. Quantization was therefore critical to achieving near-

interactive response times without relying on GPU acceleration or distributed inference.

Embedding Strategy and Vector Indexing

For computing semantic similarity between queries and document chunks, the embedding
model mxbai-embed-large was used. This transformer-based model was selected based on
comparative performance in public benchmarks and informal tests, where it showed robust
semantic generalization on longer, policy-like text. Lighter alternatives such as al1-MinilM
were tested but discarded due to semantic fragmentation in longer documents and lower
recall in multi-sentence queries.

Embeddings are generated during offline ingestion to avoid runtime overhead. Chun-
ked documents are embedded using 01lamaEmbeddings and indexed using ChromaDB, a
lightweight vector store compatible with LangChain. Chroma was selected for its sim-
plicity, persistence support, metadata filtering, and zero-server architecture. Alternatives
such as Qdrant and Weaviate were ruled out due to their heavier dependencies and server
requirements, which were deemed unnecessary in a single-user offline deployment. The
ingestion process builds both topic-specific and global indexes, supporting scoped retrieval

while preserving fallback coverage.

Prompt Construction and Grounding

Prompt construction is handled through a static template composed of three segments:
system-level instruction, truncated dialogue history, and top-k document chunks retrieved
from ChromaDB. The system prompt enforces strict grounding by explicitly directing the
language model to disregard any knowledge not contained in the retrieved content. This is
reinforced through small chunk sizes (300 characters with 100-character overlap) and early
exit logic when retrieval scores fall below a threshold. Dynamic or chain-based prompting

was deliberately avoided to reduce complexity and improve determinism during generation.

User Interface and Memory

The interface is built with Streamlit, chosen for its minimal setup, built-in state man-
agement, and seamless integration with Python-based backends. Conversation state is
maintained using st.session_state, enabling multi-turn interactions without requiring
external session storage. Citation formatting in the interface is driven by metadata per-

sisted during ingestion, allowing traceable, document-grounded answers. Fallback behavior

32

4.3 Component-Level Design Decisions

is explicitly surfaced to the user when no confident match is retrieved, supporting trans-

parency and reducing the risk of hallucinated output.

33

4. DESIGN

34

Implementation

This chapter details the technical implementation of the chatbot system developed for this
thesis, which is available as open-source code at |54]. It outlines how institutional docu-
ments are embedded into a local vector database and queried via a locally hosted LLM to
support question answering over private, domain-specific content. The system operates in
both graphical (GUI) and headless modes. Documents are preprocessed offline into persis-
tent Chroma vector stores using local embeddings. At inference time, the engine retrieves
semantically relevant chunks, assembles a constrained prompt, and invokes the local LLM.
The output includes both the generated response and a corresponding source attribution.
The following sections describe the system architecture, data processing pipeline, inference

logic, user interface, and supporting infrastructure.

5.1 Overview and Codebase

The system architecture is organized around four logically separated components: doc-
ument ingestion, retrieval and generation, user interaction, and evaluation. Each oper-
ates independently and communicates through clearly defined interfaces. The evaluation
framework runs separately from the interactive system and is used to systematically assess
performance across predefined test cases. All modules are implemented in Python, with
minimal external dependencies and environment-based configuration for model selection.

Figure [5.1] outlines the directory structure.

35

5. IMPLEMENTATION

|- ui/
| |- chatbot_app.py
|- core/
| |- rag_engine.py
| |- config.py

[- __init__.py
- evaluation/

|- test_cases/

|- results/

|

|

|

|

| | |- laptop/
| | |- desktop/

| |- test_script.py

| |- 1lm_judge.py

| |- evaluate_results.py

| |- aggregate_metrics.csv
|- data/

| - chroma_db/

|- ingest_database.py

| - question_generation.py
|- email_handler.py

|- .env

|- .gitignore

| - README.md

| - requirements.txt

Streamlit front-end interface

RAG pipeline: retrieval, prompting, LLM call

Centralized model and system config

H OH HF HF OH OH OHF OHF OH O H OH OHF HF OH

JSONL files with test queries

Per-system test outputs and summaries

Result JSONs from test_script (e.g. --dir laptop)
Result JSONs from other systems

Runs evaluation test cases

LLM-based answer quality evaluator
Aggregates and summarizes evaluation results
Global summary across systems

VU source documents (chunked + raw)
Auto-generated Chroma vector DB

Document parsing and indexing pipeline
Tooling for draft test question generation
Stub module for possible email interface

Local environment config (if used)

Figure 5.1: Codebase layout with functional annotations.

Preprocessing logic resides in a top-level script (ingest_database.py), which is executed

each time new or updated documents are added to data/, in order to regenerate the vector

store. The core retrieval and generation logic is isolated in core/rag_engine.py, with

a single entry point (run_query()) that accepts a query, topic label, and optional chat

history. This function is reused across both interactive and evaluation contexts.

The Streamlit interface (ui/chatbot_app.py) serves as the primary user-facing entry

point. It handles topic selection, chat state, and optional support requests, delegating all

retrieval and generation to the backend engine. Auxiliary modules such as question_-

generation.py and email_handler.py implement optional logic for summarizing conver-

sations and forwarding inquiries to human support channels.

36

5.2 Data Ingestion and Preprocessing

Evaluation logic is placed under the evaluation/ directory, making structured and re-
producible testing of system possible. Predefined test cases are stored as JSONL files, each
specifying a topic, input query, and expected behavior. The evaluation runner (test_-
script.py) executes these cases and logs the system’s responses, which are subsequently
assessed for correctness via automated heuristics or LLM-based scoring (11m_judge.py).
Aggregation and summary scripts (evaluate_results.py) compute performance metrics
across cold and warm start scenarios, facilitating comparative analysis across hardware,

settings, and model variants.

5.2 Data Ingestion and Preprocessing

Before inference can occur, all relevant university documents must be parsed, segmented,
and embedded into a searchable vector space. This process is implemented in ingest_-

database.py and follows four sequential stages, as shown in Figure [5.2

= o
<> @ I—“%

v v

Figure 5.2: Ingestion pipeline with four core stages. Adapted from LangChain documenta-
tion [47].

[0.5, 0.1, 0.7, 0.3, 3,2...]

[0.5,0.1, 0.7, 0.3, 3,2..]

[0.5, 04, 0.7, 0.3, 3,2..]

(~]

1. Load: Raw PDFs are sourced from topic-specific subdirectories under data/. Each
topic corresponds to a semantic domain (e.g., application enrolment, selection policy)
and is processed independently. Documents are parsed using PyPDFDirectoryLoader

into a standardized internal format.

2. Split: Documents are segmented using a recursive character splitter with a chunk
size of 600 characters and an overlap of 100. This level of granularity retains local
context while keeping chunks within practical prompt limits during retrieval and

inference.

37

5. IMPLEMENTATION

3. Embed: Text chunks are converted into dense vector representations using mxbai-embed-large.
Embeddings are computed through LangChain’s 011amaEmbeddings interface and are

generated offline. The embedding model identifier is declared in the .env file.

4. Store: Vectors are indexed using ChromaDB, a lightweight embedded vector database
optimized for local storage and retrieval. Each topic forms its own collection in
chroma_db/, and a global collection is built by aggregating all chunks across domains.

UUIDs are assigned to each chunk to support traceable retrieval during inference.

5.3 Retrieval and Generation Engine

The retrieval and generation logic lies within rag_engine.py, which is a module that
handles semantic search over precomputed embeddings, prompt construction, while also

logging system diagnostics and latency for each execution.

Retrieval Pipeline

At inference time, users explicitly select the topic associated with their query. This selection
determines which vector store is used for retrieval. If a specific domain is chosen (e.g.,
selection_placement), only that domain’s Chroma collection is queried. If the user
selects Global Search, the system performs retrieval over the full index, which includes
all embedded documents.

For each query, the retriever fetches the top-k most relevant chunks (k = 5) using seman-
tic similarity scoring. Retrieved chunks are concatenated to form the basis for the LLM
prompt. Retrieved documents are deduplicated based on approximate string matching to
avoid near-identical content. From the deduplicated results, the top 2 unique chunks are
selected and used to construct the LLM prompt. Each chunk’s source metadata (filename,
page number) is preserved to support traceability in the response.

The prompt is constructed by combining the user query, the selected context chunks, and
optionally the chat history (capped at three previous turns). This prompt is then passed
to the LLM, which generates a grounded response. The generation parameters are defined
in the system configuration: LLM_TEMPERATURE=0.2, LLM_TOP_P=1.0, and LLM_REPEAT_-
PENALTY=1.05. Figure[2.1]in Chapter [2]illustrates this retrieval-augmented inference loop.

The run_query() function executes the full inference pipeline: it selects the target
Chroma collection based on user input, performs similarity search with k, constructs the

prompt using the top 2 unique chunks, and invokes the LLM. At each stage (retrieval,

38

5.3 Retrieval and Generation Engine

prompt construction, and generation) it logs latency and metadata for better evaluation

and traceability.

Prompt Construction and LLM Invocation

For each query, the system constructs a prompt using a constrained instruction format
designed to enforce grounding in the retrieved documents. The prompt explicitly instructs
the model to generate responses based solely on context passages drawn from univer-
sity regulations, without relying on prior knowledge. Prompt construction is handled by
the function build_prompt (). It accepts the user query, up to two deduplicated context

chunks, and an optional chat history. The resulting prompt has the following structure:

You are a student-facing chatbot answering questions strictly using official
documents from Vrije Universiteit Amsterdam (VU).

Do not use prior knowledge.

Answer the question using only the source material provided.

Be direct and natural.

Do not hedge when the answer is stated clearly.

[Question] {query}

[Source] {chunks[0]}

[Additional Context] {chunks[1]} # Included only if non-empty

[Conversation History] {chat_history} # Included only if present

If a second chunk is a near-duplicate of the first, it is omitted. Chat history is included
only if warm mode is active and limited to the last three turns. The prompt is passed
to an instance of 01lamaLLM, a local wrapper over the model specified in the LLM_MODEL
environment variable (default: 11ama3.2:3Db).

Model instantiation is managed by get_11m(), which supports both cold (stateless) and
warm (stateful) execution. In warm mode, the model instance is reused across turns,

preserving conversational context and reducing latency.

System Monitoring and Traceability

The inference engine emits structured runtime diagnostics via terminal logs to support
performance profiling, debugging, and reproducibility. Logging is active by default and

includes detailed measurements for each inference cycle.

39

5. IMPLEMENTATION

Key metrics and outputs include:

e Model configuration: temperature, top_p, and repeat_penalty

e LLM initialization time in milliseconds (cold mode only)

e Retrieval time (retrieval_time_ms)

e Generation time (generation_time_ms)

e Total latency (total_time_ms)

e Prompt length in characters

e Similarity scores for retrieved chunks (k=5), including source metadata

e System information: OS, CPU, RAM, Python version, GPU memory and utilization

e GPU memory usage before and after model invocation (via nvidia-smi)

System-level information is logged on first model instantiation using psutil and sub-
process access to nvidia-smi. The GPU status log reports both static memory usage and

utilization percentage, enabling verification of hardware acceleration.

Excerpt of terminal output:

[DEBUG] LLM config - temperature: 0.2, top_p: 1.0, repeat_penalty: 1.05
[DEBUG] LLM initialized in 1949.76 ms | ID: b66d2da6-7071-4eba-b24f-d9e36£514f69
[SYSTEM] 0S: Windows 10 | CPU: Intel64 | RAM: 15.84 GB (6.33 GB available)
[GPU 0] NVIDIA GeForce MX250 | O MB / 2048 MB used | Utilization: 1%
[INFO] GPU detected in use by Ollama or Python

[TRACE] >>> Entered run_query()

[DEBUG] Retrieved 2 unique chunks (after deduplication).

[CHUNK 1] Score: 0.4512

[CHUNK 2] Score: 0.5034

[DEBUG] Prompt length: 1790 characters

[GPU LOG] BEFORE LLM INFERENCE: 639, O

[GPU LOG] AFTER LLM INFERENCE: 1153, 96

[LATENCY] Retrieval: 4258.60 ms

[LATENCY] Generation: 24990.63 ms

[LATENCY] Total: 31274.17 ms

40

5.4 User Interface

Modularity and Execution Interface

The central entry point to the inference pipeline is the function run_query(query, topic,
chat_history=None, log=True, llm=None), which performs retrieval, prompt construc-

tion, and LLM invocation. It returns a structured dictionary containing:

e response (model output)
e retrieved_docs (LangChain document objects)
e retrieved_sources (source metadata, e.g., filename)
e similarity_scores (semantic match confidence for top-2)

e retrieval_time_ms, generation_time_ms, total_time_ms

e sources_display (snippet-formatted citations for UI rendering)
e prompt, prompt_length (constructed LLM input and character count)
e timestamp (ISO 8601 format)

The engine is directly invoked by both the Streamlit frontend (chatbot_app.py) and

the evaluation framework (test_script.py).

5.4 User Interface

The user-facing interface is implemented using Streamlit and encapsulated in chatbot_-
app.py. The interface provides a lightweight frontend that interacts directly with the

retrieval and generation engine.

41

5. IMPLEMENTATION

Deploy

& Topic Selection ® Student Administration Chatbot

Choose a topic
P! Current Topic: Global search | Model: 11ana3.2:3b

Global Search v
Hil 1 can help you with university regulations. What would you like to ask about?
Searches across all topics and documents.
Please note: This is an Al-generated response. Always verify with official sources: https://vu.nl/en/education/more-about/important-

Need Further Assistance? regulations
Contact Student Desk -
What are the tuition fees for full-time study How many application attempts for Tuition fee for Liberal Arts and Sciences?
programmes? Computer Science?

| What are the tuition fees for full-time study programmes?

The tuition fees for full-time study programmes at VU Amsterdam are €2,601.

) Total response time: 14.63 seconds (retrieval: 1247 ms, generation: 12362 ms)

Sources ~
Reset Chat

Application Enrolment, page 6

Exit Chat retrospectively. 2. Statutory tuition fees: a. Full-time, part-time, and work-study programmes: €2,601. b. Bachelor’s in Liberal Arts and

Sciences: €5,400. c. Bachelor’s...

Figure 5.3: Chatbot interface

Interaction Flow

A topic selector is placed in the top-left corner of the screen (see Figure . Each topic
corresponds to a specific domain and includes a short description to guide the user’s choice.
In addition to domain-specific options (e.g., Application and Enrolment, Selection and
Placement), a global fallback mode (Global Search) allows for cross-domain queries.
Natural language queries are submitted to the chat input field, and three example queries
are available as one-click buttons. System responses are generated in real time and rendered
with the corresponding source excerpts shown in an expandable section. Reset Chat and
Exit Chat buttons are also available in the sidebar to clear session state or exit the chat.
Chat history is passed to the RAG engine on every turn to support contextual conti-
nuity. To constrain prompt length and avoid latency spikes, only the three most recent
user—assistant message pairs are retained. This truncation is enforced within the run_-
query () function when a warm-mode LLM instance is reused. The decision is grounded
in empirical evaluation: preserving full chat history across turns resulted in significantly
increased inference time and degraded response quality due to prompt overflow. Limiting

history depth maintains coherence while controlling prompt size and model load.

42

5.4 User Interface

Support Request Functionality

In addition to real-time automated responses, the interface includes a secondary interaction
path that enables users to contact human support. This functionality is accessed via
the sidebar under “Need Further Assistance?” and is designed to assist users who require

escalation beyond the system’s current scope.

Upon activation, users are presented with a support form in which they can either
manually write a question or opt to generate one automatically based on their prior in-
teraction with the chatbot. The automatic inquiry synthesis is triggered by clicking the
Generate Question button. Internally, this invokes the function generate_inquiry_-
from_history(), defined in a separate support module. The function receives the full
chat history and an LLM instance as input, and returns the inquiry formulated as if writ-

ten by the user.

""Read the following conversation between a student and an assistant.

Based on the student’s questions, write a refined inquiry for the Student Desk
that summarizes what the student is seeking. You may use up to two sentences,
and your message should begin with ’Dear Student Desk,’.

Only include points that the student has actually mentioned or asked about.

Do not invent or add information that was not part of the conversation.""

The generated inquiry is inserted into a text area where the user can review and option-
ally edit it. Once finalized, the inquiry and email address are passed to send_email_to_-
student_desk(), a placeholder function for future integration with institutional support

services.

Figure shows an example of a generated inquiry based on a prior multi-turn interac-

tion.

43

5. IMPLEMENTATION

Need Further Assistance?

Contact Student Desk

Submit Your Inquiry

You can also auto-generate a message
based on this chat.

Generate Question

Your question:

Dear Student Desk,

I would like to know if there are any
additional fees beyond the standard
tuition fee of €2,601 for full-time study
programmes at VU Amsterdam. Are

there any other costs | should be aware
of as a student?

Your email:

Send Request

Figure 5.4: Automatically generated support inquiry based on chat history.

System Feedback and Diagnostics

The interface also displays key runtime metadata for each query. Model configuration
is displayed below the chat header, and generation time is rendered in milliseconds be-
neath each response. Retrieved sources are shown in an expandable section following each
response. These citations are constructed from metadata attached to the retrieved doc-
ument chunks and are intended to provide minimal but sufficient provenance. Specif-
ically, the filename and page number are extracted from each chunk’s metadata field
(doc.metadatal[’source’], doc.metadatal[’page’]), and the first 180 characters of the
chunk content are displayed as a preview.

Only the top-ranked document is cited by default, though up to five documents are
retrieved internally. This information is included in the returned response dictionary un-
der sources_display, alongside similarity scores and full chunk contents. The citation
mechanism helps mitigate hallucination by explicitly anchoring generated answers to their

underlying sources. Figure shows how this feedback is rendered in the user interface .

44

5.5 Evaluation Infrastructure

5.5 Evaluation Infrastructure

A custom evaluation framework was implemented to benchmark the RAG pipeline across
modes, domains, and hardware configurations. While not fully deterministic due to model
variability, the framework is interface-agnostic and supports structured, repeatable testing

under controlled conditions.

Batch Test Execution

Test cases are defined in . jsonl format. Each line specifies:

e question (natural language query)
e expected_answer (reference text for semantic comparison)
e topic (used to select the Chroma collection)
e keywords (optional lexical constraints)
e expected_source (filename or substring)

Execution is handled by test_script.py, which invokes the run_query() function and
logs all results. Tests can be run individually or in batch via folder traversal. Mode

selection is controlled via the --mode flag:

e cold (default): Each query uses a new LLM instance, with no retained history.

e warm: A persistent LLM instance is reused across turns; history is truncated to the

last three message pairs.

The script allows concurrent specification of test files and execution mode, supporting
direct flag-based configuration (e.g., --mode warm --dir desktop). Output is saved as

JSON in evaluation/results/<target>/, with per-test fields logged for analysis.
Evaluation Metrics
Each result entry includes:

e total_time_ms, retrieval_time_ms, generation_time_ms
e similarity_scores for retrieved chunks

e actual_response, retrieved_sources

45

5. IMPLEMENTATION

e Boolean flags for matched_keywords, matched_source

e Semantic judgment via 11m_judge_passed

Semantic evaluation is performed by a second LLM instance instantiated through get_-
judge_11m(). The judge returns a binary decision (true/false) along with a one-sentence

justification. The prompt template ensures consistent judgment criteria across test runs.

Aggregation and Reporting

Summary generation is handled by evaluate_results.py, which parses result files and

computes:

e Pass rate (%)
e Mean and standard deviation of total latency
e Mean retrieval and generation time

e Mean similarity score

Results are grouped by topic and mode, and written to <target>_summary_metrics_-

timestamp.csv and <target>_aggregate_metrics_timestamp.csv.

46

Evaluation

This chapter presents the experimental design and empirical results used to evaluate the
RAG-based chatbot system. The evaluation aims to quantify the assistant’s retrieval accu-
racy, response correctness, latency behavior, and overall reliability when executed in a fully
local environment. Tests were conducted on two machines: (i) a standard laptop equipped
with an NVIDIA MX250 GPU and an 8-core Intel CPU, and (ii) a 24-thread gaming desk-
top with a GTX 1080 Ti GPU. Although the two hardware profiles reflect available rather
than representative infrastructure, they illustrate how performance scales with local com-
pute capacity. Despite not mirroring typical university setups, the results demonstrate
meaningful latency variation, underscoring the system’s adaptability to different resource
conditions. This suggests that more capable hardware could feasibly support larger models
locally without sacrificing privacy or responsiveness.

LLMs can be executed on either CPUs or GPUs, but the underlying architectures dif-
fer significantly in how they process model inference. CPUs are optimized for sequential
general-purpose tasks and offer limited parallelism, which often results in slower inference
times for transformer-based models. In contrast, GPUs are designed for massively paral-
lel computations, making them well-suited for matrix-heavy operations such as attention
mechanisms and feed-forward layers. Most open-source LLM toolchains, including Ol-
lama and Hugging Face’s ‘transformers‘, support GPU acceleration via NVIDIA’s CUDA
(Compute Unified Device Architecture), which provides a runtime API and compiler for
executing operations on NVIDIA GPUs |55]. Enabling CUDA typically leads to substantial
performance gains, especially in generation latency

Initially, evaluations were run on the laptop without CUDA installed, resulting in an
average generation latency of approximately 20 seconds. With CUDA support enabled,
latency dropped to 15 seconds. On the desktop with proper GPU utilization, generation

47

6. EVALUATION

latency further dropped to an average of 0.8 seconds—a 94.7% reduction compared to the
CPU-only baseline. This demonstrates how open-source LLMs, even at modest scale, can

achieve near real-time responsiveness when deployed on appropriate hardware.

6.1 Experimental Setup and Design

The system’s high-level design was originally split across two scripts: ingest_data.py,
which parses and embeds the regulatory PDFs into ChromaDB, and chatbot.py, which
bundled both RAG logic and the Streamlit user interface. While simple and functional,
this non-modular architecture hindered systematic evaluation. To address this, the UI was
fully decoupled and moved to a dedicated frontend script, allowing direct CLI access to the
retrieval engine, and separation enabled deterministic testing and automated benchmarking
via test_script.py.

Evaluation is performed by sending structured test batches, defined in .jsonl files,
to the RAG engine. Each test file contains ten queries focused on a specific topic do-
main (application_enrolment, selection_placement, or global). Each query includes
a natural-language question, a list of expected keywords, a quoted answer fragment from
the original document, and the name of the expected source file. All tests are run in
both cold and warm modes. In cold mode, the LLM is re-initialized for every query and
chat history is disabled. In warm mode, a single LLM instance is reused with a capped
three-turn chat history. Surprisingly, early warm runs exhibited higher latency than cold
runs, despite avoiding repeated initialization. This was traced to unchecked chat history
accumulation, and resolved by truncating the memory window. Once capped, warm runs
consistently outperformed cold runs by an average of about 5 seconds per query.

Test execution is initiated via the command line using test_script.py. Input can be
a single . jsonl file or a directory containing multiple test sets. Execution mode is spec-
ified via the -mode flag; if omitted, cold mode is used by default. Results are saved in
the subdirectory defined by -dir (e.g., evaluation/results/desktop/). Each run pro-
duces a structured JSON file containing per-query outputs and metrics. After testing, the
evaluate_results.py script aggregates all JSON files in the target directory. It produces
two outputs: a detailed per-file summary (<dir> _summary_metrics_timestamp.csv) and
a grouped aggregate overview (<dir>_aggregate_metrics_timestamp.csv). Each query

is evaluated on three dimensions:

1. keywords: Does the generated answer includes the expected keywords?

48

6.2 Evaluation Results

2. correct_source: Did the LLM use the correct source?

3. 11m_judge_passed: Did the LLM-powered judge deem the answer semantically cor-

rect?

The LLM judge is a second instance of the same model (1lama3.2:3b), instantiated
independently via get_judge_11lm(). It is prompted with a fixed evaluation instruction
and constrained to return a binary decision, true or false, along with a single-sentence
justification. Prior to evaluation, the judge undergoes a handshake test with a known
prompt-response pair. If it fails to return true, the process aborts.

Initial test iterations used Ollama’s default generation parameters (temperature = 0.8,
top_p = 1.0), which led to high variability in judgment outputs and inconsistent pass/fail
classifications. Subsequent tuning reduced the judge temperature to 0.0 and set repeat_-
penalty = 1.0, which significantly improved determinism and alignment with the intended
decision rule. The RAG model uses a slightly higher temperature (default: 0.2) to maintain
fluency while remaining grounded in retrieved content.

Although both tasks require constrained generation, the judge’s role as a binary classi-
fier demands near-deterministic behavior, whereas the RAG generator benefits from lim-
ited variability to support natural language fluency. Reliability of the judge was further
improved through prompt engineering and failure-driven refinement of both the answer-
generation and evaluation templates. Particular attention was given to avoiding false
negatives arising from omission, paraphrasing, or defensible rewording. While the final
pass/fail label is derived solely from the semantic judgment, keyword and source match
are logged for interpretability and statistical purposes. This made designing and validating

the approach easier.

6.2 Evaluation Results

To assess the system’s performance and consistency, a total of 240 test queries were exe-
cuted across two hardware environments. Each query was tested in both cold and warm
modes, yielding 60 queries per full evaluation run. On the desktop machine, three full
test iterations were performed, resulting in 180 queries. On the laptop, a single iteration
was executed, covering 60 queries. This made intra-system analysis (e.g., cold vs. warm

behavior) and cross-system comparison (desktop vs. laptop) possible.

e Laptop: Intel i7 CPU with 8 logical cores, NVIDIA MX250 GPU (2GB VRAM)

49

6. EVALUATION

e Desktop: AMD Ryzen 9 3900X with 24 threads, NVIDIA GTX 1080 Ti (11GB VRAM)

All tests were executed using the same local models and retrieval pipeline. The RAG
model used 1lama3.2:3b with temperature = 0.2, top_p = 1.0, and repeat_penalty —
1.05. The LLM judge was configured with temperature = 0.0, top_p = 1.0, and repeat_-

penalty = 1.0, to enforce deterministic binary evaluations.

Pass Rate by Topic and Mode

Across all 180 desktop queries, overall pass rates were consistently high, with cold runs
outperforming warm runs in each domain. Table summarizes the number of passed

and failed queries per topic and mode.

Topic Mode Total Tests Passed Pass rate
(%)

Application Cold 30 27 90.00

Enrolment

Application Warm 30 23 76.67

Enrolment

Global Cold 30 30 100.00

Global Warm 30 29 96.67

Selection Cold 30 30 100.00

Placement

Selection Warm 30 25 83.33

Placement

Table 6.1: Pass rates desktop

Cold execution consistently yielded higher accuracy. The most pronounced gap was
observed in the application_enrolment topic, where warm mode saw a 13.33% drop in
pass rate. Manual inspection suggests that warm-mode prompt expansion sometimes led
to context dilution, causing either retrieval imprecision or misalignment with expected
answer focus.

The global and selection_placement domains showed near-perfect scores across all
runs. In these cases, retrieved content was more self-contained and required less context
continuity, reducing warm-mode sensitivity. The LLM judge exhibited consistent behavior

across all test files, with no evidence of false negatives in the final tuned configuration.

50

6.2 Evaluation Results

Latency Analysis

Table reports the average latency metrics recorded on the desktop system. Each row re-
flects the mean of all queries for a given topic and mode, split into retrieval time, generation

time, and total time. Standard deviation captures variance in total latency.

Topic Mode Total Time Retrieval (s) | Generation
() ()

Application Cold 1.92 0.07 0.67
Enrolment

Application Warm 1.45 0.07 0.81
Enrolment

Global Cold 1.78 0.07 0.57
Global Warm 1.45 0.06 0.82
Selection Cold 1.78 0.07 0.54
Placement

Selection Warm 1.38 0.07 0.73
Placement

Table 6.2: Average latency by topic and execution mode on desktop (1=30 per row).

Total latency remained under 2 seconds in all cases. Cold runs incurred slightly higher
overhead due to model instantiation on each query, while warm runs benefited from per-
sistent model reuse. However, generation time was marginally higher in warm mode across
all domains (likely due to longer prompts resulting from preserved chat history). This
trade-off suggests that while warm mode reduces startup latency, it can incur additional
token processing cost depending on prompt expansion.

Retrieval time remained stable across all configurations (0.06-0.07s), confirming that
vector similarity search was not a performance bottleneck. The ChromaDB retriever scaled

efficiently under both execution modes and document loads.

Similarity Score Trends

Table [6.3| summarizes the average similarity scores of retrieved chunks per topic and mode.
These scores reflect semantic proximity between the query embedding and the top-ranked

document vectors retrieved by ChromaDB.

51

6. EVALUATION

Topic Mode Avg. Similarity Score
Application Enrolment Cold 0.3429
Application Enrolment Warm 0.3429
Global Cold 0.2734
Global Warm 0.2734
Selection Placement Cold 0.2575
Selection Placement Warm 0.2575

Table 6.3: Average similarity scores by topic and execution mode (desktop).

Warm and cold runs used identical query sets, and retrieval is independent of prompt
history. As expected, similarity scores remained unchanged between modes, confirming
that the retrieval pipeline operates deterministically given a fixed embedding model and
query.

Queries under the global topic were constructed as a balanced mix—>50% from application_-
enrolment, 50% from selection_placement. The lower average similarity score observed
in this group likely reflects increased retrieval ambiguity due to topic blending. Neverthe-
less, the RAG system consistently selected top-k candidates without score thresholding.
Deduplication was applied post-retrieval, and the final prompt included up to two distinct

chunks.

RAG vs. Judge Contribution

The final test outcome (PASS or FAIL) reflects a compound result: the LLM must both
generate an answer aligned with the reference and retrieve the correct source document.

Internally, three criteria are evaluated per query:

e matched_keywords — lexical overlap with critical terms
e matched_source — correct document identified among retrieved chunks

e 11lm_judge_passed — binary semantic evaluation

Failures in earlier iterations were primarily due to the judge’s sensitivity to variation
in formulation. Under default parameters (temperature = 0.8), the judge exhibited non-

deterministic behavior and rejected correct responses due to minor paraphrasing or omitted

52

6.2 Evaluation Results

non-critical details. After tuning its temperature to 0.0 and refining the instruction prompt,

the judge produced consistent decisions across all topics.

The dominant remaining failure cases were retrieval-related. In warm mode, prompt
expansion sometimes diluted the query focus, resulting in a shift in retrieved context. This
was most evident in the application_enrolment domain, where failure rate increased
under warm conditions (Table . These errors were not caused by the judge, but by

incorrect or insufficient evidence passed to the model.

Manual inspection of failure cases confirmed that the LLM judge operated determinis-
tically under the final configuration (temperature = 0.0). Across three iterations of the
desktop evaluation, pass/fail outcomes were consistent for nearly all queries. Where dis-
crepancies did occur, they were attributed not to the judge, but to upstream limitations

in retrieval or chunk scope.

In the application_enrolment cold runs, all failures occurred on the same query re-
garding diploma evaluation fees. The retrieved chunk truncated the relevant regulation,
excluding critical details such as the full amount (€100) and the term “non-refundable.”
The LLM hallucinated an incorrect fee (€50), and the judge correctly flagged the response
as semantically incorrect. This points to chunk size as the limiting factor, not judgment
error. In warm runs for the same topic, three queries failed despite the correct context

being retrieved and correctly paraphrased by the model.

Desktop vs. Laptop Comparison

Table compares test results across the desktop and laptop systems. Each row summa-
rizes one topic-mode combination. The same test set was used in both environments, with
the laptop executing one full iteration (60 queries) and the desktop executing three (180

queries).

53

6. EVALUATION

System Topic Mode Pass Total Retrieval | Generatio
Rate Time (s) | (s) (s)
(%)
Desktop Application Cold 90.00 1.92 0.07 0.67
Enrol-
ment
Desktop Application Warm 76.67 1.45 0.07 0.81
Enrol-
ment
Desktop Global Cold 100.00 1.78 0.07 0.57
Desktop Global Warm 96.67 1.45 0.06 0.82
Desktop Selection | Cold 100.00 1.78 0.07 0.54
Place-
ment
Desktop Selection | Warm 83.33 1.38 0.07 0.73
Place-
ment
Laptop Application Cold 90.00 21.52 5.77 14.02
Enrol-
ment
Laptop Application Warm 90.00 28.95 6.53 21.17
Enrol-
ment
Laptop Global Cold 100.00 21.11 6.29 13.25
Laptop Global Warm 90.00 25.46 6.3 17.86
Laptop Selection | Cold 100.00 23.10 6.34 14.27
Place-
ment
Laptop Selection | Warm 80.00 23.21 6.37 15.63
Place-
ment

Table 6.4: Cross-system comparison of evaluation metrics (n=10 per laptop row, n=30 per

desktop row).

Accuracy Pass rates were broadly consistent across systems for most topic-mode pairs,

o4

6.3 Summary and Findings

with all cold-mode tests scoring > 90%. However, one significant divergence emerged:
Application Enrolment (Warm) scored 76.67% on the desktop but 90.00% on the laptop
(a 13.33 percentage point increase). The discrepancy likely reflects run-specific retrieval
variation or more favorable chunk selection on the laptop. Aside from this case, other
differences stayed within a +3.33% margin, suggesting stability across hardware.

Latency. Runtime differences were hardware-bound and substantial. On the desktop,
end-to-end query time remained under 2 seconds for all cases. On the laptop, total time
ranged from 21 to 29 seconds per query. The gap was consistent in both retrieval and
generation stages: retrieval averaged ~0.07s on the desktop vs. ~6.3s on the laptop;
generation ranged from ~0.5-0.8s vs. 13-21s, respectively. These findings confirm that
the MX250 was insufficient for interactive inference workloads at scale.

Warm vs. Cold. Warm mode consistently increased generation latency across both
systems, as expected. Prompt expansion with retained history inflated decoding time.
Accuracy effects were more variable: while warm mode slightly underperformed cold mode
on the desktop in all three domains, the laptop showed no consistent drop, and even
outperformed cold mode in Application Enrolment. This may reflect narrower history
depth, fewer resource constraints during the run, or run-specific prompt shaping effects.

Interpretation. Overall, results confirm that the system executes identically across
environments, with consistent pass/fail logic and retrieval behavior. However, throughput
is tightly coupled to hardware acceleration, and warm-mode behavior remains more sensi-
tive to retrieval variance. These constraints must be accounted for in deployments where

latency or stability is critical.

6.3 Summary and Findings

The evaluation demonstrates that a local RAG system composed of open-source compo-
nents can achieve high retrieval precision, low semantic error rates, and sub-second latency
under suitable hardware conditions. Across 240 queries, executed in cold and warm modes
over two hardware profiles, the pipeline showed strong reliability and predictable behav-
ior. Most performance variation was attributable to controllable factors: retrieval quality,
prompt length, and hardware acceleration.

Retrieval accuracy remained consistently high across all topics. The system selected
semantically relevant chunks even when queries were phrased naturally and without struc-
tural cues. Similarity scores showed no divergence across cold and warm runs, validating

the determinism of the embedding and vector search pipeline. Semantic correctness, as

55

6. EVALUATION

judged by a separate LLM instance, also stabilized after temperature tuning and prompt
refinement. All observed test discrepancies could be traced to input truncation or vague
completions, not failures in judgment consistency.

Cold runs consistently achieved higher pass rates than warm runs, especially in regulation-
heavy domains such as application_enrolment. This was caused by chat history expan-
sion, which occasionally diluted the focus of prompts and led to partial or hedged answers.
Once warm-mode history was capped and chunk deduplication improved, performance
converged across modes.

Latency analysis revealed sharp differences in throughput between systems. On the
desktop, total query latency remained under 2 seconds in all configurations. On the laptop,
queries ranged from 21 to 29 seconds, with both retrieval and generation bottlenecked by
hardware. While both environments produced valid and reproducible outputs, only the
desktop supported interactive use at scale.

Overall, the system fulfills its design goals: it operates entirely ofHline, responds determin-
istically under test, and enables fine-grained evaluation of LLM behavior via interpretable
metrics. The results demonstrate that open-source LLMs can serve domain-specific assis-
tant tasks effectively when paired with targeted retrieval and prompt control. In response
to the evaluation suggests that on-premise deployment becomes strategically vi-
able when data sensitivity, domain specificity, or API latency constraints preclude external
services. The feasibility of this approach scales with hardware. While the tested system
achieved interactive latency on consumer-grade GPU hardware, latency remained pro-
hibitive on older mobile GPUs. With dedicated inference accelerators or GPUs optimized
for transformer models (e.g., high-core-count parallelization, large VRAM, low memory
latency), the same pipeline could scale to larger models or higher throughput, further im-
proving accuracy without sacrificing sovereignty. Thus, hardware quality (not just model

size) defines the margin between usable and real-time open-source deployments in practice.

o6

Discussion

This chapter contextualizes the system design and evaluation results within the broader
goals of the thesis. Each section corresponds to one of the research questions, examining
how the implemented prototype answers them in practice. The chapter concludes with a

discussion of limitations and directions for future work.

7.1 [RQI.1: Landscape of Open-Source LLMs and Tools

Open-source LLMs provide a deployment model in which inference, adaptation, and data
handling remain under institutional control. As outlined in Chapter 2] such models elim-
inate dependency on external APIs and allow for full local execution. Minaee et al. [19]
group open models into several families, LLaMA, GPT and PALM. These differ in ar-
chitecture, tokenizer design, training data, and licensing. Most are released at multiple
parameter scales and quantization levels, enabling deployment across a range of hardware
configurations.

For this thesis, the model selected was 11ama3.2:3b, a compact and instruction-aligned
variant from Meta’s LLaMA family. This choice was motivated in part by community guid-
ance, specifically a walkthrough by Thomas Janssen [51], which demonstrated its balance
between generation quality and hardware efficiency. The model’s compatibility LangChain
also made development much more effective. Although other models could have been
evaluated, resource constraints and scope limitations made comparative testing infeasible.

Nevertheless, the selected model proved effective for the target domain and hardware class.

o7

7. DISCUSSION

7.2 |[RQ1.2; Domain Adaptation and Integration

Several approaches exist for adapting LLMs to specialized domains, ranging from full fine-
tuning to lightweight parameter-efficient methods. However, this thesis only used RAG as
the sole adaptation technique. RAG was chosen due to its lower computational footprint,
its interpretability, and its ability to ground outputs in explicit textual sources. Unlike
fine-tuning, RAG makes it straightforward to trace outputs to specific documents, which
proves useful in a use case like the chatbot.

The implementation used ChromaDB as the vector store and used a dual-index retrieval
setup: one global index and one per topic domain. Documents were chunked using a recur-
sive splitter with a fixed window (600 tokens, 100 overlap). Several chunking configurations
were tested during development, though the final parameters were constrained by prompt
limits and generation stability.

Nonetheless, the chunking design posed limitations. Truncated or narrowly scoped
chunks occasionally led to model hallucinations or incomplete answers. With access to
more capable hardware and larger models, future deployments could increase chunk size
and context depth, improving grounding and recall. More advanced adaptation methods

were not explored here but remain promising extensions.

7.3 |[RQ1.3t Comparative Viability of On-Premise Deploy-

ment

This thesis set out to determine when and how open-source LLMs, deployed locally, offer
strategic advantages over proprietary cloud-based solutions. The findings suggest that such
deployments are feasible, performant, and offer distinct benefits, especially in contexts
where control, traceability, or data privacy are critical.

Externally hosted LLMs introduce unavoidable data exposure. Each query must tran-
sit through third-party infrastructure. Furthermore, closed-source models cannot be in-
spected, modified, or optimized by the user. In contrast, the system developed here ran
entirely on local hardware, under full control of the operator. All data, embeddings, and
inference calls remained within the execution boundary, with no telemetry or usage restric-
tions.

From a performance standpoint, the system demonstrated near-instantaneous latency
(<2s/query) on the desktop. Even on modest hardware (a laptop with an MX250 GPU),
the same pipeline executed reliably, albeit with higher latency (25s/query). This validates

o8

7.4 Limitations and Future Work

the blueprint’s flexibility: organizations can select models, optimization strategies, and
compute targets based on their constraints. There is no vendor lock-in, no cost per query,
and no restrictions on usage volume or customization.

However, the approach is not without trade-offs. There is no plug-and-play interface.
Deployment requires familiarity with LLMs, vector databases, prompt design, and more.
These costs are one-time but non-trivial. Still, for use cases where privacy and long-term
autonomy are prioritized, the case for local, open-source deployment is technically and

strategically sound.

7.4 Limitations and Future Work

Synthetic Evaluation Data Several constraints limited the scope of this thesis. First,
test queries were manually authored using the embedded regulatory documents. While
these questions reflect realistic phrasing and content, they do not originate from real user
interactions. Incorporating authentic student inquiries would provide more representative

evaluation data.

LLM-Based Judgment Second, although the LLM judge improved evaluation effi-
ciency and reproducibility, it remains an LLM. Even at temperature = 0.0, it can produce
inconsistent or brittle decisions in edge cases. Manual review of the 240 evaluation queries
found no false positives or false negatives in this case. However, the broader interpretability
challenge remains: generative evaluators lack transparent decision boundaries, and their

outputs are not formally verifiable.

Adaptation Strategy Third, while the system combines RAG with constrained prompt
design, this adaptation strategy remains limited in flexibility compared to approaches in-
volving fine-tuning or tool-augmented reasoning. Larger models or fine-tuned adapters
could support more nuanced answers or multi-document reasoning. Future research could
test adapter-based fine-tuning, swap the embedding model, or experiment with long-
context transformers capable of larger chunk sizes. Prompt construction in the current
system prioritizes the top-ranked chunk for grounding and includes an additional chunk as
secondary context. This structure performed reliably in testing, but prompting remains
model-dependent, and no configuration generalizes across tasks. Further work on this

should improve performance in other settings.

59

7. DISCUSSION

Generality and Transferability Finally, this thesis was intended as a blueprint. The
architecture and evaluation logic are extensible to other domains, and any organization us-
ing commercial LLM APIs could in principle migrate to a private, on-premise alternative
without compromising capability. With appropriate model selection and hardware provi-
sioning, the techniques outlined here provide a scalable path toward transparent, private,

and auditable LLM deployment.

Environmental Scope This thesis did not measure power consumption or carbon foot-
print. Nonetheless, the choice to run a 3B-parameter model locally—without reliance
on cloud infrastructure or general-purpose LLMs—was intended to reduce environmental
overhead. Larger commercial models incur energy and water costs both during training
and inference [9], [11]. Future work could include empirical measurement of energy draw
across deployment configurations and integrate ecological metrics into the assessment of

LLM deployment strategies.

60

Related Work

In this chapter, we review scientific and applied contributions that are comparable to this
thesis in terms of goal, methodology, or system architecture. While some papers initially
appear closely aligned, a more detailed examination reveals substantive differences in scope,
implementation depth, or evaluation rigor. For these cases, a more thorough comparative

analysis is provided to clarify where this work diverges and contributes beyond prior efforts.

8.1 Building UniGPT (Radas et al., 2023)

As an early example of institutional on-premise LLM deployment, Radas et al. (2023) [15]
present UniGPT, a multilingual inference service hosted at the University of Miinster. The
system uses a ChatUl-based interface backed by a T'GI inference server and quantized mod-
els such as Mixtral 8x7B. It is deployed on Kubernetes with Ceph storage and A40 GPUs,
supporting concurrent users and dynamic model loading. The system focuses on inference-
only access to multilingual open-weight models, selected primarily for German-language
support. It integrates Shibboleth-based authentication and stores sessions in MongoDB.
Although RAG is mentioned as a possible extension, no retrieval pipeline is implemented.
Evaluation remains anecdotal, limited to early user feedback during a test phase. No
task-specific adaptation, quantitative benchmarks, or traceable retrieval components are
presented.

In contrast, as a part of this thesis, a domain-specific RAG assistant for university
policy documents is developed, with all components (embedding, vector storage, genera-
tion) executed locally and without internet access. Unlike UniGPT, which operates as a

general-purpose LLM gateway, this system performs grounded question answering through

61

8. RELATED WORK

a fully implemented semantic retrieval pipeline. The use case is narrow but operational-
ized end-to-end, including PDF ingestion, local embedding via mxbai-embed-large, and
controlled prompt construction passed to a quantized 3B LLaMA model. The architecture
is modular and hardware-flexible, with empirical evaluation conducted across both CPU-
only and GPU-enabled environments to quantify latency variation under differing compute
conditions. Evaluation includes structured test sets, LLM-as-judge validation, and latency
decomposition across machines. Whereas UniGPT emphasizes infrastructure scaling, this
work implements a task-specific pipeline optimized for privacy, traceability, and local re-

source limits.

8.2 Chat With OPD (Bhise, 2024)

Bhise (2024) |14] explores a goal closely aligned with this thesis: the development of a local-
ized, privacy-preserving RAG system deployed fully on-premise. The system discuss a GUI
module, preprocessing logic for PDF ingestion and chunking, a FAISS-based vector store,
and a local LLM for embedding generation and response synthesis. The design prioritizes
offline execution and user privacy, with all components assumed to run on local infrastruc-
ture. FAISS is chosen for its lightweight footprint among open-source vector databases,
and the system is modularized into preprocessing, embedding, and query handling stages.
While the pipeline architecture is clearly articulated, no specific language model or quan-
tization configuration is described, and there is no discussion of how retrieval accuracy is
managed or how the system behaves under hardware constraints. The project frames itself
as a customizable template for privacy-focused RAG deployment, particularly in sensitive
domains such as healthcare and legal services, but remains conceptual in its evaluation.
This thesis differs from Bhise’s in several substantive ways. Most notably, it develops and
evaluates a task-specific RAG system grounded in structured regulatory documents from
a university domain. All components—embedding via ‘mxbai-embed-large’, retrieval via
ChromaDB, generation via a quantized 3B LLaMA model—are executed locally, with model
selection and latency trade-offs empirically benchmarked across CPU and GPU environ-
ments. Unlike Chat with OPD, this system defines a full ingestion-to-evaluation loop,
including test sets, hardware-specific profiling, and LLM-as-judge validation for seman-
tic correctness. It also incorporates fallback logic, prompt design constraints, and session
memory to manage conversation flow. Where Bhise identifies challenges such as chunk
calibration and content omission as future work, this thesis integrates those concerns into

its implementation and evaluation design. The resulting system is not only functionally

62

8.3 UvA AI Chat (Pepijn Stoop, 2025)

complete but serves as a reproducible reference architecture for domain-specific, privacy-

preserving LLM deployment.

8.3 UvA AI Chat (Pepijn Stoop, 2025)

Although not a scientific publication, the UvA Al Chat initiative is described in a 2025
article by Folia, the independent journalistic platform of the University of Amsterdam
[16]. The piece reports on a series of institutional pilots in which a customized version of
ChatGPT, termed UvA AI Chat, was deployed across faculties to support students and
teachers in academic tasks. The system introduces a set of role-specific chat agents em-
bedded within a UvA-controlled interface, designed to assist with writing, feedback, and
curriculum support. While user-facing components are managed internally, the underlying
language model remains external: OpenAl’s ChatGPT, accessed via Microsoft Azure. The
system attempts to mitigate privacy risks by anonymizing inputs and purging user data
post-inference, but nonetheless relies on cloud-hosted infrastructure and proprietary mod-
els. Pilot results indicated positive student reception, especially for writing tasks, though
some educators questioned the reliability and pedagogical soundness of outputs..

This thesis differs from UvA Al Chat in both implementation and scope. Whereas the
UvA system layers institutional access control over a closed-source backend, the present
work operates entirely on-premise with open-weight models, local vector storage, and
document-grounded prompting. UvA Al Chat offers no retrieval capabilities and is not
domain-adapted. The result is a reproducible reference implementation for institutions
seeking both access control over Al tools and functional sovereignty over model behavior,

data exposure, and task relevance.

8.4 On-Premises Knowledge Repository (Dobur et al., 2024)

Dobur et al. (2024) 56| propose a Live Knowledge Library (LKL): an on-premise, enterprise-
scale architecture that integrates internal data sources with fine-tuned LLMs to support
real-time, context-aware information access. The system processes both structured and un-
structured organizational data, applies supervised fine-tuning and reinforcement learning
from human feedback, and delivers responses through a natural language interface layered
over semantic search. The infrastructure is containerized and locally hosted, with a focus

on compliance, system control, and user experience.

63

8. RELATED WORK

While the LKL shares this thesis’s emphasis on private, on-premise deployment, the two
systems diverge sharply in purpose and method. Dobur et al. frame their solution as a
general-purpose enterprise knowledge layer, whereas this thesis implements a task-specific,
document-grounded assistant for structured QA. RAG is not used in LKL; responses are
generated from a fine-tuned model rather than dynamically retrieved context. The archi-
tecture assumes continued access to organizational training data and compute for iterative
refinement. In contrast, this work targets low-overhead deployment using static policy
documents and avoids fine-tuning entirely. Evaluation in Dobur et al. is limited to quali-
tative insights, whereas this thesis presents empirical tests of retrieval accuracy, semantic

relevance, and latency under constrained hardware conditions.

8.5 Towards On-Premise Hosted LLM (Hedlund, 2024)

Hedlund (2024) [57] explores how open-source LLMs can be used on-premise to generate
documentation for proprietary codebases in privacy-sensitive settings. Two architectures
are compared: one where the LLM generates summaries directly from source code, and
another that appends retrieved documentation to the prompt—an implicit form of RAG.
Models such as Mixtral and Code LLaMA are deployed locally on GPU servers, and output
quality is evaluated through a mix of multiple-choice assessments and developer feedback
surveys.

The overlap with this thesis lies in the shared focus on local inference and constrained
environments. However, Hedlund’s system is narrowly tailored to code summarization and
does not implement persistent vector-based retrieval or any modular RAG infrastructure.
The retrieval stage is tightly coupled to prompt construction and lacks a separate embed-
ding layer or index. Unlike this work, which targets a document-grounded assistant built
for QA over regulatory texts, Hedlund emphasizes generation fidelity without addressing
retrieval accuracy, latency decomposition, or architectural generalizability. Where Hedlund
tests usability for developers, this thesis evaluates system behavior under varied hardware
constraints and tracks semantic alignment through structured test sets and LLM-based

scoring.

8.6 On-Site Deployment (Schillaci, 2024)

Schillaci (2024) [58| outlines the strategic case for deploying LLMs entirely on-site, espe-

cially in security-sensitive sectors where regulatory and data exposure risks make cloud-

64

8.7 MedAide (Basit et al., 2024)

based Al untenable. The work surveys available tooling—such as vLLM, FastChat, and
model quantization techniques like GPTQ-—and discusses practical considerations around
hardware (e.g., consumer GPUs), energy usage, and threat modeling. The emphasis is on
framing self-hosted inference as a matter of cybersecurity posture, not just infrastructure
choice. Unlike this thesis, the chapter does not present an implemented system or any em-
pirical evaluation. It assumes high-end infrastructure and targets multi-user production
settings, focusing on general deployment considerations rather than retrieval architecture or
domain adaptation. RAG methods, evaluation design, and system modularity are outside
its scope. Where this thesis defines and tests a constrained, document-grounded system un-
der hardware limits, Schillaci’s contribution remains a high-level framing of infrastructural

risk and readiness.

8.7 MedAide (Basit et al., 2024)

Basit et al. (2024) |59 present MedAide, a lightweight, domain-specific assistant for medi-
cal diagnostics that shares this thesis’s emphasis on edge deployment and offline inference.
The system deploys quantized open-weight LLMs—optimized with LoRA and Q4/Q8 pre-
cision—on edge devices such as Nvidia Jetson boards. A LangChain-integrated retrieval
component supports prescription lookup via FAISS, with hallucination mitigation as a core
goal. Evaluation includes domain-specific benchmarks (e.g., USMLE-style questions) and
human assessments using GPT-4. LLaMA 2 7B is selected for its balance of accuracy and
resource efficiency.

Unlike this thesis, MedAide targets a single high-stakes vertical—preliminary medical
diagnostics—while relying on multiple model architectures and aggressive fine-tuning. The
retrieval component uses similarity search over preprocessed medical texts but does not
formalize RAG evaluation or document grounding. Evaluation lacks prompt transparency,
latency breakdown, or modular ablation. While the system excels in edge-device feasibility,
its design does not generalize to broader document-based institutional QA settings. The
present thesis focuses on reproducible, domain-agnostic RAG infrastructure and systematic

validation under constrained compute environments.

65

8. RELATED WORK

8.8 Summary and Alignment with Research Questions

8.8.1 Honorable Mentions and Implementation Influences

While this chapter has focused on peer-reviewed literature and formally evaluated sys-
tems, several community-driven, open-source resources have influenced the implementa-
tion of this thesis. In particular, Dutch software developer Thomas Janssen has produced
YouTube tutorials and GitHub repositories demonstrating how to implement local RAG
systems using Python, LangChain, Streamlit or Gradio, and ChromaDB [49], [50]. These
implementations span both PDF-based ingestion pipelines using OpenAl models and agen-
tic, locally hosted pipelines relying on Ollama and web-scraped Wikipedia content [51]-
[53]. Part of the ingestion logic developed in this thesis derives from Janssen’s publicly
available example code [60], particularly the structure for document loading, chunking,
and vector ingestion. This codebase served as an initial scaffold, later adapted for struc-
tured university documents, modified chunk sizes, and integration into a hardware-flexible
pipeline. While not part of the peer-reviewed corpus, such practitioner contributions il-
lustrate the evolving ecosystem of open-source experimentation and provided a practical
baseline during early development. Additional frameworks, such as LangChain and Ol-
lama, are also referenced in Janssen’s videos and were selected for this thesis due to their

support for local model orchestration and vector store integration.

8.8.2 Research Gap and Contribution

This chapter has surveyed a diverse set of systems and publications that explore on-premise
LLM deployment, local RAG architecture, and privacy-preserving adaptation of language
models. While no reviewed work replicates the specific design constraints and evaluation
scope of this thesis, the comparative analysis clarifies how this implementation builds upon,
diverges from, or operationalizes aspects of prior contributions.

Several works (e.g., [15], |[14], [16]) approach institutional use of LLMs through either in-
terface customization or local deployment, but stop short of implementing or benchmarking
a fully realized RAG pipeline. Others (e.g., [56], [57]) explore domain-specific adaptation
and internal knowledge access, yet often rely on fine-tuning rather than retrieval-based
grounding. In contrast, this thesis defines and evaluates a full-stack RAG architecture
implemented entirely on-premise, with quantized models, local embedding, and end-to-end
test coverage.

This thesis contributes a concrete reference implementation that integrates all core com-

ponents of a local RAG system: document ingestion, embedding, retrieval, generation, and

66

8.8 Summary and Alignment with Research Questions

evaluation, under privacy and hardware constraints. The reviewed literature demonstrates
the relevance and growing interest in on-premise LLM workflows, but reveals a lack of end-
to-end systems that combine functional grounding, empirical evaluation, and strict local
execution. The system developed here addresses that gap by operationalizing a domain-
specific assistant with reproducible, modular components and transparent performance

characterization.

67

8. RELATED WORK

68

Conclusion

9.1 Summary of Approach and Findings

This thesis set out to answer the main research question, as noted in the introduction:

How can organizations adopt and adapt open-source LLMs on-premise to achieve
data sovereignty and domain-specific performance, while overcoming the limi-

tations of closed-source alternatives?

To approach this question, we first examined the current landscape of open-source language
models and supporting tools suitable for self-hosted deployment. We also looked at the
trade-offs between open and closed-source models, particularly in relation to transparency,
privacy, and operational control. Methods for domain adaptation were discussed through a
focused review of both training-time and inference-time techniques. These findings, covered
in the background chapter, informed the design principles of the system developed in this
thesis.

Based on these insights, we implemented and evaluated a fully local assistant system
using a retrieval-augmented generation pipeline. The system operates entirely offline, us-
ing institutional documents, local embeddings, and a compact open-source language model
served through Ollama. Evaluation across two hardware setups showed strong accuracy,
consistent retrieval quality, and predictable performance under resource constraints. While
the implementation ran on opportunistic consumer hardware, the system is designed to
benefit from larger models and stronger infrastructure. Latency decreased significantly on
a more capable machine, confirming that on-premise LLMs can achieve interactive perfor-
mance under the right conditions. The system remains a blueprint: modular, reproducible,

and adaptable to other institutional domains.

69

9. CONCLUSION

9.2 Answering the Research Questions

The main research question is supported by three sub-questions, each addressed in a dif-

ferent phase of the work.

e RQ1: Model Landscape and Tools. This question is addressed in the background
chapter, where we reviewed the architecture, scale, licensing, and ecosystem support
of major open-source LLMs. This provided the basis for selecting a suitable model

for on-premise use, balancing performance with hardware feasibility.

¢ RQ2: Domain Adaptation and Integration. This is addressed both theoreti-
cally and practically. The background chapter discusses available methods, including
fine-tuning, parameter-efficient tuning, and RAG. In the system design and imple-
mentation, we apply a RAG-based approach, which enables integration of internal

documents without modifying model weights or exposing data.

¢ RQ3: Comparative Viability. This is addressed through the evaluation and
discussion. The results show that small, locally hosted models paired with efficient
retrieval and targeted prompts, can offer competitive performance. When privacy,
data locality, or deployment control are prioritized, open-source, on-premise LLMs

present a credible and in many cases superior alternative to externally hosted models.

Together, these results support the main hypothesis: that open-source LLMs can be
effectively deployed and adapted within an organization, even under limited resources, to

achieve domain-specific functionality without external dependencies.

9.3 Outlook and Future Work

While the system performs well within its design constraints, it remains a starting point.
Future work could extend the adaptation strategy beyond RAG by incorporating fine-
tuning or adapter-based methods. Evaluating the system with real user queries would
allow for more representative assessment and better insight into failure cases. More capable
hardware would enable support for larger models and longer contexts, improving grounding
and response quality.

The system architecture is general enough to be reused in other domains. With minimal
changes, the blueprint could be applied to regulated fields such as healthcare, legal services,

or public administration. As models and tooling continue to improve, the case for private,

70

9.3 Outlook and Future Work

transparent, and task-specific LLM deployments is likely to strengthen. This thesis offers
one practical path toward that goal.

71

9. CONCLUSION

72

Bibliography

1]

2]

3]

4]

15]

(6]

7]

8]

“Al | 2024 Stack Overflow Developer Survey.” (n.d.), [Online|. Available: https :
//survey.stackoverflow.co/2024/ai/ (visited on 04/06/2025).

Springs. “Large Language Model Statistics And Numbers (2025) - Springs.” (), [On-
line|. Available: https://springsapps . com/knowledge/large-language-model -
statistics - and - numbers - 2024 , %20https : //springsapps . ai /blog/large -
language-model-statistics-and-numbers-2024 (visited on 04/06/2025).

“Data usage for consumer services FAQ | OpenAl Help Center.” (), [Online|. Avail-
able: https://help . openai.com/en/articles /7039943 - data - usage - for -
consumer-services-faq (visited on 03/26/2025).

OpenAl “How your data is used to improve model performance | OpenAl Help Cen-
ter.” (), [Online]. Available: https://help.openai.com/en/articles/5722486-

how-your-data-is-used-to-improve-model-performance (visited on 03/26,/2025).

“Al Act | Shaping Europe’s digital future.” (Mar. 20, 2025), [Online|. Available:
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-
ai (visited on 03/26/2025).

European Parliament. Directorate General for Parliamentary Research Services., The
Impact of the General Data Protection Regulation on Artificial Intelligence. LU: Pub-
lications Office, 2020. [Online|. Available: https://data.europa.eu/doi/10.2861/
293 (visited on 03/26/2025).

T. Mayover. “When Al Technology and HIPAA Collide,” The HIPAA Journal. (Oct. 2,
2024), [Online]. Available: https://www.hipaajournal.com/when-ai-technology-
and-hipaa-collide/| (visited on 03/26/2025).

M. Méntymaéki, M. Minkkinen, T. Birkstedt, et al. “Putting Al Ethics into Practice:
The Hourglass Model of Organizational Al Governance.” arXiv: |2206.00335 [cs].
(Jan. 31, 2023), [Online|. Available: http://arxiv.org/abs/2206.00335 (visited on
03/26/2025), pre-published.

73

https://survey.stackoverflow.co/2024/ai/
https://survey.stackoverflow.co/2024/ai/
https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024,%20https://springsapps.ai/blog/large-language-model-statistics-and-numbers-2024
https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024,%20https://springsapps.ai/blog/large-language-model-statistics-and-numbers-2024
https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024,%20https://springsapps.ai/blog/large-language-model-statistics-and-numbers-2024
https://help.openai.com/en/articles/7039943-data-usage-for-consumer-services-faq
https://help.openai.com/en/articles/7039943-data-usage-for-consumer-services-faq
https://help.openai.com/en/articles/5722486-how-your-data-is-used-to-improve-model-performance
https://help.openai.com/en/articles/5722486-how-your-data-is-used-to-improve-model-performance
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://data.europa.eu/doi/10.2861/293
https://data.europa.eu/doi/10.2861/293
https://www.hipaajournal.com/when-ai-technology-and-hipaa-collide/
https://www.hipaajournal.com/when-ai-technology-and-hipaa-collide/
https://arxiv.org/abs/2206.00335
http://arxiv.org/abs/2206.00335

BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

“Explained: Generative Al’s environmental impact,” MIT News | Massachusetts In-
stitute of Technology. (Jan. 17, 2025), [Online|. Available: https: //news . mit .
edu/2025/explained- generative-ai-environmental - impact-0117 (visited on

07/01,/2025).

S. Deb, “Saying ‘Thank You’ to ChatGPT Is Costly. But Maybe It’s Worth the
Price.,” The New York TimesTechnology, Apr. 24, 2025, 1SSN: 0362-4331. |Online|.
Available: https://www.nytimes.com/2025/04/24/technology/chatgpt-alexa-
please-thank-you.html (visited on 07/01/2025).

P. Li, J. Yang, M. A. Islam, et al. “Making AI Less "Thirsty": Uncovering and
Addressing the Secret Water Footprint of AI Models.” arXiv: [2304 . 03271 [cs]k
(Mar. 26, 2025), [Online|. Available: http://arxiv.org/abs/2304.03271 (visited
on 07/01/2025), pre-published.

S. Ren, B. Tomlinson, R. W. Black, et al., “Reconciling the contrasting narratives
on the environmental impact of large language models,” Scientific Reports, vol. 14,
no. 1, p. 26 310, Nov. 1, 2024, 1SSN: 2045-2322. DOI: [10.1038/s41598-024-76682-6.
[Online|. Available: https://www.nature.com/articles/s41598-024-76682-6
(visited on 07/01/2025).

EIOPA. “Open-source tools for the modelling and management of climate change
risks - EIOPA,” Open-source tools for the modelling and management of climate
change risks. (), [Online]. Available: https : //www . eiopa . europa . eu/ tools -
and -data/open-source-tools-modelling- and-management - climate- change-

risks_en (visited on 07/01/2025).

G. Bhise. “Chat with OPD (On-Premise-Data),” Chat with OPD (On-Premise-Data).
(2024), [Online|. Available: https : / / scholarworks . calstate . edu/ concern /
projects/9gb4xs77c (visited on 03/17/2025).

J. Radas, B. Risse, and R. Vogl, “Building UniGPT: A Customizable On-Premise
LLM-Solution for Universities,” presented at the Proceedings of EUNIS 2024 Annual
Congress in Athens, pp. 108-98. DOI: |10.29007/jv1l. [Online|. Available: https :
//easychair.org/publications/paper/CDHx (visited on 03/17/2025).

“UvA created its own ChatGPT for students and teachers. Is it safer than the orig-
inal?” (), |Online|. Available: https://www.folia.nl/en/actueel/164740/uva-
created-its-own-chatgpt-for-students-and-teachers-is-it-safer-than-
the-original (visited on 04/06,/2025).

J. Devlin, M.-W. Chang, K. Lee, et al. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” arXiv: 1810 . 04805 [cs]. (May 24,

74

https://news.mit.edu/2025/explained-generative-ai-environmental-impact-0117
https://news.mit.edu/2025/explained-generative-ai-environmental-impact-0117
https://www.nytimes.com/2025/04/24/technology/chatgpt-alexa-please-thank-you.html
https://www.nytimes.com/2025/04/24/technology/chatgpt-alexa-please-thank-you.html
https://arxiv.org/abs/2304.03271
http://arxiv.org/abs/2304.03271
https://doi.org/10.1038/s41598-024-76682-6
https://www.nature.com/articles/s41598-024-76682-6
https://www.eiopa.europa.eu/tools-and-data/open-source-tools-modelling-and-management-climate-change-risks_en
https://www.eiopa.europa.eu/tools-and-data/open-source-tools-modelling-and-management-climate-change-risks_en
https://www.eiopa.europa.eu/tools-and-data/open-source-tools-modelling-and-management-climate-change-risks_en
https://scholarworks.calstate.edu/concern/projects/9g54xs77c
https://scholarworks.calstate.edu/concern/projects/9g54xs77c
https://doi.org/10.29007/jv1l
https://easychair.org/publications/paper/CDHx
https://easychair.org/publications/paper/CDHx
https://www.folia.nl/en/actueel/164740/uva-created-its-own-chatgpt-for-students-and-teachers-is-it-safer-than-the-original
https://www.folia.nl/en/actueel/164740/uva-created-its-own-chatgpt-for-students-and-teachers-is-it-safer-than-the-original
https://www.folia.nl/en/actueel/164740/uva-created-its-own-chatgpt-for-students-and-teachers-is-it-safer-than-the-original
https://arxiv.org/abs/1810.04805

BIBLIOGRAPHY

[18]

[19]

[20]

[21]
[22]

23]

[24]

[25]

[26]

[27]

2019), [Online|. Available: http://arxiv.org/abs/1810.04805 (visited on 05/16/2025),
pre-published.

Y. Chang, X. Wang, J. Wang, et al., “A Survey on Evaluation of Large Language
Models,” ACM Trans. Intell. Syst. Technol., vol. 15, no. 3, 39:1-39:45, Mar. 29, 2024,
ISSN: 2157-6904. DOI: 10.1145/3641289. [Online|. Available: https://dl.acm.org/
doi/10.1145/3641289 (visited on 05/15/2025).

S. Minaee, T. Mikolov, N. Nikzad, et al. “Large Language Models: A Survey.” arXiv:
2402.06196 [cs]. (Mar. 23, 2025), [Online|. Available: http://arxiv.org/abs/
2402.06196 (visited on 05/15/2025), pre-published.

7

“An empirical study of smoothing techniques for language modeling,” Computer
Speech € Language, vol. 13, no. 4, pp. 359-394, Oct. 1, 1999, 1SSN: 0885-2308. DOTI:
10.1006/csla.1999.0128. |Online|. Available: https://www.sciencedirect.com/
science/article/abs/pii/S0885230899901286 (visited on 06/16/2025).

Y. Bengio, R. Ducharme, P. Vincent, et al., “A Neural Probabilistic Language Model,”

P.-S. Huang, X. He, J. Gao, et al., “Learning deep structured semantic models for
web search using clickthrough data,” in Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, ser. CIKM 13, New York,
NY, USA: Association for Computing Machinery, Oct. 27, 2013, pp. 2333-2338, ISBN:
978-1-4503-2263-8. DOI: 10 . 1145 /2505515 . 2505665. [Online|. Available: https :
//doi.org/10.1145/2505515.2505665 (visited on 06,/16,/2025).

I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with Neural
Networks.” arXiv: 1409 . 3215 [cs]. (Dec. 14, 2014), [Online|. Available: http://
arxiv.org/abs/1409.3215 (visited on 06/16/2025), pre-published.

J. Devlin, M.-W. Chang, K. Lee, et al. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” arXiv: 1810 . 04805 [cs]. (May 24,
2019), [Online]. Available: http://arxiv.org/abs/1810.04805 (visited on 06/16,/2025),
pre-published.

J. Kaplan, S. McCandlish, T. Henighan, et al. “Scaling Laws for Neural Language
Models.” arXiv: 2001 .08361 [cs]. (Jan. 23, 2020), [Online|. Available: http://
arxiv.org/abs/2001.08361 (visited on 06/16,/2025), pre-published.

A. Chowdhery, S. Narang, J. Devlin, et al. “PaLM: Scaling Language Modeling with
Pathways.” arXiv: 2204 . 02311 [cs]. (Oct. 5, 2022), [Online|. Available: http://
arxiv.org/abs/2204.02311 (visited on 06/16,/2025), pre-published.

A. Vaswani, N. Shazeer, N. Parmar, et al. “Attention Is All You Need.” arXiv: 1706.
03762 [cs]. (Aug. 2, 2023), [Online|. Available: http://arxiv.org/abs/1706.03762
(visited on 05/16,/2025), pre-published.

75

http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3641289
https://dl.acm.org/doi/10.1145/3641289
https://dl.acm.org/doi/10.1145/3641289
https://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2402.06196
https://doi.org/10.1006/csla.1999.0128
https://www.sciencedirect.com/science/article/abs/pii/S0885230899901286
https://www.sciencedirect.com/science/article/abs/pii/S0885230899901286
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

BIBLIOGRAPHY

[28] H. Touvron, T. Lavril, G. Izacard, et al. “LLaMA: Open and Efficient Foundation
Language Models.” arXiv: 2302.13971 [cs]. (Feb. 27, 2023), [Online|. Available:
http://arxiv.org/abs/2302.13971 (visited on 06/16,/2025), pre-published.

[29] T. B. Brown, B. Mann, N. Ryder, et al. “Language Models are Few-Shot Learners.”
arXiv: 2005.14165 [cs]l (Jul. 22, 2020), [Online|. Available: http://arxiv.org/
abs/2005.14165 (visited on 06/16/2025), pre-published.

[30] L. Ouyang, J. Wu, X. Jiang, et al. “Training language models to follow instructions
with human feedback.” arXiv: 2203.02155 [cs]. (Mar. 4, 2022), [Online|. Available:
http://arxiv.org/abs/2203.02155 (visited on 06/16/2025), pre-published.

[31] H. W. Chung, L. Hou, S. Longpre, et al. “Scaling Instruction-Finetuned Language
Models.” arXiv: 2210.11416 [cs]. (Dec. 6, 2022), [Online|. Available: http://arxiv.
org/abs/2210.11416 (visited on 06/16/2025), pre-published.

[32] J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-Thought Prompting Elicits Rea-

soning in Large Language Models,”

[33] OpenAl. “GPT-4 Technical Report.” version 3. arXiv: 2303.08774 [cs]. (Mar. 27,
2023), [Online|. Available: http://arxiv.org/abs/2303.08774 (visited on 06/16,/2025),
pre-published.

[34] R. Anil, A. M. Dai, O. Firat, et al. “PaLLM 2 Technical Report.” arXiv: 2305.10403
[cs]. (Sep. 13, 2023), [Online|. Available: http://arxiv . org/abs/2305 . 10403
(visited on 06/16,/2025), pre-published.

[35] M. Chen, J. Tworek, H. Jun, et al. “Evaluating Large Language Models Trained on
Code.” arXiv: 2107.03374 [cs]. (Jul. 14, 2021), [Online|. Available: http://arxiv.
org/abs/2107.03374 (visited on 06/16/2025), pre-published.

[36] R.Nakano, J. Hilton, S. Balaji, et al. “WebGPT: Browser-assisted question-answering
with human feedback.” arXiv: |[2112.09332 [cs]. (Jun. 1, 2022), [Online|. Available:
http://arxiv.org/abs/2112.09332 (visited on 06/16/2025), pre-published.

[37] “Tools models - Ollama Search.” (), [Online|. Available: https://ollama.com/search
(visited on 06,/16,/2025).

[38] “Stanford CRFM.” (), [Online|. Available: https://crfm.stanford.edu/2023/03/
13/alpaca.html (visited on 06/16/2025).

[39] T. Dettmers, A. Pagnoni, A. Holtzman, et al. “QLoRA: Efficient Finetuning of Quan-
tized LLMs.” arXiv: 2305.14314 [cs]. (May 23, 2023), [Online|. Available: http:
//arxiv.org/abs/2305.14314 (visited on 06/16/2025), pre-published.

[40] “Koala: A Dialogue Model for Academic Research — The Berkeley Artificial Intelli-
gence Research Blog.” (), [Online|. Available: https://bair.berkeley.edu/blog/
2023/04/03/koala/| (visited on 06/16/2025).

76

https://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://ollama.com/search
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

A. Q. Jiang, A. Sablayrolles, A. Mensch, et al. “Mistral 7B.” arXiv: 2310.06825 [cs].
(Oct. 10, 2023), [Online|. Available: http://arxiv.org/abs/2310.06825 (visited on
06/16/2025), pre-published.

“Open-Source LLMs vs Closed: Unbiased Guide for Innovative Companies [2025].”
(), [Online|. Available: https://hatchworks.com/blog/gen-ai/open-source-vs-
closed-1lms-guide/| (visited on 06/17/2025).

“Open Source vs. Closed Source in Language Models: Pros and Cons - DS Stream
Blog.” (), [Online|. Available: https://www.dsstream.com/post/open-source-vs-

closed-source-in-language-models-pros-and-cons| (visited on 06/17/2025).

0.-0. D. Science. “The Benefits of Open-Source vs. Closed-Source LLMs,” Medium.
(Jan. 10, 2025), [Online|. Available: https://odsc.medium.com/the-benefits-of-
open-source-vs-closed-source-11ms-71201e049bc7 (visited on 06/17/2025).

V. Hanke, T. Blanchard, F. Boenisch, et al., “Open LLMs are Necessary for Cur-
rent Private Adaptations and Outperform their Closed Alternatives,” Advances in
Neural Information Processing Systems, vol. 37, pp. 1220-1250, Dec. 16, 2024. [On-
line]. Available: https://proceedings .neurips.cc/paper_files/paper/2024/
hash/02802e3df178cce7b13e8£63dd29ad9f - Abstract - Conference . html| (visited
on 05/16/2025).

Y. Gao, Y. Xiong, X. Gao, et al. “Retrieval-Augmented Generation for Large Lan-
guage Models: A Survey.” arXiv: 2312.10997 [cs]. (Mar. 27, 2024), [Online|. Avail-
able: http://arxiv.org/abs/2312.10997 (visited on 07/01/2025), pre-published.

LangChain. “Build a Retrieval Augmented Generation (RAG) App: Part 1,” Build a
Retrieval Augmented Generation (RAG) App: Part 1. (), [Online|. Available: https:
//python.langchain.com/docs/tutorials/rag/ (visited on 06/23/2025).

B. Peng, M. Galley, P. He, et al. “Check Your Facts and Try Again: Improving Large
Language Models with External Knowledge and Automated Feedback.” arXiv:|2302.
12813 [cs]. (Mar. 8, 2023), [Online|. Available: http://arxiv.org/abs/2302.12813
(visited on 07/01/2025), pre-published.

“Thomas Janssen,” YouTube. (), [Online|]. Available: https://www.youtube . com/
channel/UCstCul_7DvHu7-KSA3Yy9P(Q (visited on 06,/24,/2025).

“ThomasJanssen-tech (Thomas Janssen).” (), [Online|. Available: https://github.
com/ThomasJanssen-tech (visited on 06/24/2025).

Thomas Janssen, director, Finally a Local RAG That WORKS!! (+ FULL RAG
Pipeline), May 27, 2025. |Online|. Available: https://www.youtube.com/watch?v=
c5jHhMXmXyo (visited on 06/24/2025).

7

https://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
https://hatchworks.com/blog/gen-ai/open-source-vs-closed-llms-guide/
https://hatchworks.com/blog/gen-ai/open-source-vs-closed-llms-guide/
https://www.dsstream.com/post/open-source-vs-closed-source-in-language-models-pros-and-cons
https://www.dsstream.com/post/open-source-vs-closed-source-in-language-models-pros-and-cons
https://odsc.medium.com/the-benefits-of-open-source-vs-closed-source-llms-71201e049bc7
https://odsc.medium.com/the-benefits-of-open-source-vs-closed-source-llms-71201e049bc7
https://proceedings.neurips.cc/paper_files/paper/2024/hash/02802e3df178cce7b13e8f63dd29ad9f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/02802e3df178cce7b13e8f63dd29ad9f-Abstract-Conference.html
https://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://python.langchain.com/docs/tutorials/rag/
https://python.langchain.com/docs/tutorials/rag/
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
https://www.youtube.com/channel/UCstCuI_7DvHw7-KSA3Yy9PQ
https://www.youtube.com/channel/UCstCuI_7DvHw7-KSA3Yy9PQ
https://github.com/ThomasJanssen-tech
https://github.com/ThomasJanssen-tech
https://www.youtube.com/watch?v=c5jHhMXmXyo
https://www.youtube.com/watch?v=c5jHhMXmXyo

BIBLIOGRAPHY

[52] “ThomasJanssen-tech/Local-RAG-with-Ollama: Build a 100% local Retrieval Aug-
mented Generation (RAG) system with Python, LangChain, Ollama and Chro-
maDB!” (), [Online|. Available: https://github.com/ThomasJanssen-tech/Local-
RAG-with-0llama/tree/main (visited on 06,/24/2025).

[53] Thomas Janssen, director, Build a Chatbot with RAG in 10 minutes | Python, LangChain,
OpenAl, Jan. 8, 2025. [Online|. Available: https://www . youtube . com/watch?v=
xf3gAFclwqol (visited on 06/24/2025).

[54] “General - victorwie/uni-chat,” GitHub. (), [Online|. Available: https://github.
com/victorwie/uni-chat (visited on 07/01/2025).

[55] “CUDA Toolkit - Free Tools and Training,” NVIDIA Developer. (), [Online|. Avail-
able: https://developer.nvidia.com/cuda-toolkit| (visited on 06/29/2025).

[56] B. Dobur, E. Bigakci, A. Terim, et al., “The Building an On-Premises Knowledge
Repository with Large Language Models for Instant Information Access,” Orclever
Proceedings of Research and Development, vol. 5, no. 1, pp. 261-273, 1 Dec. 31,
2024, 1sSN: 2980-020X. DOI: 10.56038/0prd.v5il.545. [Online|. Available: https:
//www . journals.orclever.com/oprd/article/view/545 (visited on 03/19/2025).

[57] L. Hedlund, Towards On-Premise Hosted Language Models for Generating Docu-
mentation in Programming Projects. 2024. [Online|. Available: https://urn.kb.se/
resolve?urn=urn:nbn:se:1ltu:diva-107590 (visited on 03/17/2025).

[58] “(PDF) On-Site Deployment of LLMs,” in ResearchGate. DOI: |10.1007/978-3-031-
54827-7_23. |Online|. Available: https://www.researchgate.net/publication/
381092812_0n-Site_Deployment_of_LLMs| (visited on 03/17/2025).

[59] A. Basit, K. Hussain, M. A. Hanif, et al. “MedAide: Leveraging Large Language
Models for On-Premise Medical Assistance on Edge Devices.” arXiv: 2403 . 00830
[cs]. (Feb. 28, 2024), |Online|. Available: http://arxiv. org/abs/2403.00830
(visited on 03/19/2025), pre-published.

[60] “Chatbot-with-RAG-and-LangChain/ingest database.py at main - ThomasJanssen-
tech/Chatbot-with-RAG-and-LangChain.” (), [Online|. Available: https://github.
com/ ThomasJanssen - tech / Chatbot - with - RAG - and - LangChain / blob /main /
ingest_database.py (visited on 06/29/2025).

78

https://github.com/ThomasJanssen-tech/Local-RAG-with-Ollama/tree/main
https://github.com/ThomasJanssen-tech/Local-RAG-with-Ollama/tree/main
https://www.youtube.com/watch?v=xf3gAFclwqo
https://www.youtube.com/watch?v=xf3gAFclwqo
https://github.com/victorwie/uni-chat
https://github.com/victorwie/uni-chat
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.56038/oprd.v5i1.545
https://www.journals.orclever.com/oprd/article/view/545
https://www.journals.orclever.com/oprd/article/view/545
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-107590
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-107590
https://doi.org/10.1007/978-3-031-54827-7_23
https://doi.org/10.1007/978-3-031-54827-7_23
https://www.researchgate.net/publication/381092812_On-Site_Deployment_of_LLMs
https://www.researchgate.net/publication/381092812_On-Site_Deployment_of_LLMs
https://arxiv.org/abs/2403.00830
https://arxiv.org/abs/2403.00830
http://arxiv.org/abs/2403.00830
https://github.com/ThomasJanssen-tech/Chatbot-with-RAG-and-LangChain/blob/main/ingest_database.py
https://github.com/ThomasJanssen-tech/Chatbot-with-RAG-and-LangChain/blob/main/ingest_database.py
https://github.com/ThomasJanssen-tech/Chatbot-with-RAG-and-LangChain/blob/main/ingest_database.py

Appendix

The full implementation developed for this thesis is available as an open-source repository
at:

https://github.com/victorwie/uni-chat

The repository includes all code necessary to reproduce the system described in this

thesis. Including:
e Data ingestion and preprocessing pipeline
e Retrieval-augmented generation engine
e Local inference setup using Ollama
e Evaluation scripts and test sets
e Streamlit-based user interface

Instructions for installation, configuration, and usage are provided in the README file.

79

https://github.com/victorwie/uni-chat

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Context
	1.2 Problem Statement and Research Gap
	1.3 Research Questions (RQs)
	1.4 Approach and Contributions
	1.5 Thesis Structure

	2 Background
	2.1 Introduction to Large Language Models
	2.1.1 LLM Families
	2.1.2 The Open vs. Closed-Source LLM Paradigm

	2.2 Methods for Domain Adaptation
	2.2.1 General Overview

	3 Overview
	3.1 System Overview
	3.2 Use Case and User Interaction Flow
	3.2.1 Student Flow

	4 Design
	4.1 Design Rationale and Goals
	4.2 System Architecture and Data Flow
	4.3 Component-Level Design Decisions

	5 Implementation
	5.1 Overview and Codebase
	5.2 Data Ingestion and Preprocessing
	5.3 Retrieval and Generation Engine
	5.4 User Interface
	5.5 Evaluation Infrastructure

	6 Evaluation
	6.1 Experimental Setup and Design
	6.2 Evaluation Results
	6.3 Summary and Findings

	7 Discussion
	7.1 RQ1.1: Landscape of Open-Source LLMs and Tools
	7.2 RQ1.2: Domain Adaptation and Integration
	7.3 RQ1.3: Comparative Viability of On-Premise Deployment
	7.4 Limitations and Future Work

	8 Related Work
	8.1 Building UniGPT (Radas et al., 2023)
	8.2 Chat With OPD (Bhise, 2024)
	8.3 UvA AI Chat (Pepijn Stoop, 2025)
	8.4 On-Premises Knowledge Repository (Dobur et al., 2024)
	8.5 Towards On-Premise Hosted LLM (Hedlund, 2024)
	8.6 On-Site Deployment (Schillaci, 2024)
	8.7 MedAide (Basit et al., 2024)
	8.8 Summary and Alignment with Research Questions
	8.8.1 Honorable Mentions and Implementation Influences
	8.8.2 Research Gap and Contribution

	9 Conclusion
	9.1 Summary of Approach and Findings
	9.2 Answering the Research Questions
	9.3 Outlook and Future Work

