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Abstract

With the growth of its customer and code bases, Virtuagym’s developers are

encountering increasing challenges in managing and scaling their monolithic

fitness software platform. To address these issues, the developers applied the

Strangler Pattern to extract features from the original software platform into

microservices. The Mass Communication System, one of these microservices,

handles the delivery of time-sensitive messages such as push notifications and

emails. It aims to deliver a massive volume of messages with minimal delay

while providing real-time in-depth metrics, by leveraging an Event-Driven Ar-

chitecture. This thesis presents the detailed design of the Mass Communication

System as a state-of-the-art practice in Event Stream Processing, along with

several experiments demonstrating its performance. The experimental results

show that the Mass Communication System outperforms the legacy system in

both latency and scalability tests.
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1

Introduction

The design of software systems has undergone a dramatic revolution in recent years. The

trend of developing software systems in a distributed fashion, rather than in a monolithic

way, continues to grow. For monolithic architectures, as the name suggests, all function-

ality is encapsulated into one single application, where its modules cannot be executed

independently(1). Although a monolithic architecture offers many benefits, such as sim-

plicity in development, ease of adopting radical changes, straightforward testing and de-

ployment, and easy to scale, it also introduces challenges such as a prolonged development

cycle and the risk of being locked into an increasingly obsolete technology stack. Addi-

tionally, the method of scaling up monolithic software often involves setting up more than

one instances and masking them behind a load balancer. However, this approach is not

resource-friendly when different software features have varying resource requirements. For

example, the backend server of a food delivery application needs to store large restaurant

data in memory, consuming significant DRAM, while its image processing module performs

ideally with sufficient CPU power(2).

In contrast, software applications in distributed architectures are divided into sub-

modules based on functionality. Each sub-module is typically designed to be independently

deployable. As one of the most famous paradigm of building distributed architecture,

microservice architecture thrives in the industry over last decades. Microservice architec-

ture comprises multiple microservices, which are independently releasable services modeled

around a business domain. A service encapsulates functionality and make it accessible to

other services via networks(3). Many big organizations, including Netflix, Amazon and
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1. INTRODUCTION

eBay, migrated their applications from monolithic architecture to microservices architec-

ture for its various advantages, i.e. maintainability, reusability, scalability, availability and

automated deployment(4).

As a technological company with almost 20 years of history, Virtuagym1 found itself in

a similar situation where the migration of its software application to a new architecture is

necessary. Since 2008, Virtuagym invested huge amount of resources into its fitness software

platform (refered as vg-monolith by its developers), which implies that this monolithic

system is getting increasingly larger and potentially unmanageable in the future. Not only

the functionality of the system is increasing, the number of customer is also rising in a

fast pace. Challenges introduced by monolithic architecture are imminent. To tackle these

problems, Virtuagym decided to use the Strangler Pattern(2) to divide the monolith system

into microservices. The Strangler Pattern, as shown in Figure 1.1, suggests a way to migrate

a legacy monolithic system to microservice architecture by incrementally developing a new

(strangler) application around the legacy application. The strangler application, which

adopts a microservice architecture, consists of services that implement either functionality

previously resided in the monolith or new features. The Mass Communication System

(mass comm) presented in this thesis is one of the microservices created by following the

Strangler pattern.

The Mass Communication System (mass comm) extracts the functionality of sending

and generating metrics for push notification and email from vg-monolith. Considering

there are more than one million active daily users, mass comm should be able to handle

significant amount of data. In addition, push notifications and emails must be delivered

to users promptly to ensure timeliness. Therefore, high scalability and low latency are

the two most important non-functional requirement of the system. To achieve this, the

architecture team of Virtuagym decided to adopt Event-Driven Architecture (EDA) when

designing mass comm. Similar to microservices, EDA is consist of several high-cohesive

components that asynchronously react to events and perform a specific task(6). More

and more people believe that EDA is a promising solution to the problem mentioned

above. By nature, components of EDA are loosely coupled, which, in turn, enables high

scalability. Low latency is also assured since systems reacts to each arriving event. In mass

comm, requests for sending push notifications or emails are treated as events. Moreover,

successfully delivered push notifications or emails are also seen as events that need to

1https://business.virtuagym.com/about-us/
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Figure 1.1: The strangler pattern(5). The monolithic system is being divided into mi-
croserverices over the time. New features are also implemented as independent services instead
of parts of the monolithic system.

be processed to generate the metrics. The thesis presents mass comm as a state-of-the-

art practice for constructing a highly scalable event stream processing system. This is

achieved by leveraging industry-favored technologies, along with conducting experiments

to demonstrate its capabilities. In addition, to show the main focus of this thesis, we list

the following research questions:

• Does mass comm maintain low latency as expected from an EDA? The

transition from a monolithic architecture to a distributed one would introduce extra

over-the-network communication. As a result, the total process time needed to finish

a request could also increase. Thus, we aim to uncover whether such transition could

undermine the low latency characteristic.

• Does mass comm possess high scalability, which is necessary to emit sig-

nificant amount of messages, such as 100,000 and 1,000,000. It is essential

for mass comm to have high scalability, considering the amount of users Virtuagym

3



1. INTRODUCTION

has.

Although some of the design decisions (employing Kafka and ksqlDB) were already

made before I joined the team, my contribution to mass comm includes designing and

implementation of metrics feature as well as the design of experiments.

The structure of the thesis is as follow: Chapter 2 introduces the key concepts and

technologies that play important roles in mass comm. While providing an overview of

the terms, Chapter 2 also compares them to some alternatives and explains the reasoning

behind choosing them. In Chapter 3, a comprehensive review on existing related literature

is given. Chapter 4 presents the design and implementation process of mass comm. Ex-

periments and corresponding results are displayed in Chapter 5. Then, we discuss about

the outcomes and potential limitations of mass comm in Chapter 6. Finally, we give our

conclusions in Chapter 7.

4



2

Background

In this chapter, an introduction to the underlying technologies of mass comm is given. For

certain technologies, we also provide a detailed comparison with some alternatives, along

with the reasons and benefits associated with choosing them. Section 2.1 introduces Event-

Driven Architecture and its building-block technologies, which is foremost important as it

defines the basic architecture of mass comm. Introduction of serverless computing, which

is the approach we adopted to implement mass comm, is given in Section 2.2. Section 2.3

and Section 2.4 introduce Elasticsearch and Amazon SNS as key technologies for enhancing

performance.

2.1 Event-Driven Architecture

The Event-Driven Architecture consist of highly decoupled, single-purpose event processing

components that asynchronously receive and process events, which is an abstraction of a

notable thing that happens inside or outside your business.(6)(7). The highly scalable and

timely responsive nature of Event-Driven Architecture (EDA) plays an essential role in

the design of mass comm. As a distributed asynchronous architecture pattern, EDA has

evolved in recent decades and gained increasing attention from the industry(8). One of

the prominent application scenario of EDA is Stream Event Processing (SEP) (7), which

is acknowledged as a solution to fill the limitations created by Batch Processing. Batch

Processing is an important building block in our quest to build reliable, scalable, and

maintainable applications(9). As one of the most successful algorithm of Batch Processing,

MapReduce was even called “the algorithm that makes Google so massively scalable”(10).

5



2. BACKGROUND

However, MapReduce is inherently designed for high throughput batch processing of big

data that take several hours and even days, while recent demands are more centered on

jobs and queries that should finish in seconds or at most, minute(11)(12). Another weak

point of the Batch Processing paradigm is that the input data of Batch Processing systems

are usually required to be bounded—i.e., of a known and finite size. Meanwhile in reality, a

lot of data is unbounded because it arrives gradually over time(9). Therefore, in such cases,

SEP excels with its advantage of low-latency response while maintaining high scalability.

Mark Richards(6) defines two topologies that are used in most EDA implementations.

The Mediator Topology and Broker Topology. Figure 2.1 illustrates the general mediator

topology of the event-driven architecture pattern. In a Mediator Topology, components are

categorized as follows: Event Queue, Event Mediator, Event Channel and Event Processor.

As a singleton instance, Event Mediator receives the initial event and orchestrates that

event by sending additional asynchronous events to event queues. It is essential to note

that the Event Mediator does not perform the business logic necessary to process the initial

event. In contrast to the Mediator Topology, there is no centralized event mediators in the

Broker Topology. Instead, events flow in a distributed manner across the Event Processor

components. As shown in Figure 2.2, each Event Processor directly publishes and receives

events from other Event Processors without going through a common component.

There are various pros and cons to consider when choosing between the two topologies

for implementing an EDA. An EDA system implemented by using the Mediator Topology

could suffer from single-point-failure and performance bottleneck, both introduced by the

centralized Event Mediator. Meanwhile, systems that have adopted the Broker Topology

must cope with the unavailability of each Event Processor. The high level design of mass

comm resembles the Mediator Topology. To address the issues faced by the Mediator

Topology, we employ Apache Kafka, a reliable and massively scalable message broker, as

the Event Mediator.

2.1.1 Apache Kafka

Apache Kafka1 is a distributed data streaming platform favored by thousands of companies

including many well-known technological companies(13)(14). Thanks to its distributed

nature, Kafka clusters have the capability of generating millisecond-level responses under

massive workloads without worrying about scalability and availability. User applications,
1https://kafka.apache.org/
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2.1 Event-Driven Architecture

Figure 2.1: The mediator topology(6). A centralized event mediator distributes events to
different event processors.

referred to as producers when sending events and consumers when receiving them, can

establish a transparent message channel by leveraging the simple communication APIs

provided by the Kafka client library. In addition, there are several powerful tools and

plugins in the Kafka ecosystem that enables versatile applications, including Kafka Stream1

and Kafka Connect2.

Figure 2.3 gives an example of how producers and consumers interact with Kafka. Event

data generated by a producer is published into different Kafka topics. Upon the arrival of

the event, Kafka notifies the consumers that subscribed to the topic, providing them with

the content of the event. With multiple producers and consumers communicating through

a single Kafka cluster, high availability is still well preserved thanks to the distributedly

deployed Kafka brokers. A Kafka cluster consists of one or more Kafka brokers, and each

Kafka broker holds zero or more partitions of the same Kafka topic, depending on the

replication factor. The number of partitions and replication factor can be designated when
1https://docs.confluent.io/platform/current/streams/overview.html
2https://docs.confluent.io/platform/current/connect/index.html
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2. BACKGROUND

Figure 2.2: The broker topology(6). No centralized event distributor in this topology.

Figure 2.3: How Producers and Consumers Interact with Kafka(15)

creating the topic. In Figure 2.4, an example of a Kafka topic with 3 partitions and replica-

tion factor of 2 is given. Having more than one partitions for one topic eliminates concerns

about insufficient storage for that topic. When a topic is initialized with a replication

factor bigger than 1, each partition is replicated by that factor and each replica is stored

8



2.1 Event-Driven Architecture

in different brokers. Out of the 2 replicas, one replica acts as the lead replica for the other

replica. In such a way, each partition of a event has n replicas and can afford n-1 failures

to guarantee message delivery(16). Inside each partition, the events are stored using an

append-only commit log structure, as shown in the Figure 2.5. Consumers locate desired

events within the partition using offsets, which are maintained by consumers themselves.

Figure 2.4: Each Topic Replication is
Stored in Different Brokers(15)

Figure 2.5: Events in Different Partitions
are Consumed at Different Paces(15)

We also compared Kafka with other popular message brokers when making our design

decisions. Works by Vineet et al.(17) and Aditya et al.(18) show comprehensive results

of experiments for comparing Kafka and Rabbit MQ, which is a low latency message

queue tha implements Advanced Message Queuing Protocol (AMQP). The results show

that Kafka has higher throughput when the message payloads are short, which is ideal

for mass comm considering the significant number of users and events flowing within mass

comm are also small. In addition to that, Kafka also performs well in latency tests. Finally,

instead of hosting our own Kafka cluster, we employ AWS MSK1, which is a fully managed,

highly available Apache Kafka service offered by Amazon Web Services (AWS). Utilizing

MSK helps with setting up and managing the cluster without extra effort, and it can be

seamlessly integrated into the Virtuagym ecosystem, which comprises services based on

other AWS services.

2.1.2 Avro Schema and Schema Registry

Topics in Kafka are similar to tables in databases; both are the smallest units used for

grouping related data. However, the most significant difference between topics and tables

1https://aws.amazon.com/msk/
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2. BACKGROUND

lies in whether they have a predefined schema for data. While data in the same table

all has the same format, Kafka does not impose any particular schema for the data in

the same topic. Instead, Kafka stores the raw bytes of data(15). Although the design

of not imposing a schema offers flexibility, the risk of maintenance issues increases when

there are multiple pairs of producers and consumers. Whenever a producer intends to

introduce changes to the event format, all corresponding consumers should also adapt to

those changes. Achieving this would require much more effort without imposing a data

schema. We also considered this issue when designing mass comm. Finally, we decided to

utilize Avro schema along with a schema registry.

Apache Avro1 is a compact binary data serialization format(19). According to the offi-

cial documentation of Apache Avro(20), the Avro data format supports a variety of data

structures including array, map and nested complex types. Defining an Avro schema is

also straightforward since Avro’s syntax is the same as JSON. Therefore, creating an Avro

schema is equivalent to creating a JSON file filled with field names and associated data

types. Not only within mass comm, but also almost all the events that go through Kafka

and are produced by services owned by Virtuagym are serialized using Avro. As a result,

we use Schema Registry as a solution to potential management problems. Schema Registry

is a centralized repository for managing and validating schemas(21), which supports mul-

tiple popular schema formats including Avro, Protobuf2 and JSON. With the assistance

of Schema Registry, the versioning feature of Avro becomes even more formidable. Figure

2.6 gives a clear demonstration of how Schema Registry works.

Extensive deliberation preceded our decision to adopt Avro during the design phase of

mass comm. We were ultimately attracted by the following benefits of using Avro:

• Ease to use. It is fairly simple to employ Avro and this is not only because its

JSON syntax, which is familiar to most of the developers. Avro is a dynamically-

typed schema, ensuring that the schema used during writing is always available when

reading Avro data. This also eliminates the need of code generation, which facilitates

the development process. In contrast, Protobuf schemas require code generation

every time when schemas are modified(20).

• High performance. Since the schema is always present when data is being dese-

rialized, the extra information used to encode data is significantly reduced. Thus,
1https://avro.apache.org/
2https://protobuf.dev/
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2.1 Event-Driven Architecture

Figure 2.6: How Schema Registry Works(21)

the serialized data has a smaller size compared to Protobuf. This is also proved by

the works done by Kazuaki Maeda(22). Kazuaki conducted several experiments to

compare the performance of more than 10 popular object serialization libraries. The

size of serialized data and the execution time for serializing and deserializing are used

as metrics for the experiments. In the results, Avro excels in the size test without

sacrificing too much speed.

2.1.3 Change Data Capture (CDC)

Change Data Capture (CDC) is a solution to achieve data synchronization between vg-

monolith and mass comm. Data synchronization stands as a substantial problem for data

systems that comprise a number of sub-systems. Typical examples in real-world scenarios

include: an Online Transaction Processing (OLTP) database to handle user requests, a

cache server to expedite common requests, a full-text index for search queries and a data

warehouse for conducting business analytics. It is common that the timely update of

data is considered a fundamental requirement of these system. Except for CDC, other

solutions for data synchronization include dual write and the "Extraction, Transformation

and Loading", which is usually referred as ETL process. While adopting dual write may

require addressing issues caused by race conditions and paying extra attention to enhance

fault-tolerance, the ETL process is recognized as a batch processing method, implying

11



2. BACKGROUND

its incapability for low-latency processing.(9) However, upon considering CDC, we found

studies that accelerate the ETL process by leveraging CDC technologies(23)(24). Big

technology companies like LinkedIn have also invested efforts in implementing a low-latency

CDC platform(25). Thus, we see CDC as a promising solution and shifted our main focus

to exploring a reliable CDC solution when solving the data synchronization problem for

mass comm.

The idea behind CDC is to identify the change of data from the source data store, which

is usually a relational database, and propagate this change to the targeting data store across

a network. There are several methods that can be employed to implement a CDC, which

include timestamp-based method, trigger-based method and log based method(26)(27).

The pros and cons of utilizing each method can be seen below:

• Timastamp-based: Using a timestamp to detect record changes is simple to use

and implement. However, this could not detect records that are deleted. It also

introduce computational overhead since CDC has to determine whether the record

should be broadcast by comparing those timestamps.

• Trigger-based: A trigger refers to database triggers that invoke specific actions

when certain conditions are met.(28). Although all kinds of data updates (INSERT,

UPDATE and DELETE) can be captured by this method, the computational over-

head still exists. In addition, using trigger requires schema changes.

• Log-based: The log-based approach leverages the change logs maintained by the

source database. The biggest benefit of log-based approach is that no overhead

is introduced while all types of changes can be captured. Unfortunately, it is not a

perfect solution, as it requires efforts to decode the change logs produced by databases

maintained by different vendors, which are often opaque black boxes. Moreover,

target systems have to identify and eliminate any changes that were written to source

databases but then rolled back.

After the above analysis of CDC implementations, we decided to adopt a existing CDC

library that supports the log-based approach. Finally we choose to use Debezium1. Debez-

ium is an open source distributed CDC platform that provides seamless integration with

Kafka. Deploying a Debezium CDC connector on Kafka only requires adding a Debezium

1https://debezium.io/

12



2.1 Event-Driven Architecture

plugin to a Kafka Connect instance and making a REST call to provide necessary con-

figuration. Then, the CDC connector will stream the database changes that it captures

to a specific Kafka topic. The list of supported data stores listed in Debezium’s official

documentation includes the majority of popular databases. The experiments conducted

by JIŘÍ(29) also demonstrates the high throughput of Debezium.

2.1.4 ksqlDB

So far, introductions and rationales of the building blocks for the push notification and

email delivery features of mass comm have been provided. To generate real-time metrics for

the push notification and email within mass comm, a mature stream processing framework

is required. In conclusion, we finally decided to use KsqlDB1 as our stream processing

framework.

ksqlDB is an open source event streaming database that was released by Confluent2.

With Kafka Stream and Kafka Connect being its backbone, ksqlDB provides powerful

stream processing features, including aggregation, group-and-aggregate, join and sort,

which are essential in data stream processing(30). Additionally, it supports effortless inte-

gration to Kafka(15). Moreover, interacting with ksqlDB requires minimal proficiency in

SQL syntax, which significantly enhances simplicity. ksqlDB establishes two abstractions

to model data: stream and table. While a stream is a collection of historical sequences

of events, a table maintains a snapshot of the latest value identified by the key in the

event(31). After creating necessary streams or tables, user applications can issue push

queries or pull queries against those entities. Pull queries operate similarly to key-based

lookups commonly used in traditional relational databases. In contrast, push queries con-

tinuously send the latest updates to the subscriber until the query is terminated by the

subscriber. Users can also stream the results of queries into a desired data store by lever-

aging ksql connectors.

Next, we outline the major benefits of ksqlDB along with the comparison with some

other popular stream processing frameworks.

• Simplicity. The simplicity of ksqlDB primarily stems from its SQL-like interface. It

not only drastically reduces the learning cost, but also simplifies source code manage-

ment. Besides that, deploying a ksqlDB server is relatively straightforward as it can
1https://ksqldb.io/overview.html
2https://www.confluent.io/
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2. BACKGROUND

be deployed in a standalone server fashion. On the other hand, using Apache Flink1

in this project is may be an overkill. Employing Apache Flink introduces significant

complexity due to its specialization in handling exceptionally large amounts of state

and scale, often requires complex aggregations(15)(32).

• Easy integration with Kafka. Considering that Kafka serves as the center message

ingestion point of mass comm, the selected framework should be able to integrated

with Kafka without too much effort. ksqlDB satisfy the requirement as it is built

on top of two essential components of Kafka: Kafka Stream and Kafka Connect. In

contrast, Apache Spark Structured Streaming2 is strongly tied to Apache Spark3.

While Structured Streaming provides notable performance improvements over Flink

and Kafka Streams, with strong scalability and fault tolerance(33), incorporating

an entire Spark cluster may complicate the architecture, contradicting the goal of

maintaining simplicity for ease of maintenance.

2.2 Serverless Computing

When implementing the actual business logic in mass comm, we followed serverless comput-

ing paradigm. The severless computing platform we chose is Amazon Lambda4. Serverless

computing, also known as Function-as-a-Service (FaaS), simplifies application hosting for

software developers by eliminating the need of deploying and scaling underlying infras-

tructure. The term ’serverless’ does not imply the absence of an actual server. Instead,

it refers to the abstraction of server management, where the control of the server run-

ning the ’function’ is completely hidden by cloud providers. Modern serverless computing

services provided by cloud providers offer better autoscaling, strong isolation, platform

flexibility, and service ecosystem support. The pay-as-you-go pricing model is beneficial

for applications with variable traffic patterns(34)(35).

Moreover, serverless computing fits perfectly in an EDA. When viewed from a broader

perspective, serverless computing inherently follows an event-driven paradigm. Invoking

a function with specific parameters can be identified as the arrival of an event within the

system(36). Furthermore, events tend to be largely independent and stateless in nature,

which makes them ideal candidates for event-driven and FaaS architectures(34).
1https://flink.apache.org/
2https://spark.apache.org/streaming/
3https://spark.apache.org/
4https://aws.amazon.com/lambda/
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2.3 Elasticsearch

Elasticsearch1 is a distributed, scalable, real-time search and analytics engine built on top of

Apache Lucene2. Elasticsearch offers features such as high-performance full-text search and

real-time analytics of structured data(37). The user base of Elasticsearch is also ginormous.

According to March, 2024 figures of DB-Engines Ranking of Search Engines, Elasticsearch

is the most popular search engine software(38). Elasticsearch plays an important role in

mass comm as it facilitates the notification settings check. More details on this will be

discussed in Chapter 4.

Eliminating the performance bottleneck is the biggest reason why we included Elastic-

search in the design of mass comm. If not properly addressed, searching in a tremendous

user dataset could significantly impact overall performance, leading to a degraded user

experience. The studies done by Doina et al.(39) and Mustafa et al.(40) demonstrate

the remarkable searching speed of Elasticsearch. The former conducted comprehensive

experiments to compare the performance of MySQL Document Store3 and Elasticsearch.

Elasticsearch not only presents a shorter query time in most of the speed tests but also

consumes much smaller disk space. MySQL Document Store can only have a better per-

formance when there are specially defined indices for columns, which are not necessary for

Elasticsearch. Experiments in (40), which compare Apache Solr4 and Elasticsearch, show

similar results. However, Mustafa et al.’s conclusion does not indicate superiority of one

approach over the other. Elasticsearch and Solr both have significant search speed. Gaps

only emerge when the length of document data varies. It took Elasticsearch 30 minutes

and Solr 43 minutes to index data consists of 40 million pieces with 5 to 20 words. When

the size of input data was increased to 200 to 1000 words, Elasticsearch used 179 minutes

while Solr used 119 minutes.

During the exploration of high performance search engines, we noticed that AWS offers

a fully-managed OpenSearch service5, which is based on OpenSearch6, an open source,

distributed search and analytics suite derived from Elasticsearch. By leveraging AWS

OpenSearch, the deployment process is significantly simplified.

1https://www.elastic.co/
2https://lucene.apache.org/
3https://www.mysql.com/products/enterprise/document_store.html
4https://solr.apache.org/
5https://aws.amazon.com/opensearch-service/
6https://opensearch.org/
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2.4 Amazon SNS

As the final building block of mass comm, Amazon Simple Notification Service1 (SNS)

takes on the responsibility of delivering push notification and email to end users. Amazon

SNS is a fully managed publish/subscribe service designed for application-to-application

(A2A) and application-to-person (A2P) messaging. The A2P notification messaging offered

by SNS comprises a wide range of destination platforms, including Android, iOS, Fire,

Windows and Baidu devices. In addition, SNS is also capable of delivering emails and

SMS texts. Compared to the implementation in vg-monolith, which involved using three

different services for message delivery (Firebase Cloud Message for Android notifications,

Apple Push Notification service for iOS notifications, and an SMTP server for email),

utilizing SNS significantly reduces management costs.

1https://aws.amazon.com/sns/
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Related Work

In this chapter, some similar studies are discussed. The similarity may lie in the goal of the

project and the technologies used. Section 3.1 and 3.2 show related works that significantly

influenced the design of mass comm. More works that leverages both Kafka and ksqlDB

are given in Section 3.3 to demonstrate the uniqueness of mass comm. For each academic

work, we give a brief introduction and discuss how these works influenced our design of

mass comm or how they differ from our work.

3.1 Works on Real-Time Stream Processing

Long before the arrival of Kafka, the Extract, transform, and load (ETL) based batch pro-

cessing jobs were the utmost primary data processing technique employed at LinkedIn(41).

The continuous ETL pipeline generates valuable insights based on user’s activity data and

drives several downstream features or applications that are essential for the ongoing opera-

tions of the business. One of these downstream application is generating operational system

metrics. Quoting from the paper: ’For a large-scale consumer website, operational system

metrics about server and service performance are business metrics.’ However, the lengthy

execution time of batch processing jobs, which is usually several hours, poses a significant

challenge to collect real-time operational system metrics. As a result, a real-time activity

data processing solution that can be seamlessly integrated into other existing systems is

needed. The authors made first attempt by adopting ActiveMQ as a real-time message

queue to feed the central logging system. Although it worked pretty well in some of the

real-time performance tests, serious performance degradation appears when the system
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has to confront real production workload. The root cause of this problem is the amount

of data is exceeding the memory capacity, hence random I/O comes into play. Therefore,

they have to seek for another reliable solution. It was under such a context, Apache Kafka

was born.

The extensive usage of Kafka at LinkedIn proves the importance of Kafka. The average

message writes per day handled by Kafka is more than 10 billion. During peek traffic

hour, the average workload goes up to 172,000 messages per second. In total, they see a

ratio of roughly 5.5 messages consumed for each message produced, which means 55 billion

messages are delivered to real-time consumers. These figures brought us huge confidence

in Kafka. This gives us another reason to choose Kafka as our stream processing backbone.

Figure 3.1: How Kafka Fits in LinkedIn’s Architecture(41)

There are three important techniques adopted by the team to engineer high throughput

for Kafka, including batch sending, shrinking data size and reliance on page cache. The

technique of shrinking data size caught our attention when designing mass comm since

this can also be easily employed. Designers of Kafka deems shrinking data as the most

important performance technique as the bandwidth between data center facilities is ac-
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knowledged as one of the major bottlenecks. This bandwidth is more expensive per-byte

to scale than disk I/O, CPU, or network bandwidth capacity within a facility. To tackle

this bottleneck issue, they replaced initially employed XML format with the Apache Avro,

which leads to a roughly 7 times smaller average data size. Moreover, a GZIP compression

mechanism is also being utilized to further increase the throughput. Although the GZIP

compression introduces higher CPU usage, the overall throughput is boosted by 30%. As

a result, Avro also becomes the standardized message format of mass comm and we pay

extra attention to the compression settings when configuring our MSK cluster.

3.2 Works on SQL Stream Processing

The study(42) presented by the researchers at IBM makes another attempt to leverage SQL

syntax for real-time stream processing. The project serves as an extension of IBM’s Cloud

Data Engine1, which was a SQL service only supports batch-oriented queries based on

Apache Spark. With the contribution from the paper, Cloud Data Engine is now capable

of ingesting and querying stream data provided by Apache Kafka. There is a fundamental

difference between their work and ksqlDB. ksqlDB requires the data from a static data

source to be transformed into a stream before they can be processed, i.e. using a read file

utility to emit each line of a CSV file as a stream of events into a Kafka topic. Meanwhile,

since Data Engine already has the capability of making SQL queries on batch data source,

the requirement imposed by ksqlDB is no longer meaningful.

Figure 3.2 shows how SQL queries on stream data are done in Data Engine. While the

rest of the figure remains clear, the part of Schema Registry, Metastore and Registry Proxy

is intriguing. Metastore is a metadata storage that already exists in previous versions of

Data Engine. The metadata includes table definitions containing schema information,

the storage location of each table, the storage format and how the data is partitioned.

Whenever SQL Query Execution receives a query from Service API Job Handler, it will

request the table’s schema definition from the Metastore to perform syntax checks. Since

in the work presented by IBM’s researchers, Data Engine includes functionalities related

to stream data, the Metastore also contains schema of stream data now. As mentioned

in Section 2.1.1, Kafka topics are schema-agnostic, which is why a Schema Registry has

to be employed to reduce the management cost introduced by schema changes. To ensure

Schema Registry fits in the overall design while making Metastore backward compatible,

1https://cloud.ibm.com/docs/sql-query?topic=sql-query-overview&locale=en
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Figure 3.2: The Stream Query Happened in Data Engine(41)

IBM’s researchers included Registry Proxy as a method to synchronize the schema changes

between Schema Registry and Metastore. Registry Proxy guarantees the consistency by

intercepting the schema creation or update request from Stream Producer and broadcast

it to both Schema Registry and Metastore.

IBM’s practice shows us how schema changes can be addressed properly in a distributed

big data system. Although their final solution, which is incorporating three components

to manage schemas from various sources, can be simplified by either extending the func-

tionalities of Metastore to maintain schemas of stream data or migrating the old metadata

to the Schema Registry, the idea heavily influenced our design of mass comm.

3.3 Studies Based on Kafka and ksqlDB

After examining the two most influential works, we present reviews of several similar studies

that also leverage both Apache Kafka and ksqlDB for stream processing in this section.

The work by Adeyinka Akanbi(43) presents EStemd: which is a distributed stream pro-

cessing framework for environmental monitoring. The framework ingests heterogeneous

environmental data from different sources, including Internet of Thing (IoT) sensors, au-

tomated weather stations and legacy weather stations. The data flows through Kafka and

is processed by KSQL, which is the precursor of ksqlDB, to support valuable decision-
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making. The biggest distinction between this work and the work by Adeyinka Akanbi is

the imposition of event schemas and inclusion of a Schema Registry. Although imposing

schemas would increase development cost under the context of using heterogeneous data

sources, it can, however, reduce management costs and ensure transparency in the long

term.

Sudeshna et al.(44) describe a real-time data management framework specifically de-

signed to manage the information generated by smart meters in low-voltage networks.

Data collected from voltage meters, which is processed and transformed by Kafka and

ksqlDB, can be intended for a wide range of usage in power systems, such as Supervisory

Control and Data Acquisition (SCADA) system and Advanced Metering Infrastructure

(AMI). While a Schema-Registry-like component is also missing, the framework employs

JSON format for event messages, which would potentially increase the performance over-

head.

In the work by Adrian et al.(45) a solution that aims to provide real-time network

traffic logging and analysis is given. The framework can either read in network packets

from a static file or capture network packets from a live network interface using its own

abstraction wrapped around the packet capture API provided by the Libtins library. An

extensible design is also adopted in their framework where users can freely choose the type

of processing they wish to apply on the captured packets and the means in which they

wish to forward the data, thanks to the on-the-fly query functionality offered by ksqlDB.

In the end, there is another fundamental difference that distinguishes mass comm from

the work mentioned above. The fact that mass comm is an extraction of functionality from

a legacy system, vg-monolith. Thus, it enables us to compare the performance difference

when switched to an EDA implementation. More details about this comparison can be

found in later chapters about experiments.
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Design and Implementation

In this chapter, we elaborate on the design and implementation detail of mass comm. In

addition, the ksql queries that power the real-time analysis are also discussed.

4.1 Previous Architecture

Before deep dive into the design of mass comm, it is necessary to first look at the previous

design, vg-monolith. As the name suggests, vg-monolith is a monolithic software platform

comprising multiple functionalities, including the push notification and email delivery fea-

ture of mass comm. Although vg-monolith is deployed as a single process, steps taken to

send a push notification or email involves asynchronous communications.

Figure 4.1: The Architecture of The Vg-Monolith
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As shown in Figure 4.1, when a certain user request that could trigger the sending of a

push notification or email arrives, vg-monolith will first check the user settings to determine

if the user refuses to receive the message and build the message body. Next, a dedicated

cron job will be spawned to asynchronously deliver the message to either Firebase Cloud

Message (FCM), Apple Push Notification service (APN) or a Simple Mail Transfer Protocol

(SMTP) server depending on the type of the message and targeting device.

4.2 Architecture Overview

The architecture of mass comm is shown in Figure 4.2. The business logic in mass comm

consists of five Amazon Lambda functions, namely, Preference Checker, Builder, Delivery,

Metrics Handler and Send Handler. In the new architecture, there are two sources of

messages: vg-monolith and Send Handler. When a user request arrives at vg-monolith,

a Kafka event will be emitted into a topic in the MSK cluster to trigger the following

action in mass comm. On the other hand, Send Handler receives send requests of push

notification or email either directly from users through a REST call or the Vue Web

Frontend. Then, a Kafka event following the same schema as the events from vg-monolith,

is published into another topic in the MSK. Preference Checker subscribes the topic to

perform notification preference checks based on user’s notification settings. If the check

passes, Preference Checker sends a build event into a different topic, which is subscribed by

Builder function. Similarly, a delivery event is published to the topic that Delivery listens

to, carrying the notification message formatted with user’s information by Builder function.

Finally, upon the reception of the delivery event, Delivery function initiate REST calls,

which are attached with user’s device information, to Amazon SNS to make the actual

delivery. The whole process of sending a push notification as a sequence diagram is given

in Figure 4.3. The data used by each lambda function (user settings, user information

and user device information) is fetched from Amazon OpenSearch, which is populated by

Debezium CDC from the database of vg-monolith.

The metrics of push notification and email are generated by modeling the two topics as

streams and make further ksql queries in ksqlDB. Output data of these queries is streamed

into a Postgres database for persistence through a ksqlDB connector. The requests for

metrics data are handled by Metrics Handler. Similar to Send Handler, these requests can

be made directly through REST call to the handler or from the Vue Web Frontend.
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Figure 4.2: The Architecture of Mass Comm

Figure 4.3: The Sequence Diagram of Mass Comm

The doted lines in Figure 4.2 denotes the serialization and deserialization happened in

mass comm. Components that need to publish to or read from MSK will have to first make

REST calls to Schema Registry to retrieve the latest schema. This also applies to ksqlDB

when a special format is used in ksql queries. ksqlDB uses Kafka topics as intermediate

store for each ksql query. The schema format, which is Avro in mass comm, is enforced

when ksqlDB streams results of queries to Kafka topics.
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4.3 ksqlDB Data Structure Design

mass comm collects various metrics about push notification and email to support business

decision-making in Virtuagym. In this section, the ksql queries used to generate metrics

of total push notifications sent per different time unit in a time period are discussed.

Figure 4.4: The ksqlDB Data Flow

The pipeline is shown in Figure 4.4. A ksql stream is first initialized in ksqlDB based

on the Kafka topic containing the events of sending a push notification. Then, a ksql

table with data grouped by the timestamp can be derived. Finally, the data is streamed

into a Postgres database using a ksql connector. For example, to generate metrics of push

notifications sent per minute, only three queries are needed.

# This creates a stream of send push notification events based on a kafka topic

CREATE STREAM pushnotification_stream

WITH (KAFKA_TOPIC=’pushnotification_send’, VALUE_FORMAT=’AVRO’);

# This creates a table based on a select query from the stream

CREATE TABLE IF NOT EXISTS pushnotification_table_minute

WITH (KAFKA_TOPIC=’pushnotification_table_minute’, FORMAT=’AVRO’)

AS SELECT

type,

club_id,

timestamp - timestamp % 60000 AS timestamp,

SUM(ARRAY_LENGTH(to_users)) AS count_total
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FROM pushnotification_stream GROUP BY type, club_id, timestamp - timestamp % 60000

EMIT CHANGES;

# This creates a connector that streams the data in the table into a database

CREATE SINK CONNECTOR IF NOT EXISTS pushnotification_connector WITH(

"connector.class"=’io.confluent.connect.jdbc.JdbcSinkConnector’,

"connection.url"=’jdbc:postgresql://host:port/db?user=user&password=password’,

"auto.create"=’true’,

"topics"=’pushnotification_table_minute’,

"key.converter"=’io.confluent.connect.avro.AvroConverter’,

"value.converter"=’io.confluent.connect.avro.AvroConverter’,

"key.converter.schema.registry.url"=’https://schema-registry:8088’,

"value.converter.schema.registry.url"=’https://schema-registry:8088’,

"insert.mode"=’upsert’,

"pk.mode"=’record_key’,

"pk.fields"=’club_id,type,timestamp’);

The stream created by first query is necessary to model the topic events to enable fol-

lowing processing. When doing a SELECT from that stream, the result will be excatly the

same as original events in the topic. The second query, which creates a table, groups

the data by the data by three fields, club_id, type and timestamp and sums the total

number of push notifications based on the to_users field. The fields used for grouping

will be the event key of the resulting record. Note that the timestamp is a UNIX times-

tamp in milliseconds and is rounded up to the nearest starting millisecond of the minute

window. By changing how much the timestamp is rounded up, metrics based on differ-

ent time unit can be generated as shown in Figure 4.4. Since events in the stream arrive

continuously, result records in the table also need to be updated accordingly. Counterin-

tuitively, this is done by publishing a new event with the new value, which is the value of

count_total, into pushnotification_table_minute topic without deleting records with

stale value, instead of modifying the same record in the topic like traditional databases.

However, intermediate values are not shown when running a SELECT from that table.

The result set will only contain the records with distinct keys and latest values, giving

users the illusion of querying against a table in common databases. Finally, the third

query creates the connector who makes the processed persistent in a database. The event

source of the connector is the topic pushnotification_table_minute and the destination

database is defined by connection.url. To ensure the intermediate values are excluded,
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the insert.mode=upsert must be present in the query. By doing so, the connector will

insert a new record if the event key does not yet exist in the database table, and update

the existing record if the event key is already present. club_id and type can be used to

filter the data when users query the metrics from mass comm as the two fields are defined

as primary keys in the pk.fields.
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Experiments

5.1 Experiment Design

To demonstrate how switching to a distributed Event-Driven architecture would impact

the overall performance, we designed several experiments for mass comm with vg-monolith

being the baseline. To solely focus on the performance of mass comm and vg-monolith, we

replaced the endpoint of notification delivery services (FCM, APN and Amazon SNS) with

a dummy endpoint deployed by ourselves. In those experiments, we measure the overall

process time to send certain amount of push notifications. Each experiment was run 20

times for both vg-monolith and mass comm. The average values were then used as the

final results. The tests we ran are as follow:

• Latency test. How much time in milliseconds does it take for mass comm and

vg-monolith to send only one push notification.

• Scalability test. How much time in milliseconds does it take for mass comm and vg-

monolith to send multiple push notifications. This ranges from 100 push notifications

to 1,000,000 push notifications.

5.2 Experiment Environment

In this section, we present the experiment environment, in which vg-monolith and mass

comm are deployed respectively. The vg-monolith instance we used for this experiment was

29



5. EXPERIMENTS

deployed on an AWS Elastic Kubernetes Service(EKS)1 cluster. EKS offers great flexibility

and simplicity for building and managing Kubernetes clusters on AWS EC22 instances.

We deployed our vg-monolith instance inside a node group that consists of t3a.large EC2

instances. The detailed specification of t3a.large instances can be found in Table 5.1.

And we allocated 1000m CPU and 1000Mi memory for the vg-monolith instance in the

Kubernetes deployment configuration.

Processor type AMD EPYC 7571
Clock speed (GHz) 2.5
Number of vCPU 2
Memory (GiB) 8
Network bandwidth (Gbps) 5

Table 5.1: Specification of AWS t3a.large EC2 instances.

For the lambda functions in mass comm, we assigned 1024MB of memory to each one

of them. According to the documentation(46)(47), there is no CPU configuration directly

exposed. However, the amount of memory also determines the amount of virtual CPU

available to a function. Yet, there is no clear information indicating the CPU/Memory

ratio.

It is also important to list the detailed specification of the Kafka cluster as it is a core

component of mass comm’s architecture. We deployed a MSK cluster of kafka.m5.large

type and it consists of 3 brokers. Table 5.2 shows the specifications of type m5.large.

Processor type Intel Xeon Platinum 8175
Clock speed (GHz) 3.1
Number of vCPU 2
Memory (GiB) 8
Network bandwidth (Gbps) 10

Table 5.2: Specification of AWS m5.large MSK instances.

It is apparent that the performance of the Opensearch instance will significantly influence

the overall performance of mass comm since there are frequent communication between

the lambda functions and the Opensearch instance. The specification of the Opensearch

deployment, which is type t3.small.search, can be found in Table 5.3.
1https://aws.amazon.com/eks/
2https://aws.amazon.com/ec2/
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Processor type Intel Skylake E5 2686 v5
Clock speed (GHz) 3.1
Number of vCPU 2
Memory (GiB) 2
Network bandwidth (Gbps) 5

Table 5.3: Specification of AWS t3.small Opensearch instances.

5.3 Experiment Results

Figure 5.1 shows the average process time for vg-monolith and mass comm to send only

one push notification, which is the latency test. In our first test run, the result from

mass comm is astonishingly high, which is around 20,000 milliseconds. In contrast, the

process time from vg-monolith is significantly lower, around 2,000 milliseconds. However,

when running the test again immediately after the first run, the result looks satisfying,

only around 1,000 milliseconds. Later we found out this is because of the cold start

latency of AWS lambda(48). When AWS lambda service receives a request but there is

no ready lambda execution environment ready, the service will first prepare one, which

includes downloading the function code uploaded by users and allocating an environment

with memory and runtime. Once the execution environment is ready, the user-provided

function code will be executed. The preparation of execution environment is also called

"cold start". After finishing the first execution, the execution environment will be preserved

for a non-deterministic period of time. If another request arrives in this time window, the

execution environment will be reused, hence skipping the preparation steps. This is called

"warm start".

As a result, we sampled the process time for mass comm with cold start and without

cold start. The execution time without cold start is nearly half the execution time of vg-

monolith. Meanwhile, the cold start latency can heavily defect mass comm’s performance.

In Figure 5.2, the experiment result of sending multiple push notifications, the scalability

test, is shown. The test results from mass comm are all sampled without cold start latency.

We were only able to send out fewer than 100,000 push notifications from vg-monolith due

to SQL errors occurring when attempting to send notifications to 100,000 users. These

errors were caused by the SQL statements being too long.

While vg-monolith performed well when sending 100 and 1,000 push notifications, its
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Figure 5.1: Average process time to send 1 push notification

performance degrades significantly when sending 10,000 push notifications. In contrast,

mass comm only exhibits performance degradation when sending to 1,000,000 users. Fur-

thermore, the performance of mass comm remains unaffected regardless of the number of

notifications sent, as long as it is below 100,000.
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Figure 5.2: Average process time to send multiple push notification
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Discussion

6.1 Reflection on Experiment Results

The result of the performance experiment is satisfying and meets the expectation. Mass

comm shows better scalability in the experiment while vg-monolith is not even able to

process such high volume of work. The process time to send one push notification from

mass comm is surprisingly low. We expected vg-monolith would perform slightly better

than mass comm in this test because everything happens in a shared memory context for

vg-monolith. On the other hand, the architecture of mass comm is fully distributed. The

cross-network communication is more frequent throughout the execution in mass comm,

which could potentially harm the performance. However, the experiment result shows that

this is not the case. And this stands as a strong testimony for the low-latency nature of

EDA.

The results from the scalability tests also did not surprise us. Mass comm was able to stay

uneffected when the compute load increased, due to the auto-scaling mechanism of AWS

lambda(49). Additionally, we enabled message batching for each Lambda function. With

this configuration, a single Lambda execution can process nearly 1,000 Kafka events, which

explains why the execution time increased only marginally when the load increased from

100 to 10,000. However, when the compute load reached 1,000,000, mass comm experienced

a significant delay. In-depth monitoring revealed that this delay was due to the limited

Kafka event throughput of each Lambda function. If the producer of Kafka events is not

generating events as quickly as the consumer processes them, the AWS Lambda service will

not instantiate more execution environments, as the events are consumed without delay.
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We believe that this bottleneck in event production is due to network latency and is not

resolvable. This is supported by a small experiment we conducted (see Figure 6.1). When

we sent the same 100 Kafka events, all serialized with an AVRO schema, to both a local

Kafka cluster and our test MSK cluster, the process times were significantly different. And

the process time of sending to MSK cluster matches the process time we observed in the

lambda function logs.

Figure 6.1: Average process time to send 100 Kafka events

6.2 Future Works

6.2.1 Impact of Lambda Function Cold Start

As shown in Figure 5.1, the cold start delay of lambda functions is more than 10 times

higher than the actual execution time. This latency can drastically defect user experience
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as taking 18 seconds to send 1 push notification is not acceptable. To tackle this issue, we

will have to explore the provisioned concurrency setting(49) offered by AWS. By setting the

number of provisioned concurrency for a lambda function, AWS lambda service guarantees

that there will always be the same number of lambda execution environments available for

that function. Therefore, cold start latency is eliminated for certain amount of requests.

However, setting provisioned concurrency also limits the maximum concurrency for other

lambda functions. This is because all the lambda functions deployed under the same AWS

account share the same concurrency pool, this number is usually 1,000. When setting

certain amount of concurrency for one function, for example, 400, all the other function

can only use the remainder concurrency, which is only 600. As a result, the traffic pattern

for each lambda function should be carefully studied before setting this number.

6.2.2 Limitations of ksqlDB

Originally, the Postgres database was not part of the whole architecture of mass comm.

Data persistent can be handled by Kafka by adjusting its configuration(50) to permanently

store the data in some certain topics. However, the Postgres database is still needed due

to some limitations of ksqlDB.

The ideal implementation of the metrics feature is to make the queries directly from Met-

rics Handler lambda function to tables like pushnotification_table_minute in ksqlDB.

The problem is, when querying metrics with one or more filters (club_id and type) miss-

ing, the data should be aggregated by using GROUP BY keyword because each record in

the table is bounded by all the filters. Unfortunately, this is not possible because pull

queries do not support JOIN, PARTITION BY, GROUP BY and WINDOW clauses(51). The first

instinct to solve this problem is to use push queries instead of pull queries. But this would

require setting up a HTTP streaming connection between Metrics Handler and the user

because push queries can only be terminated manually, which will spawn tow more prob-

lems. Firstly, the timing of terminating the push query is uncertain and varies as the

amount of data grows. The purpose of the Metrics Handler is to return a snapshot of

the current metrics. Terminating the query immaturely would damage the integrity of the

result. Secondly, even if the decision of termination is given to the users of mass comm,

it is still not viable. As of the current date (March, 2024), AWS Lambda only supports

returning stream responses when using Javascript(52). However, there are some certain

python libraries from Virtuagym that have to be used. Another workaround for this issue
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we discovered requires to create two more ksql queries for each time unit metric. This was

not accepted because it would become not scaleble running too many queries increases the

workload of ksqlDB.

Another limitation of ksqlDB is its WINDOWSTART pseudo column. The original queries

used to create ksql tables leverages the powerful window grouping feature(53) offered by

ksqlDB. By doing so, there is no need to calculate the window start like timestamp - timestamp % 60000

and do the grouping manually. Instead, it can be replaced by WINDOW TUMBLING (SIZE 1 MINUTE).

And this creates a pseudo column WINDOWSTART. However, the WINDOWSTART cannot be used

in the pk.fields when creating the connector. See Figure 7.1 for the errors. Not hav-

ing the starting timestamp of window will cause the records in the database table not

grouped by the timestamp, which leads to fragmented data. Due to this reason, we have

to manually calculate window start and group the data.

As a result, exploring other solutions like Apache Flink is considered one of the future

plans if applicable.

6.2.3 Exploration of OpenSearch Serverless

AWS OpenSearch offers a serverless solution(54) that provides better scalability. By switch-

ing into serverless, the OpenSearch cluster will only consume the minimal resources when

there is few or no incoming requests. This on-demand scaling can therefore enable pay-as-

you-go pricing and potentially reduce financial costs. However, it was not adopted in the

first release into the production. This is because we were not certain how the traffic pattern

of mass comm will be. Since OpenSearch Serverless requires a minimal of 2 OpenSearch

Compute Units (OCU), plus the amount of storage necessary is around 1 TB, the minimal

cost of OpenSearch Serverless is 750 USD per month. While the provisioned OpenSearch

can be cheaper (435 USD per month) even if using c6g.2xlarge (8 vCPUs, 16 GB memory)

nodes. Hence, transitioning to OpenSearch Serverless can be considered once the traffic

pattern is confirmed, and if OpenSearch Serverless demonstrates greater cost-effectiveness.
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Conclusion

This thesis presented the Mass Communication System, which is a highly scalable, event-

driven data processing system aims to provide reliable push notification and email delivery

and real-time metrics. The author extend the prototype, which only includes the adap-

tation of Apache Kafka and ksqlDB, and conducted further experiments to validate the

concreteness of the design.

In Chapter2, the underlying technologies of mass comm are introduced. In addition, we

also give the rationals for choosing those technologies. mass comm’s Event-Driven Archi-

tecture design consists of the following components: Apache Kafka, a distributed, highly

scalable message broker; Apache Avro, the message serialization technique that boost the

overall performance; Schema Registry, a schema management component; Change Data

Capture, a reliable solution for data synchronization; and ksqlDB, a powerful tool enables

real-time stream data processing based on Kafka. Furthermore, there are additional tech-

nologies that, while not part of the Event-Driven Architecture (EDA), can enhance the

performance and scalability of mass comm, such as Serverless Computing, OpenSearch,

and Amazon SNS. Besides that, we illustrate the depth of our decision-making process by

comparing the technologies we selected with alternative options. In Chapter 3, we provide

insights on multiple related works to see how our work distinguish from others.

The detailed design and implementation of mass comm are shown, as well as how ksqlDB

is utilized to process real-time stream data. And finally, experiments compares vg-monolith,

which is the legacy system responsible for message delivery, and mass comm to demonstrate

the performance impact of transitioning from a monolithic architecture to a distributed
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7. CONCLUSION

Event-Driven Architecture. The overall performance of mass comm suppress vg-monolith

not only in the latency test but also the scalability test. As a result, we can answer our

research questions as follow:

• Does mass comm maintain low latency as expected from an EDA?

The results of the latency test, which compares the process time to send out only

1 push notification, shows that the latency of mass comm is even lower than vg-

monolith. Therefore, we conclude the low latency characteristic persist even though

the execution is scattered into different components that communicate over the net-

work.

• Does mass comm possess high scalability, which is necessary to emit sig-

nificant amount of messages, such as 100,000 and 1,000,000.

From the results of the scalability test, we can see that mass comm is highly scal-

able even when the workload is around 100,000. The performance degradation only

appears when the workload reaches 1,000,000. Thus, we conclude that mass comm

has high scalability.

However, mass comm is not perfect as we found certain limitations in ksqlDB. Besides

that, we list future works that can further complete our research, such as in-depth study

for AWS lambda cold start issue, searching for viable alternatives of ksqlDB and exploring

AWS OpenSearch Serverless.

All in all, we deem the EDA to be an ideal solution in terms of distributed system

design. The overall performance and scalability is significantly enhanced after adopting

EDA as shown in our experiment results. The Mass Communication System represents a

significant advancement in Virtuagym’s infrastructure, showcasing the benefits of modern

architectural patterns and technologies.
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Appendix

Figure 7.1: The connector error when using WINDOWSTART. The TIMESTAMP is created
by SELECT ... WINDOWSTART as TIMESTAMP ....
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