
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Deep Learning for Neutrino Particle
Detection using PointNet

Author: Shruti Rao (2636454)

1st supervisor: Dr. Adam Belloum
2nd supervisor: Dr. Ben van Werkhoven (Netherlands eScience Center)
2nd reader: Dr. Ronald Bruijn

A thesis submitted in fulfilment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

December 7, 2020

Abstract

Particle physics involves examination of sub-atomic particles and their interac-

tions. The main challenge in this field often lies in the separation of background

noise from event signals. Most neural networks in the field use CNNs for par-

ticle classification. But this often leads to loss of information when converting

data to images. This thesis examines the application of PointNet - a 3D classi-

fication network for KM3NeT neutrino data. The thesis has a two-fold interest.

First, it wishes to investigate the role of 3D deep learning in neutrino identifica-

tion. Next, it wishes to apply the network on KM3NeT data to save neutrino

information while discarding background noise. The data is split into three

datasets and trained individually. Feature engineering is performed and the

resulting point clouds are converted to 3D meshes. A majority voting ensemble

technique is used to combine predictions from the three models. The network

showed promising results with a 95% recall for the positive class and perfect

precision. The model also demonstrated perfect recall for the noise class. Being

the first known work of its kind, results from the thesis indicate PointNet to

be a viable methodology for future neutrino research.

Keywords: PointNet, neutrino detection, classification, 3D deep learning,

KM3NeT

Acknowledgements

I would like to thank Dr. Adam Belloum and Dr. Ben van Werkhoven for intro-

ducing me to the project topic and ensuring its finalisation. I would especially

like to thank Dr. Belloum for his constant guidance and advice throughout the

course of the thesis. Further, I would like to thank Dr. Roel Aaij, Dr. Ronald

Bruin and Brían Ó Fearraigh from Nikhef for assisting with the Physics-based

technicalities of the topic. Also, I would like to acknowledge Dr. Aaij’s assis-

tance with accessing the Viltstift AMD GPUs, that allowed for rapid experi-

mentation. Finally, I would like to thank my co-worker Arumoy Shome for the

exchange of ideas and discussions that enriched the thesis.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Background . 2

1.1.1 Neutrinos . 2

1.1.2 Neural Networks in Neutrino Physics 3

1.2 KM3NeT . 4

1.2.1 Event Triggers . 4

1.2.2 GPU Pipeline . 5

1.3 Research Questions . 5

1.4 Research Outcomes . 7

2 Relevant Literature Study 8

2.1 Feed-Forward Networks . 8

2.2 Convolutional Neural Networks (CNNs) . 9

2.3 Graph Neural Networks (GNNs) . 11

3 Relevant Concepts 13

3.1 Properties of Input Point Sets . 13

3.2 PointNet Architecture . 14

3.2.1 Permutation Invariance . 14

3.2.2 Transformation Invariance . 15

4 Data Generation and Exploration 17

4.1 Noise Generation . 17

4.2 Event Hits Generation . 18

4.3 Data Combination . 18

ii

CONTENTS

4.4 Key Attributes . 19

4.5 Visual Analysis . 20

5 The Pipeline 25

5.1 Generation of Point Clouds . 25

5.2 Feature Engineering . 27

5.3 3D Mesh Generation . 33

5.4 PointNet . 35

5.4.1 PointNet Transformations . 35

6 Evaluation Methodology 39

6.1 Training and Testing Data . 40

6.2 Model Specifications . 41

6.3 Ensemble Methods for Results . 42

7 Classification Results 44

7.1 Dataset 1: x, y, time . 45

7.2 Dataset 2: x, z, time . 46

7.3 Dataset 3: y, z, time . 47

7.4 Majority Voting Ensemble . 48

7.5 Comparison Against L1 Trigger . 50

7.6 Other Performance Metrics . 51

7.7 Analysis . 52

8 Additional Research 54

8.1 Alternate Pipeline: 3D Points-based PointNet 54

8.2 Alternate Pipeline: 4D PointNet . 56

8.3 Regression Analysis for Energy Inference . 56

8.3.1 Data Preparation . 57

8.3.2 Decision Trees Regressor . 60

8.3.3 Random Forest Bootstrapping Regressor 62

8.3.4 Regression Analysis . 63

8.4 Summary . 63

9 Limitations and Recommendations 65

10 Conclusion 67

iii

CONTENTS

References 76

iv

List of Figures

3.1 PointNet Architecture for Classification and Segmentation (1). mlp indi-

cates multi-layer perceptron; numbers in brackets are the layer sizes. 14

3.2 Symmetric Function with Max Pool Applied to Global Features (1) 15

4.1 Scatter Plot of Mean Time for All Event Hits 19

4.2 Correlation Heatmap Between Variables . 20

4.3 Count of Total Points per Timeslice . 21

4.4 Comparing Count of Hits and Noise Between Timeslices 22

4.5 Distribution of Noise and Event Hits in Timeslice 615 23

5.2 Point Cloud of the Largest Event Timeslice 27

5.3 Point Cloud of the Largest Noise Timeslice 28

5.4 Demonstration of the Principle of Radius-Based Outlier Removal on A Set

of Points . 29

5.5 Normals computed for a Timeslice with Nearest Neighbours Specified as 10 29

5.6 Normals computed for a Timeslice with Nearest Neighbours Specified as 300 30

5.7 Result of Radius-Based Outlier Detection on Timeslice with Only Noise . . 31

5.16 KM3NeT Pipeline Components . 38

6.1 Required Directory Structure for PointNet 39

6.3 3D Mesh of Timeslice with 39 Event Hits 41

6.4 Loss Plotted for 200 Training Epochs . 41

7.1 x, y, time: Classification Plots . 46

7.2 x, z, time: Classification Plots . 47

7.3 y, z, time: Classification Plots . 48

7.4 Hard Voting Ensemble Results . 49

7.5 Soft Voting Ensemble Results . 50

v

LIST OF FIGURES

7.6 Confusion Matrix From L1 Trigger to Testing Data 50

7.7 Combined Execution Time for 3 Data sets for Each Stage in Pre-Processing

Pipeline for the three datasets . 51

8.3 Number of Energy Events Per Timeslice . 57

8.4 Correlation Heatmap of the Events Dataset 58

8.5 Density and Probability Plot . 59

8.10 Alternate Pipeline I: 3D Points-based PointNet 64

8.11 Alternate Pipeline II: 4D PointNet . 64

10.1 The Complete Process for KM3NeT Timeslice Classification 69

10.2 Classification Metrics: Model without Feature Engineering 75

vi

List of Tables

4.1 KM3NeT Data Attributes and Description 20

6.1 Final Model Parameters Used for Training on KM3NeT Data 42

7.1 Accuracy Scores . 45

7.2 x, y, time: Classification Report for class_0 and class_1 45

7.3 x, z, time: Classification Report for class_0 and class_1 46

7.4 y, z, time: Classification Report for class_0 and class_1 48

7.5 Hard Voting: Classification Report for class_0 and class_1 49

7.6 Soft Voting: Classification Report for class_0 and class_1 49

7.7 Energy Metrics and Carbon Footprint for PointNet 52

8.1 Correlation Coefficients: energy with pos_x, pos_y, pos_z and time . . . 58

8.2 Decision Tree Regression Metrics . 61

8.3 Random Forest (Bootstrap Aggregation) Metrics 62

10.1 No Feature Engineering: Classification Report for class_0 and class_1 . . 74

vii

1

Introduction

Physics has accounted for many fundamental properties of the universe. Yet, several ques-

tions regarding the elementary constituents of matter remain unanswered. For instance, it

is well known that when neutron stars collide, they produce supermassive stars or black

holes (2). However, there is not much information on what the cores of such stars or black

holes comprise of. Similarly, it has also been established that majority of the universe is

comprised of dark matter, with little indication as to what dark matter really constitutes

(3). What is however known is that all of these phenomena have one particle in common

- the neutrino (2). Neutrinos are elusive, weakly interacting particles that were discovered

first by Pauli in the 1930s and the only known particle making up dark matter (4, 5). Un-

derstanding neutrinos has become increasingly significant for researchers in recent times

as it represents much of the unknown universe. Experiments are being conducted to un-

derstand the mass of neutrinos, reasons for their oscillation, their ability to change forms,

and the role they play in the birth and continuum of the universe (6).

With simultaneous advancement in hardware and computing power, the ability to detect

and understand neutrinos has drastically increased (4, 5, 7, 8, 9, 10). Large particle

accelerators are typical in particle physics experiments whereby protons and anti-protons

are collided at high speeds to try to recreate neutrino particles. Through this process,

petabytes of data are often produced and have to be analysed for signs of tracks, rings,

jets and showers associated with neutrino interactions (11). These experiments so far have

made use of physics algorithms that have worked well in detecting particles to a certain

degree. However, these techniques fall short when it comes to identifying new particles

or studying previously unknown behaviour that has not been defined by the algorithm

parameters (12). Traditional algorithms are also unable to keep up with large volumes of

1

1. INTRODUCTION

rapidly changing, high dimensional data. Thus, reliance on such algorithms have limited

the potential for new discoveries (12).

On the other hand, Neural Networks (NNs) have faced several cycles of hype over the

past decade or so. Early attempts at incorporating NNs were often unsuccessful due to

limited understanding, large computation hours, hardware limitations, and lack of powerful

architectures (13). Early applications that were developed were highly sensitive to errors

and data quality (13). Due to these reasons, Neural Networks were not a favoured solution.

But, recent advances in computing led to better storage of data, faster execution times

and improved error handling. These factors directly contributed to enabling real-time

processing of data. Also, since storage of large datasets was now possible, networks could

be trained with larger datasets. Additionally, general theoretical research was advanced

to address the concept of NNs being a black-box. Advances in computational theory

led to development of powerful learning algorithms, optimisation techniques and robust

architectures (14). These factors combined led to new interest in application of NNs to

complicated problems, including those in particle physics (12).

1.1 Background

In order to understand the motivation behind the work done by this thesis and ongoing

research, it is essential to understand the fundamental properties of neutrinos. It is also

important to examine some significant existing applications of Neural Networks in working

detectors. These can help identify scope for improvement for this thesis and for future

research.

1.1.1 Neutrinos

Neutrinos are fundamental particles of the universe and quite different in nature from

other commonly known particles. They carry no charge, are extremely small in mass

and travel through matter undetected (4). Neutrinos come in three types (flavours) and

can change between types and masses (4). On Earth, neutrinos are produced by nuclear

reactors, natural radioactive changes in the atmosphere and particle accelerators. The Sun

produces neutrinos via nuclear fission that occurs in its core. They are also generated from

the births, deaths and collisions of stars and supernovae explosions (5).

Detecting neutrinos are extremely hard because they rarely interact. Around a trillion

neutrinos pass through the Earth every second yet, approximately only one neutrino reacts

with matter on Earth, once a day (7, 15). A neutrino travelling near the nucleus of an

2

1.1 Background

atom emits weak bosons (W and Z type) (16). These in turn react with the nucleus of

another atom to produce a multitude of particles, including charged particles which can be

detected. However, the probability of the weak bosons hitting a nucleus of another atom

is extremely small. This is because weak bosons have a very short lifetime of 1 × 10−27

seconds and travel a very short distance of less than 0.001 of the size of a proton (16, 17, 18).

These two reasons make it very hard for charged particles to be produced and in turn for

neutrinos to be detected.

There are a few ways of detecting neutrinos, with under-water detectors being most

popular. In water, neutrino particles travel undisturbed and may travel faster than light in

that medium. They may react with matter particles in water and create a charged lepton

that produces a light known as Cherenkov light. These flashes of light are detected by

photomultiplier (PMT) tubes that can infer direction, energy and flavour of the neutrino

(17). Super Kamiokande is a water based detector that uses Cherenkov light to detect

neutrinos (19). IceCube is another experiment located in the South Pole that uses a cubic

kilometre of ice embedded with PMT tubes to detect neutrino events (9). MiniBooNE

detector uses pure mineral oil that allows low energy muons and protons, invisible in

water, to be detected (20).

Neutrinos are important because understanding their origin can help resolve many physics

unknowns. Neutrinos could be used to probe and examine matter that present radiation

cannot pass through. Since they travel through space practically unaffected, physicists

believe that neutrinos can help learn about galactic cores and supernovae.

1.1.2 Neural Networks in Neutrino Physics

Neural Networks were first acknowledged in physics around 1988, in the field of particle

physics (21). Particle physics comprises the study of the fundamental building blocks of

nature. It largely involves low-level pattern recognition and physics process determination.

According to Denby (1999), low-level pattern recognition tasks include finding tracks made

by particles and process determination encompasses obtaining properties such as spatial

topology and energy emissions of particles. Studies of such processes require work to be

done either in real-time or offline. Denby (1999) described particle physics processes to

be characterised by large magnitudes of background noise with small, rarer occurrences of

real events at any given point in time (21).

Denby (1999) found Neural Networks in particle physics that have been used in both

real-time and offline applications. Overall, NNs have had challenges being recognised as a

statistical tool within the community of particle research. The main challenge in particle

3

1. INTRODUCTION

physics lies in the fact that such experiments often have to deal with new and unknown

phenomena. NNs in such instances have to be developed based on unknown, and guessed

parameters. Models trained on such parameters then further reflect these unknowns and

inaccuracies (21).

Despite these accepted fallacies, there are a few large-scale detector experiments that

have incorporated Neural Networks. Fermilab has a muon trigger that applies low-level

pattern recognition techniques (17). Fermilab also uses NNs to analyse proton-anti-proton

collisions and measures top-quarks and lepto-quarks (17). The Hera accelerator has a

prototype experiment that studies momentum from colliding particles (22) and a secondary

experiment called ZEUS that uses a form of feedforward network to identify deeply inelastic

neutral current events (23). The CMS experiment at the Large Hadron Collider (LHC)

uses a neural network based trigger to identify electrons from protons (24).

1.2 KM3NeT

KM3NeT (Cubic Kilometre Neutrino Telescope) is a next generation neutrino telescope

project, currently being constructed under the Mediterranean Sea 1. The research unit

comprises two main telescopes - the ARCA (Astroparticle Research with Cosmics in the

Abyss) and the ORCA (Oscillation Research with Cosmics in the Abyss) (25). The ARCA

telescope is to be used for extraterrestrial neutrino particles originating from the likes of

supernovae or colliding stars (25). The ORCA telescope will be used to examine neutrinos

travelling through the Earth’s atmosphere (25). KM3NeT is another example of the under-

water detectors discussed in Section 1.1.1, and relies on optical sensors to detect Cherenkov

light (25). These highly sensitive photomultiplier tubes also acquire a significant amount

of noise generated by other background factors, mainly Potassium-40 decay. The detector

therefore records all photon particles as hits and solutions are in place to try and isolate

relevant hits from noise hits.

1.2.1 Event Triggers

Data acquisition for the offshore KM3NeT detectors is based on a preset threshold, whereby

all analogue signals that exceed the threshold are sent to shore. This is known as the level-

zero (L0) filter. Next, event based level-one (L1) trigger is employed to filter out relevant

events. Specifically, the occurrence of two or more L0 hits within a certain time and spatial

distance are considered significant for L1 (25).
1https://www.km3net.org/

4

1.3 Research Questions

1.2.2 GPU Pipeline

A separate GPU-based data processing pipeline was proposed as a viable solution to the

event-based triggers by Karas (2019). The pipeline comprises of three components. The

first component of the pipeline implements hits correlation based on closeness of hits in time

and space, given a threshold. The second phase of the pipeline uses the correlation from

the previous component to cluster related hits together. The final phase of the pipeline

then classifies communities into significant and insignificant ones, based on the presence of

neutrino events (26).

1.3 Research Questions

Typically, particle physics research relies on building physics-derived algorithms to detect

neutrinos. Previously described event triggers and the GPU pipeline for the KM3NeT are

two such examples (Sec: 1.2). While these algorithms are physics driven, they may fall

short when trying to capture complex information from imbalanced, skewed data. This

could be due to three main reasons:

1. Often, physics algorithms make use of theoretical parameters and criterion that may

not be optimised across varied datasets.

2. Algorithms designed to work on smaller, lower dimensional data may not be able to

model increasingly higher dimensional data without suffering from information loss.

3. Several physics algorithms are highly customised and specific to the problem or data

at hand, lacking in ability to be generalised (21).

Examination of literature on the topic has shown popularity of Convolutional Neural

Networks (CNNs) for neutrino research. This also faces drawbacks, mainly from informa-

tion loss and high compute times. Converting detector data to images and learning to

detect neutrinos from them will lead to loss of information that may have been useful. It

is imperative to understand if existing methodologies such as physics-based triggers and

CNNs can be replaced by new models and data representations. Point clouds are the sim-

plest representation of 3D geometric objects and could be one such means to represent

neutrino data in a novel manner. PointNet, a point cloud specific architecture could be

used to train on such data. The following research questions were formulated to address

the feasibility of using PointNet for neutrino identification amidst background noise:

5

1. INTRODUCTION

RQ1.0 Can PointNet, a geometric neural network architecture be trained to identify times-

lices that contain neutrino event hits from timeslices that contain only background

noise?

The KM3NeT detector gathers large volumes of data in real-time and sends it on-

shore in chunks of time (timeslices) (25). It would be computationally infeasible to

store all of this data when most of it may be irrelevant to research. Therefore, an

effective method is required to identify timeslices that contain neutrino hits so that

only they may be saved and the rest gets discarded.

RQ1.1 Can PointNet achieve a Recall score of greater than 0.9 for identifying timeslices

with event hits?

KM3NeT stakeholders defined 90% recall score for the model, which is the ability of

the algorithm to learn from the data. To provide valuable contributions, PointNet

would have to score 90% or higher for Recall.

RQ2.0 Can the KM3NeT dataset be effectively represented using 3D meshes?

PointNet typically learns from 3D meshes while the KM3NeT data comprises of x,

y, z coordinates, time and metadata. If these attributes can be modelled to form a

surface-based 3D mesh, it could serve as a suitable training data for PointNet as a

3D mesh stores more information about geometry than just 3D coordinates.

RQ2.1 Which meshing algorithm would be most suitable for representing the data?

The dataset is challenging as it does not contain any discerning features. Event hits

are characterised by how close they occur in time and space, compared to noise hits.

Yet this closeness is not very prominent. Conversion of points to 3D meshes will

result transformation of data. It is essential to ensure that the transformation is

such that much of the valuable information regarding event hits is maintained, if not

enhanced. An ideal algorithm would allow minute differences amongst event hits to

stand out more than noise.

RQ3.0 Can PointNet be extended to obtain energy properties from neutrino events?

Inferring energy from neutrino events can help identify and study the processes that

formed it. PointNet is a classification specific architecture but as it learns from both

local and global structure of point clouds, it may be able solve other tasks related to

point cloud recognition including regression (1).

6

1.4 Research Outcomes

1.4 Research Outcomes

With research in particle physics turning to AI, a rigorous assessment of state-of-the-art

networks is required to identify those best for the task at hand. This thesis aims to

provide an in-depth investigation of one such state-of-the-art neural network - PointNet.

This thesis contributes to the current state of knowledge by assessing the potential of 3D

Neural Networks for research in neutrinos. In order to achieve this goal, an ensemble

of data from the KM3NeT ORCA detectors comprising of neutrino hits and noise are

examined. Noise from the data is minimised using feature engineering, converted to 3D

meshes and trained with PointNet. The thesis also briefly explores the validity of PointNet

with 3D and 4D coordinate data. Finally, the thesis lays the foundation for energy inference

for KM3NeT data using non-linear regression techniques. At present, there are no known

studies that use 3D deep learning to identify neutrinos amidst background noise. Moreover,

no known studies attempt to represent neutrino data as 3D meshes.

Results from this thesis can not only be used by the KM3NeT project, but also by

physicists interested in applying their own data to PointNet. It could also be used by deep

learning experts to understand the gaps between what particle physics needs and what

Neural Networks can deliver, and work on developing more streamlined solutions for the

community.

The thesis first addresses concepts relevant to 3D point-set based learning and PointNet

architecture in Chapter 3. Next, Chapter 4 describes data generation and insights gained

from dataset exploration. Chapter 5 discusses individual components of the pipeline, Chap-

ter 6 evaluates them and Chapter 7 analyses obtained results. Chapter 8 summarises addi-

tional research on an alternative PointNet pipeline with 3D and 4D coordinate data. This

Chapter also briefly discusses introductory work on energy inference using regression tech-

niques. The thesis discusses limitations and recommendations in Chapter 9 and concludes

by re-addressing the research questions in Chapter 10.

7

2

Relevant Literature Study

Particle identification and categorisation is important in particle physics. Common practice

for characterising such particles includes reconstruction of clusters, tracks, jets, rings and

showers associated with particle interactions (27). Compared to several other domains that

have seen significant adoption of deep learning, particle physics has remained relatively

conservative in adopting deep learning models. This chapter summarises the few neutrino

studies and experiments based on the type of network employed. Observations from these

efforts serve as points of study for this thesis.

2.1 Feed-Forward Networks

Szadkowski et al. (2014) proposed a three-layer Neural Network (NN) to perform pattern

recognition and classify proton old showers and neutrino young showers. Amidst back-

ground noise of cosmic rays, detecting the very infrequently occurring neutrino showers

has been the main challenge for the field. The NN was set up to identify both young and

old showers using simulated Monte Carlo events. The network was trained on 245,760 dif-

ferent patterns grouped into 160 events and presented extremely promising results. Noise

was perfectly rejected and the NN was able to identify 161 patterns out of the 160, with

a single false-positive. Thus on simulated data, the authors showed the ability of the NN

to detect young showers with very low error rates (28). While Szadkowski et al. (2014)

presented the first known implementation of NNs on neutrino data, the paper faced a few

shortcomings. First, the paper did not indicate the rationale behind the selection of various

hyperparameters, network architecture and activation functions. Next, the paper did not

mention the nature of the test cases to indicate performance of the network across varied

test data. Finally, only error rates were discussed as a metric however, precision-recall

8

2.2 Convolutional Neural Networks (CNNs)

(PR) and Receiver Operating Characteristics (ROC) curves could have proved a better

measure of network performance in regard to the classification task it performed.

2.2 Convolutional Neural Networks (CNNs)

Detectors are often built to produce high-resolution images of particle movements and

interactions. Acciarri et al. (2016) used CNN architectures to reconstruct neutrino scat-

tering interactions in such images. They explored the use of CNNs for detector images

that were very information sparse and often empty. 22,000 events per type of particle were

used for training the CNN in batches. Both high and low-resolution images were provided

as separate demonstrations to mimic realistic scenarios. The authors combined two CNN

architectures - Faster-RCNN for particle detection, followed by AlexNet for particle clas-

sification (7). Results can be deemed quite promising as the authors noted the combined

network’s ability to distinguish track-like particles from shower particles very well. For

high-resolution images, track-like particles had 87.2% accuracy and shower-like particles

had 81.3% accuracy. For low-resolution images, the score was lower with 85.8% accuracy

for track-like images and 77.3% for shower-like images (7). Based on the accuracy scores,

it was concluded that there was reasonable localisation of both shower and track particles

for high and low resolution images. However, the authors did not report precision-recall

(PR) scores or the area under ROC curves that are imperative in classification scenarios.

Neutrino event classification experiments often also involve tagging and identification

of on-beam event images for a neutrino interaction. Acciarri et al. (2016) additionally

developed a methodology that identified neutrino interactions on single-plane images and

cropped them around the interaction region. They then applied the network described

in their previous work to classify particles in the cropped images (8). Acciarri et al.

(2016) defined two classes for the classification task - Monte Carlo neutrino events and

purely cosmic events and trained with InceptionResNet (8). The authors reported an 80%

accuracy score during training but reported lower validation scores of 78%. Acciarri et al.

(2016) additionally reported performance via selection efficiency for neutrino events to be

a positive 80.1%. They believed that this efficiency would improve if all three planes were

used instead of a single plane (8).

Acciarri et al. (2017) continued on their study from (8) by extending their work from

single-plane images to three-planes and combining it with optical detector data (29). High

definition input images of simulated neutrino images and cosmic images (as background)

were used. A new truncated network based on ResNet was designed. The authors discussed

9

2. RELEVANT LITERATURE STUDY

the compromise of having fewer layers learning fewer filters, but preserving resolution,

allowing for exposure to detailed features. Distribution of neutrino classification scores

showed a very good separation between the two types of events. The selection efficiency

improved to 85% (from 80.1% with one plane images) (29).

Image based detection and classification of neutrino particles were examined further

through means of different representations of data and architectures. Adams et al. (2018)

continued on the work of Acciari et al. (2016, 2017) by developing a Convolutional Neural

Network that could predict objects in image data at the pixel level (30). Adams et al.

(2018) trained U-ResNet, a deep semantic segmentation network via supervised learning.

First, they used transfer learning techniques by training the first half of the network on

the dataset from a previous work that contained single particle images (8). Then, they

developed a new loss factor called pixel-wise loss (PL) weighing factor. This factor was

multiplied by a single pixel’s loss contribution to the total loss of an image. Thus, complex

sections of the image obtained a higher weighted pixel loss, allowing the network to focus

it’s training on those regions. The process was monitored using the Incorrectly Classified

Pixel Fraction (ICPF) metric. The ICPF indicates the average value of incorrectly classified

pixel per image over all images on all events in a sample (31). The network was trained

on 100,000 images and then tested on 20,000 images. U-ResNet achieved an average ICPF

of 6.0 for electron neutrinos and 3.9 for muon neutrinos. They noted that U-ResNet

could classify pixels from low energy and simple topologies fairly well with mean ICPF

scores of 2.3 and 3.9 respectively. The authors additionally obtained real detector data

and compared the results of their network with those obtained by physicists. However,

physics methodology had a better, lower mean ICPF score of 1.8 for the electron samples

while the network scored a mean ICPF of 2.6 (30). The authors justified this difference

in performance to be due to lack of specialised physics determined features. Despite this,

the study lays foundation for a new methodology for training and examining data from a

new pixel level perspective.

Aurisano et al (2016) developed a technique called Convolutional Visual Network (CVN)

based on CNNs to reconstruct neutrino energy and flavour. The authors designed the net-

work to have two distinct views of the same image, rather than representing a single image

in multiple colour channels. The network was trained using mini-batches on 3.7 million

simulated neutrino events and tested on 1 million samples (27). To measure CVN’s perfor-

mance, it was first compared against existing metrics. Measurement-optimised efficiency

scores were obtained from existing physics metrics and compared against that of the CVN.

CVN scored an efficiency of 58% versus the existing 57% efficiency for muon neutrino

10

2.3 Graph Neural Networks (GNNs)

interactions. The authors felt that while the improvement was modest, it was still in the

positive direction. CVN however scored 40% efficiency over the pre-existing metric of 35%

for electron neutrinos. Additionally, the authors computed a Figure of Merit (FOM) to

assess the performance of signal identification over background noise for oscillation param-

eters. Overall, the CVN obtained a range of efficiency scores from 17.4% at the lowest to

66.4% at the highest for various parameters. The authors found the results quite promis-

ing since they performed minimal event reconstruction and found positive performance

with a single algorithm (27). Moreover, the CVN developed was used on atypical images,

specifically the readout of a calorimeter. This study therefore opened up the possibility of

using a different form data which might be extendable to other detectors as well

2.3 Graph Neural Networks (GNNs)

IceCube is a neutrino observatory at the South Pole that searches for high energy neutrino

events (32). It observes two classes of such events - neutrino interactions within the detec-

tor and high energy cosmic interactions in the upper atmosphere (32). Choma et al.(2018)

in their study on data from IceCube proposed that the irregular geometry of the detectors

could be modelled as a graph with vertices as sensors and edges as learned functions of the

sensors’ spatial coordinates. They stated large asymmetry between positive and negative

events to be the main challenge. The authors proposed the use of Graph Neural Networks

(GNNs) for this work. The authors considered muon neutrinos as positive signals and

the rest as background noise. As the background was much larger in terms of magni-

tude than the signal, a high rejection power was required. The GNN was initialised as a

fixed, weighted, directed graph. 25,250 events were generated as signal and 109,491 events

were generated as background. The performance of the classification algorithm was noted

against physics results and CNN scores (33). As per Choma et al. (2018), physics-derived

metrics reported 0.987 signal to noise ratio for events per year and CNN reported 0.937

signal-to-noise ratio. The GNNs showed clearly superior results by reporting 2.980 signal-

to-noise ratio for events per year. The GNN outperformed physics metrics by identifying

three times more positive events (33).

Based on studies discussed, many Neural Networks trained for neutrino detection are

variations of CNNs (12, 28, 34). Most of the problems discussed involved identification

of particles from background noise and then classification, often in the form of images

(7, 8). However, typical CNN architectures requires conversion of data to images, resulting

in significant volumes of data (1). Further, in trying to quantize data, several unwanted

11

2. RELEVANT LITERATURE STUDY

features (artefacts) may render on the images distorting results (1, 35). In order to avoid

such pitfalls, this thesis makes use of PointNet, a network that directly consumes point

clouds without requiring conversion to a regular input like 3D voxels (1). Due to the

varied nature of the datasets and questions being answered, different metrics got reported.

None of the studies reported Precision-Recall (PR) scores that are useful to understand

the learning abilities of classifiers (36). This thesis instead focuses on measuring recall,

especially for the positive (events) class and employs a combination of metrics to ensure

that any effects of class imbalance are mitigated.

12

3

Relevant Concepts

Point clouds are collections of points in space that represent geometric shapes in their sim-

plest forms, so data structures they are a set of unordered vectors of points (37). PointNet

expects its input points from Euclidean Space, hence this section addresses key concepts

pertaining to point sets in Rn. Understanding the properties of point sets is essential

in order to understand the suitability of KM3NeT data and the rationale behind data

preparation. This section also discusses key concepts underlying PointNet architecture.

3.1 Properties of Input Point Sets

Qi et al. (2017) identified three main properties that input point sets must follow.

1. Unordered: Point sets are unordered and so 3D input data accordingly must be

invariant to N ! permutations in the order that it is provided to the network.

2. Interaction among points: Point sets originating from a space with a distance

metric demonstrates meaningful relationship amongst neighbouring points. This will

allow PointNet to capture and learn local and global structures.

3. Invariant under transformations: Unordered point sets should be invariant to

transformations. Learned representations such as rotation or translation of input

data should remain unaffected by the applied transformations in terms of global

structures (1).

13

3. RELEVANT CONCEPTS

3.2 PointNet Architecture

According to Qi et al. (2017), PointNet can perform both classification and segmentation

tasks. This thesis only focuses on the classification network due to its relevance to the

research problem. Figure 3.1 shows an overview of the PointNet architecture. The classifi-

cation network accepts n points as input and applies input and feature transformations. A

shared multi-layer perceptron (MLP) is used to map points from the x, y, z dimensions

to 64 dimensions. This step is duplicated to then map points from 64 dimensions to 1024

dimensions. Next, point features are aggregated though max pooling to generate a global

features vector in R1024. Max pooling is a technique that is used to down-sample input

via sample discretization to a more abstract output (38). Finally, a MLP is used to map

global feature vector to k classification scores (1).

Figure 3.1: PointNet Architecture for Classification and Segmentation (1). mlp indicates
multi-layer perceptron; numbers in brackets are the layer sizes.

Feature and input transformations are significant to the architecture, and is additionally

described under permutation and transformation invariance.

3.2.1 Permutation Invariance

Point clouds are unstructured, numerical sets and invariant to permutations ie., for N

points, there are N ! valid permutations (section 3.1). Symmetric functions are therefore

used to make PointNet invariant to input permutations (1). Specifically, max pooling is

used when n input points are mapped to higher dimensional space and then used directly

for classification (1). This can be seen in Figure 3.2

14

3.2 PointNet Architecture

Figure 3.2: Symmetric Function with Max Pool Applied to Global Features (1)

3.2.2 Transformation Invariance

Point clouds must be invariant to certain geometric transformations (section 3.1). If point

clouds undergo transformation, then it is necessary that the classification labelling must

be invariant as well. To ensure that this is the case, input and feature transformation

sub-networks are used to provide normalisation to objects. T-Net - a regression network

is tasked with predicting a n×n transformation matrix.

(a) Input Transforma-
tion

(b) Feature Trans-
formation

Figure 3.3: Input and Feature Transforms within PointNet

For input transformations, n input points are represented as a vector and mapped to

the embedding spaces. Geometric transformation then becomes easy to apply and involves

matrix multiplying each point with a transformation matrix. Here, the T-Net predicts a

3×3 transformation matrix, which is then matrix multiplied with the n×3 input (Figure

3.3).

For feature transformation of the 64-dimensional embedding space, the corresponding

T-Net predicts a 64×64 transformation matrix (Figure 3.3). The increased number of

trainable parameters leads to the potential for overfitting and instability during training,

15

3. RELEVANT CONCEPTS

so a regularisation term is added to the loss function to constrain the feature matrix to be

close to the orthogonal matrix:

Lreg = ||I −AAT ||2F (3.1)

where A is the matrix predicted by the T-Net.

So, PointNet is capable of learning from unordered, raw point clouds as long as the

properties of point sets are maintained. This is relevant to the thesis and validated when

preparing training data. Additional transformation functions within the network further

ensure that the data respects invariance to permutations and transformations. These

concepts are used by this thesis in the upcoming pipeline to ensure absolute accordance

with rules governing point sets.

16

4

Data Generation and Exploration

Nikhef provided simulated data from three sources that were used to generate the complete

KM3NeT dataset - the K40 noise generator, HDF5 hits and events tables and a positions

file. This chapter describes the steps taken to combine noise and events data to produce the

complete dataset. The chapter then discusses the quality and properties of the complete

dataset by means of visual data exploration.

4.1 Noise Generation

Noise for the dataset was generated using the k40gen 1 package. k40gen is a standalone

background noise generator developed by Nikhef to generate a random array simulating

Potassium-40 decay underwater. An instance of the generator was created with two ran-

dom seeds - 21341 and 1245. 7000, 700, 70, and 0 were specified as the rates at which

single, double, triple, and quadruple hits were to be generated respectively. Noise hits

were generated from 0 nanoseconds (ns) till 100000000 ns. The ORCA (Oscillation Re-

search with Cosmics in the Abyss) counting scheme was also provided as a numbering

scheme for the photomultiplier (PMT) IDs within the Digital Optical Modules (DOMs).

The DAS-5 cluster 2 was used to install and generate the background noise array, to-

talling 5GB. The returned array contained information regarding time, DOM ID, PMT ID

and time-over-threshold for noise hits.

Additionally, the positions file (positions.detx) contained all the spatial positions cor-

responding to the noise hits from the k40gen array and had to be merged. Spatial positions

1https://gitlab.nikhef.nl/roelaaij/k40gen
2https://www.cs.vu.nl/das5/

17

4. DATA GENERATION AND EXPLORATION

from positions.detx were identified and mapped to the corresponding noise hits using

the following formula:

noise[pos_idx] = 31× (noise[dom_id]− 1) + noise[pmt_id]) (4.1)

Finally, a class label of 0 was also added for all hits to indicate noise for future classifi-

cation.

4.2 Event Hits Generation

Neutrino events data was stored in a HDF5 (Hierarchical Data Format version 5) file 1

consisting of an event hits table (mc_hits) and a corresponding event information ta-

ble (mc_info). mc_hits included information pertaining to the DOMs (dom_id), PMTs

(pmt_id), positions (pos_x, pos_y, pos_z) and directions (dir_x, dir_y, dir_z) of

event hits. It also contained time over threshold (tot) values and the time the hits were

registered (time). A class label of 1 was added to this data to indicate an event hit. Only

the mc_hits table was used for the classification project undertaken in this thesis.

4.3 Data Combination

Before the background noise and event hits data could be combined, a few preliminary

cleanup and validation measures were taken. First, it was noticed that the PMT IDs for

event hits were from 0 till 6417. This indicated that it followed a global numbering scheme,

while PMT IDs for noise hits had been generated using the ORCA numbering scheme. To

enforce uniformity, PMT IDs for event hits were set from 1 till 31:

pmt id = pmt id− 31× (dom id− 1) (4.2)

Next, time for some noise hits were negative, so these data points were deemed invalid

and deleted from the dataset. As both events and noise data were simulated, it was

important to ensure that the time values associated with event hits were not biased. To

check for such a bias, the mean time of occurrence for all event hits was calculated and

plotted for any evidence of hits clusters. Based on the evenly distributed scatter of points

in Figure 4.1, it was concluded that there were no biases in the data. Noise and event hits

were merged to form the complete KM3NeT dataset after negative time was deleted, PMT

IDs were adjusted and data validity was confirmed.
1https://www.hdfgroup.org/solutions/hdf5/

18

4.4 Key Attributes

Figure 4.1: Scatter Plot of Mean Time for All Event Hits

4.4 Key Attributes

The KM3NeT detector records and sends data in chunks (timeslices) for processing at the

offshore facility (25). The thesis’s main aim was to train a network that would classify

timeslices into those that contained only noise and those that contained event hits amidst

noise. Therefore, the dataset was sequentially binned into groups of 15000 ns and assigned

a number for identification. For example, timeslice 0 contained all hits that occurred

between 0 ns and 15000 ns. 15000 ns was used for binning as neutrino events typically

occur between 100 ns and 15000 ns (25). Selecting a value on the higher end of the range

allowed for fewer groups to be created and by extension, faster processing. The binning

resulted in a total of 6759 groups. The complete dataset was found to be 4GB in size, with

45,820,220 rows and 12 attributes, summarised in Table 4.1.

Domain knowledge from Nikhef indicated dom_id, pmt_id and direction of PMT tubes

(dir_x, dir_y, dir_z) to be metadata that could be ignored. Additionally, work by

Karas (2019) identified time-over-threshold (tot) to be insignificant to the classification

problem (26). The remaining attributes - spatial coordinates (pos_x, pos_y, pos_z),

time, label and timeslices (group) were identified as key variables for the remainder of

the classification project.

19

4. DATA GENERATION AND EXPLORATION

Attribute Description
dom_id [Unique ID for sensor module.]
pmt_id [Unique ID for photomultiplier (PMT) tubes within DOMs.]
pos_x, pos_y, pos_z [Spatial coordinates (in meters) of hit within the detector.]
dir_x, dir_y, dir_z [Direction of PMT tubes within DOMs to look for

Cherenkov Light.]
tot [Time-over-threshold (ToT) indicates the amount of light

transformed to charge which is interpreted as the length
of the square wave pulse over a given threshold (26).]

time [Time at which the hit was recorded.]
label [0 or 1 class label indicating whether hit is from noise or

event respectively.]
group [Timeslice numbers starting from 0 for the purpose

of identification.]

Table 4.1: KM3NeT Data Attributes and Description

Figure 4.2: Correlation Heatmap Between Variables

4.5 Visual Analysis

Python libraries were used to explore the quality of the dataset and gain further insight

on the key variables and the relationships that may exist between them. The dataset was

found to have no missing values or outliers. All hits occurred between 0 ns till 101591357

ns. The dataset showed severe imbalance between event hits and noise as, for every 1 event

20

4.5 Visual Analysis

hit, there were 93 noise hits. Finally, the correlation heatmap in Figure 4.2 indicated that

the key variables had no relevant relationship with each other. Significant variables were

further examined to identify existence of useful properties.

Timeslices (group):

Timeslice 0 was found to have the highest number of hits (12,454), all of which were noise.

Timeslice 615 contained the highest number of event hits (around 8500) with the lowest

noise-to-event hits ratio of 4:1. Figure 4.3 shows the distribution of number of points per

timeslice. Timeslice 0 had the highest occurrence of hits while some timeslices contained

very few hits. These timeslices were edge cases and were ignored for the rest of the project.

However, majority of the other timeslices contained between 6000 to 8000 hits, providing

a more or less consistent sample for the training.

Figure 4.3: Count of Total Points per Timeslice

In accordance with the classification task, timeslices were separated into those that

contained only noise and those that contained both event hits and noise. First, class

imbalance between event hits and noise within timeslices were visually examined. Figure

4.4a shows that most timeslices with both events and noise had between 0 to 250 event

hits. On the other hand, Figure 4.4b shows noise timeslices had around 7000 points on

average. The outliers in this Figure (4.4b) demonstrate a timeslice that had a significantly

large number of noise hits and timeslices towards the end that had comparatively fewer

noise hits. These anomalies could be attributed to the nature of the k40gen random noise

generator. Figure 4.4c and Figure 4.4d use kernel density estimation (KDE) to produce a

continuous density estimate using a Gaussian Kernel and provides an alternate visualisation

of the severe class imbalance by highlighting the densest regions (39).

21

4. DATA GENERATION AND EXPLORATION

(a) Count of Event Hits For Timeslices with
Both Noise and Events

(b) Count of Noise Hits For Timeslices with
Only Noise

(c) Kernel Density Estimation for Only Event
Hits

(d) Kernel Density Estimation for Only Noise
Hits

Figure 4.4: Comparing Count of Hits and Noise Between Timeslices

3D Spatial Coordinates (pos_x, pos_y, pos_z):

Figure 4.5 uses a "swarm" technique to show distribution of noise and event hits across

time for timeslice 615, the group with the highest incidence of event hits. The points are

non-overlapping and adjusted to better show distribution (39). Orange points indicate

that event hits occur in groups coinciding with neutrino events amidst the noise.

22

4.5 Visual Analysis

Figure 4.5: Distribution of Noise and Event Hits in Timeslice 615

Bi-variate plots in Figure 4.6 show the relationship between the x, y, z points for

timeslice 615. These 3D coordinates don’t give much information or patterns that may

indicate presence of event hits, confirming the need for time as part of the dataset.

(a) Scatter plot for pos_x
against pos_y

(b) Scatter plot for pos_x
against pos_z

(c) pos_y against pos_z

Figure 4.6: Bi-variate Plots Showing Relationship Between 3D Coordinates

Figure 4.7 shows an enhanced 3D render of timeslice 615 generated using MeshLab 1.

The timeslice is first visualised as x, y and time, then x, z and time and finally y, z, and

time. The three representations show no relevant differences between each other. However,

visual enhancements via MeshLab allow for event clusters to stand out, as indicated by

the bright clusters of points.

1https://www.meshlab.net/

23

4. DATA GENERATION AND EXPLORATION

(a) 3D Plot of x, y, time (b) 3D Plot of x, z, time (c) 3D Plot of y, z, time

Figure 4.7: 3D Plots Showing Combinations of x, y, z, time for Timeslice 615

Time (time)

Time plays a significant role in the identification of neutrino hits amidst noise. A swarm

plot of time against label was plotted for two events timeslices to note the relation between

time and type of hit (40). Figure 4.8 shows an even distribution of noise hits across time,

while event hits again form localised clusters.

(a) time and label for Timeslice 615 (b) time and label for Timeslice 1637

Figure 4.8: Swarm Plots Showing Relationship Between Time and Hit Labels

Based on the combined results from plots of spatial positions, time and label, it was

evident that a combination of these attributes would be required to obtain sufficient in-

formation on event hits. Further, the dataset had unrelated variables, lacked significant

patterns, and had a high density of points. It would be very likely that the network would

not be able to learn anything significant. Therefore, feature engineering may be required

to add new information to the dataset before training could occur.

24

5

The Pipeline

The design goal of the pipeline is to accept timeslices as input and output a 0 or 1 indicating

whether they need to be discarded or saved respectively. Two classes were identified:

class_0 comprised timeslices with just noise and class_1 included timeslices with event

and noise hits. Henceforth, the thesis refers to class_1 timeslices as event timeslices, but

they contain both noise and event hits.

Stakeholder knowledge and data exploration (Chapter 4) identified 6 key variables -

pos_x, pos_y, pos_z, time, group (timeslice) and label. Since neutrinos are identified

by both spatial and time differences between each other, an ideal dataset would contain

all four variables (25). However, generating a 4D mesh with time was not feasible, as the

process is complicated and relatively under-developed (41). Instead, time was combined

with spatial coordinates to create three permutations of the dataset - (x, y, time), (x, z,

time) and (y, z, time). The following chapter discusses each component of the pipeline

in detail. All three datasets were processed and transformed in the same manner, so details

described in the following pipeline are applicable to all three datasets.

5.1 Generation of Point Clouds

The first step in the pipeline was to build 3D point clouds for each timeslice and save them

as .xyz files. In order to do so, a few preliminary steps were undertaken. First, timeslices

were divided into two classes whereby one contained only noise and the other contained

both noise and event hits. Most timeslices with only noise had an average of 6500 hits per

timeslice, but there were a few timeslices that had a single noise hit. Likewise, timeslices

with event hits had an average of 6900 hits per timeslices, but some timeslices had only

3 event hits. Discussion with domain scientists indicated that such groups represented an

25

5. THE PIPELINE

unrealistic scenario. Therefore, they were excluded from the data as they would not be

able to provide a quality training sample.

Figure 5.1 shows class imbalance before and after selection of the largest timeslices per

class. It shows imbalance both across the noise and events class; and also within the events

class. Sub-figure 5.1a shows that the noise timeslices had fewer noise hits compared to the

noise hits in event timeslices. Moreover, within the event timeslices, there is significant

disparity between the number of noise and event hits. Sub-figure 5.1a indicates that the

class imbalance needed to be improved as it may affect training and bias the classifier

towards the majority class. Further, the entire dataset was not required for training. So,

in order to continue with a smaller, quality training data, the top 200 timeslices were taken

for each class. For the events class, timeslices were sorted in a descending order based on

the number of event hits they contained. The largest 200 of these timeslices were then

selected. Similarly, the top 200 noise timeslices were also selected.

(a) Count of Noise and Event Hits from All
Timeslices

(b) Count of Noise and Event Hits for 200
Noise and Event Timeslices

Figure 5.1: Class Imbalance Before and After Selection of Top 200 Timeslices Per Class

Sub-figure 5.1b shows the class imbalance after selecting the top timeslices. The noise

hits are now equal between the two classes. Further, there is some improvement between

the event and noise hits within the events class. This indicated that taking the largest

timeslices helped make the dataset more uniform and balanced for training.

Data for the 200 event timeslices were further observed. It was seen that there were a

total of 27,485,996 hits, of which only 489,906 were event hits. Positive hits formed only

1.78% of the data. The maximum number of hits a timeslice was 1692 and the smallest

number of hits in a timeslice was 487. On average, timeslices had around 700 event hits.

In contrast, these timeslices had 7000 noise hits on average. All timeslices were saved as

26

5.2 Feature Engineering

point clouds under their respective classes - class_0 comprising of noise point clouds and

class_1 comprising of event and noise point clouds.

5.2 Feature Engineering

Feature engineering is the process through which data can be transformed in a manner

that either brings new information to light or provides more structure to the data, making

learning easier for the network (42). Feature engineering was included in the pipeline due to

three main reasons.Visual data exploration (Section 4) revealed unrelated variables with no

significant patterns. Next, visual inspection of both point clouds and their corresponding

3D meshes showed lack of potential structure. Finally, preliminary results from training

on data without feature engineering showed the need for additional information (Appendix

10).

Figure 5.2: Point Cloud of the Largest Event Timeslice

Figure 5.2 shows a timeslice that contained the highest number of event hits. The point

cloud has three event regions highlighted in red that are very hard to identify. These

27

5. THE PIPELINE

regions were visualised under a highly zoomed perspective using MeshLab 1 and shows

very minimal differences between event hits and the surrounding noise (43). Figure 5.3

on the other hand shows a point cloud of the timeslice with the highest number of noise.

Based on the observed point clouds, it was decided that the data could be enhanced by

elimination of points. Certain noise hits could be identified as outliers and removed in

order for clusters of event hits to stand out more.

Figure 5.3: Point Cloud of the Largest Noise Timeslice

Removing outliers from point clouds are a common task and often manually removed

using point cloud processing software (43). Surface fitting-based methods are a popular

means of outlier removal. Here, a triangulated surface gets generated and criterion such

as Moving Least Squares with Lagrangian operators are used to identify "rough" features

from irregular regions (44). Discontinuous operators-based method is another reliable tech-

nique whereby regions of points are detected using density depth maps and removed based

on visibility conflict (45). All methods described have the advantage of being conceptu-

ally accurate (46). Discontinuous operators based methods however work only on specific

outliers and are inapplicable elsewhere (45). Surface based methods can work well on

logical shapes but may not make sense for irregular, unknown shapes. They can also be

very time consuming due to the typically large size of point clouds (44, 47). This thesis

required a technique that could work well on irregular point clouds. Moreover, the focus

was on providing fast processing, rather than precise outlier detection. This is because

the transformed point clouds would ultimately be passed onto PointNet that should per-

form additional computations to differentiate between the two classes. Based on these

1https://www.meshlab.net/#description

28

5.2 Feature Engineering

requirements, a simple radius-based outlier detection method was finalised (46).

Figure 5.4: Demonstration of the Principle of Radius-Based Outlier Removal on A Set of
Points

The principle of radius-based outlier filter (RBOF) is that if the number of points in the

sphere of radius r centred at the query point X_q is lower than a threshold n, then X_q

will be marked as an outlier and removed (48). Figure 5.4 explains the concept of radius-

based outlier removal where the red point (X_q) is the point of interest. The number of

neighbours is specified to be 13. Based on a specified radius r, there are 13 blue points

that lie within the sphere of X_q. Thus, X_q is identified as outlier. Visual analysis of

point clouds such as in Figures 5.2 and 5.3 helped determine that noise timeslices had

roughly evenly spaced points. Therefore, the goal of RBOF was that fewer outliers would

be detected and removed. Event timeslices however showed clustering of points, so here,

the algorithm would detect and remove more outliers, especially the noise hits around the

event clusters.

Figure 5.5: Normals computed for a Timeslice with Nearest Neighbours Specified as 10

29

5. THE PIPELINE

Open3D1 was used to identify outliers and perform feature engineering. First, all .xyz

files from each class were transformed from an array of 3D coordinates to an o3d.geometry.PointCloud

geometry. Next, normals were computed for each point because surface reconstruction

based 3D meshing requires normals of the point cloud (49). The number of neighbours

used to estimate normals was set to 300, due to the large number of points per point cloud.

Figure 5.5 shows the normals for a timeslice with the largest number of event hits, when

computed with the default 10 neighbours. The purple markers indicate the direction of the

normal. Ideally, the markers for all points must face in the same direction, which is not

the case in Figure 5.5. Figure 5.6 shows the same timeslice, recomputed with 300 nearest

neighbours. The markers now approximately point in the same direction. The highlighted

regions in the figure correspond to event hits and show interesting behaviour. The normals

computed at these locations all point at different directions.

Figure 5.6: Normals computed for a Timeslice with Nearest Neighbours Specified as 300

With the point clouds normalised, the radius-based outlier detection was finally per-
1http://www.open3d.org/

30

5.2 Feature Engineering

formed. The minimum amount of points that the sphere should contain (nb_points) was

left as the default value of 32 neighbours. The radius of the sphere that would be used

for counting the neighbours was set to vary for each point cloud because of their irregular

shapes and densities. A fixed radius value would not generalise well and produce inaccurate

results. In order to identify a suitable radius, the nearest neighbour algorithm was used to

compute the distance from a point to its nearest neighbour in the point cloud (50). Once

an array of all the distances were obtained, they were averaged and multiplied by a factor

of 3.6 to account for scaling (51).

Figure 5.7: Result of Radius-Based Outlier Detection on Timeslice with Only Noise

Figure 5.7 shows the result of applying the outlier removal on a timeslice with only noise.

The algorithm identified inliers in blue and outliers in red.

(a) Noise Timeslice Before and After Outlier
Removal

(b) Event Hits Timeslice Before (Top) and
After (Bottom) Outlier Removal

Figure 5.8: Noise and Event Hits Timeslices Before (Top) and After (Bottom) Radius-Based
Outlier Detection

Figure 5.8 shows an example of a noise and event hits timeslices both before and after

removal of outliers. As expected, the RBOF found a higher incidence of outliers in the

31

5. THE PIPELINE

event timeslice. The resulting point cloud is more simplified with the event hit clusters

intact, as highlighted in Figure 5.8b. Similarly, Figures 5.9a and 5.9b shows the result

of the algorithm on timeslices with event hits. As expected, event timeslices show higher

number of outliers due to the presence of event clusters.

(a) Timeslice with Highest Event Hits

(b) Another Event Hits Timeslice

Figure 5.9: Result of Radius-Based Outlier Detection On Different Event Timeslices

32

5.3 3D Mesh Generation

5.3 3D Mesh Generation

With the feature engineering completed, .xyz files were converted to 3D meshes. Meshes

are a collection of geometric properties - vertices, faces and edges that describe a 3D object

(52). There are several algorithms that can convert 3D coordinates to meshes but two of

the most popular algorithms were considered and evaluated (52).

Ball Pivoting Algorithm (BPA) “rolls" a virtual ball across the point cloud “surface".

It forms a triangle from the three nearest points and then rolls along that triangle to another

set of three points where it forms a new triangle (53). In this manner, the algorithm

continues until all points are converted to a mesh. BPA requires the radius of the ball to

be specified such that it is slightly larger than the average space between points (53). For

this thesis, using an average radius value would cause problems in the event hit clusters

as the distance between points in those regions may be less than the size of the ball. This

would lead the ball to roll over those points and ignore them. Given the irregular, unknown

symmetry with sets of close points in event clusters, it was likely that BPA would miss the

details that could indicate presence of event hits.

(a) Event Timeslice: Highlighted Area Corre-
sponds to Event Hits Cluster

(b) Noise Timeslice

Figure 5.10: Noise and Event Timeslices After Applying Ball Pivoting Algorithm

Figure 5.10 shows the transformed point clouds after applying BPA. Figure 5.10a shows

an events timeslice where event hits (in red) are overlaid with the corresponding 3D mesh

for comparison. The region in focus shows an event cluster. The algorithm rolled over

and missed several points, leaving gaps in the mesh. On the other hand, Figure 5.10b

shows the effect of BPA on a noise timeslice. Due to the generally evenly spaced nature

of noise, the algorithm was able to capture most points. However, the two meshes don’t

33

5. THE PIPELINE

show significant differences between each other since the event clusters are not particularly

enhanced. It indicated that BPA would not be sufficient for the PointNet to learn.

Poisson Surface Reconstruction is an implicit meshing algorithm by Kazhdan et al.

(2006) that envelops points in a smooth "cloth". It tries to fit a surface from the original

point set by creating an entirely new point set representing an iso-surface linked to the

normals (54). As it tries to create a watertight surface, it seemed a more promising solution

for the detailed event regions. Poisson Surface Reconstruction required several parameters

for the octree that is used for the reconstruction (54) - depth, scale and fit. The octree

depth specifies the level of detail of re-construction and is the most significant parameter.

The scale describes the ratio between the diameter of the cube used for reconstruction

and the diameter of the samples’ bounding cube. fit lets the re-constructor use linear or

non-linear interpolation to estimate the positions of iso-vertices (54).

(a) Event Timeslice: Highlighted Area Corre-
sponds to Event Hits Cluster

(b) Noise Timeslice: Highlighted Area Corre-
sponds to Noisy Artefact

Figure 5.11: Noise and Event Timeslices After Applying Surface Poisson Reconstruction

Default parameters of depth 10, octree scale 1.1 and non-linear interpolation were

used (43). Figure 5.11 shows the same timeslices as before, rendered with Poisson Sur-

face Reconstruction. Poisson Surface Reconstruction shows a more detailed mesh for the

event hits region in the event timeslice in Figure 5.11a. Figure 5.11b shows the algorithm

rendered on the noise timeslice. The surface is more or less flat and even. However, the

Reconstruction algorithm produced some noisy artefacts, as highlighted in the image.

Based on the difference in mesh detail between BPA and Poisson Surface Reconstruction,

Poisson Surface Reconstruction did a better job of capturing event hits. The noisy artefacts

generated in noise timeslices could pose a problem, however PointNet should be able to

better distinguish between the two classes based on other features.

34

5.4 PointNet

5.4 PointNet

PointNet was implemented in PyTorch 1 and a few modifications were made to work

with the KM3NeT Data. Input batch (training examples) for PointNet can be 1D or 2D

convolutions (1). A convolution involves the application of a filter to the input that results

in an activation function (36). For the thesis, 1D convolutions were used as it can help

reduce dimensions and computational costs (55). In this case, the 1D convolution was the

Multi-Layer Perceptron (MLP) with shared weights and kernel of size 1.

Pooling layers allow for down-sampling feature maps by means of a summary (36). Two

common pooling methods include max pooling which summarises the most activated pres-

ence of a feature; and average pooling which summarises the average presence of a feature

(36). Instead of using a global max pool function suggested in the paper by Qi et al.

(2017), an average pool function was applied to the transformed features (1). This was

done because max pool was found to cause some overfitting to the KM3NeT data.

The paper by Qi et al. (2017), used Cross Entropy Loss, a typical loss function for

classification (1). However, thesis experiments showed that the network learned better

with the negative log-likelihood (NLL) loss. As the NLL loss requires log probabilities

of each class, the Log Sigmoid activation was also applied to the output layer (56). The

remainder of the architecture was left unchanged.

5.4.1 PointNet Transformations

(a) Events Timeslice With Vertices from Mesh (b) Noise Timeslice With Vertices from Mesh

Figure 5.12: Noise and Event Timeslices With Non-Uniform Distribution of Mesh Vertices

1https://pytorch.org/

35

5. THE PIPELINE

Qi et al. (2017) stated three requirements for training point clouds with PointNet (Sec-

tion 3). Point clouds should be unordered and PointNet has to be invariant to permutations

of the input set. Next, the network must be invariant to rigid transformations. Finally,

the network should also capture interactions among points (1). The thesis implemented

the recommended transformations to the input point clouds during training and testing to

ensure conformity of data to the above requirements (1).

Points are not uniformly distributed across the 3D object’s surface, hindering PointNet’s

ability to classify them. For example, Figure 5.12 shows non-uniformity in the distribution

of vertices from the meshes for both noise and event class.

(a) Event Hits Timeslice Sampled with 1024
Points

(b) Event Hits Timeslice Sampled with 8192
Points

(c) Noise Timeslice Sampled with 1024 Points (d) Noise Timeslice Sampled with 8192 Points

Figure 5.13: An Example of Noise and Event Timeslices With Different Levels of Sampling

PointNet also requires a fixed number of points to be sampled per point cloud (1).

While Qi et al. (2017) uniformly sampled 1024 points on mesh faces, it was found that this

36

5.4 PointNet

number was not sufficient for the KM3NeT Data. Figure 5.13 shows both classes of point

clouds randomly sampled with 1024 points and then with 8192 points (points have to be

in multiples of 1024). While noise timeslices were relatively unaffected, event timeslices

showed better structure with greater points. The thesis sampled one point per chosen face.

Additionally, as faces had different areas, a probability was assigned to choose a particular

face proportional to its area. That is, faces with higher area had higher probability of

being chosen as it represented more of the surface (1). In this manner, a total of 8192

point were sampled per point cloud.

(a) Event Hits Timeslice (b) Noise Timeslice

Figure 5.14: An Example of Noise and Events Timeslice After Normalisation

Point clouds in the KM3NeT dataset have different sizes and are often placed in different

parts of the coordinate system. Qi et al. (2017) normalised point clouds along a unit sphere

(1). The thesis also applied similar translations. Point cloud were translated to the origin

by subtracting the mean from all its points, and then normalising them into a unit sphere

(1). Figure 5.14 shows the effect of this normalisation for both classes.

Qi et al. (2017) also augmented point clouds during training by adding jitter and ran-

domly rotating the objects (1). Therefore, the event and noise point clouds were randomly

rotated around the Z-axis. Jitter via Gaussian noise was also added with 0 mean and

0.02 standard deviation (1). Figure 5.15 shows the effect of these augmentations for both

classes.

The application of the recommended augmentations resulted two fairly distinct point

clouds and was considered effective. The noise timeslice formed a dense block while the

events timeslice formed a collection of points with gaps in between.

37

5. THE PIPELINE

(a) Event Hits Timeslice (b) Noise Timeslice

Figure 5.15: An Example of Noise and Event Timeslices After Jitter and Random Rotation

Figure 5.16 shows an overview of the pipeline that was used for each of the three datasets

- (x y time), (x z time) and (y z time). First, 3D coordinates were generated and

separated into two classes. Feature engineering using radius-based outlier filter eliminated

several points, enhancing event clusters. Surface Poisson Reconstruction was applied to

convert the coordinates to 3D meshes. PointNet transformation functions were also added

to enhance the point clouds on the fly during training and testing.

3D Mesh
Generation
(.off files)

3D Coordinates
(.xyz files)

Feature
Engineering
(.xyz files)

Training Testing

Rotation

Normalisation Jitter

Point
Sampling

PointNet
Transformations

Output
0 / 1

KM3NeT
Data

Figure 5.16: KM3NeT Pipeline Components

38

6

Evaluation Methodology

The selected timeslices had between 500 to 1692 event hits to capture a variety of event

sizes for training. Figure 6.1 shows the directory structure for the dataset. Timeslices

were organised by classes and separated into individual training and testing folders as

required by PointNet.

Figure 6.1: Required Directory Structure for PointNet

An 80-20 train-test split was used to randomly select 80% of the files under each class

for training and 20% for testing. No validation set was required because there was no need

to choose an appropriate model from rivalling approaches (57, 58). This chapter discusses

the preparation of the training and testing data, along with two chosen edge cases. The

chapter also describes the ensemble methodology used for obtaining final predictions and

remarks on the use of L1 trigger on the dataset for comparison against PointNet.

39

6. EVALUATION METHODOLOGY

6.1 Training and Testing Data

160 timeslices were selected for each class as training data. Both classes had meshes with

approximately 4800 vertices on average, and 8500 triangles. A total of 40 timeslices were

selected as testing data for each class. Both classes had meshes with approximately 4800

vertices on average and 7500 triangles. The testing data represented much of what the

detector would gather in real world, and send to the pipeline for processing. However, two

additional edge cases were chosen to evaluate the extent of the model’s learning capacity.

Most event timeslices have around 700 event hits on average. Therefore, a timeslice with

100 event hits and 6796 noise hits was selected. As an extreme case, a group with 39 event

hits and 6645 noise hits was selected.

(a) 3D Mesh of Timeslice with 100 Event Hits

(b) Typical Example of Timeslice with Event
Hits

(c) Typical Example of Timeslice with Noise

Figure 6.2: Edge Case: Comparison of Mesh Detail for Timeslices with Low Event Hits

Figure 6.2a shows the detail captured by the mesh for a processed point cloud with 100

event hits. Figure 6.2b on the other hand is an example of a typical event cluster rendered

with details and rounded surfaces. Figure 6.2c is an example of a typical noise region,

rendered as smoother surfaces by Surface Poisson Reconstruction. Figure 6.2a resembles

the noise point cloud in Figure 6.2c with smooth surfaces. This indicated that the event

hits details were lost in conversion and PointNet may not be able to classify it as an event

timeslice.

40

6.2 Model Specifications

Similarly, Figure 6.3 shows another example of a point cloud with 39 event hits. The

mesh representation contains very few distinguishing features and flat surfaces, unlike a

typical event cluster mesh (Figure 6.2b). Since the event cluster resembled the mesh

representing noise hits, it was likely that PointNet would not be able to classify it as an

events class.

Figure 6.3: 3D Mesh of Timeslice with 39 Event Hits

6.2 Model Specifications

The model was first run for 200 epochs to find the optimal training epoch value. Figure 6.4

shows that the loss settled around 100 to 120 epochs. Therefore, the rest of the experiments

were conducted for 120 epochs. The loss was found to be between 0.008 and 0.003 during

training and considered sufficient for the thesis.

Figure 6.4: Loss Plotted for 200 Training Epochs

Model parameters were experimented to obtain optimal performance, but it was noted

that the default parameters in the paper by Qi et al. (2017) were best suited for the dataset

(1) (Appendix 10). Table 6.1 shows the parameters used for training. For each batch, the

model was evaluated on the testing data to obtain a signal about the model’s ability to

41

6. EVALUATION METHODOLOGY

generalise. The dataset was trained with PyTorch using Google Colab NVIDIA Tesla K80

GPU and on ViltStift AMD MI50 GPUs for approximately 3.5 hours.

regularisation loss with weight 0.001
Initial Learning Rate 0.001
Dropout probability 0.3
Batch Size Training 32
Batch Size Testing 64
Epochs 120

Table 6.1: Final Model Parameters Used for Training on KM3NeT Data

6.3 Ensemble Methods for Results

As x, y, z, and time variables were split into three permutations of (x, y, time), (x,

z, time) and (y, z, time), each dataset was trained separately. The results from each

of these datasets were then combined using majority voting ensemble techniques (36).

Voting ensembles were selected as a suitable methodology for two main reasons. First,

while there were three datasets, they represented the same information, except in slightly

different manner. Majority voting ensembles place equal value on the models being com-

bined to make predictions which was relevant in this case (59). Second, a voting ensemble

is considered appropriate when no single model performs comparatively worse or better

than the others (59). Results showed that two of the three models were quite similar in

performance.

Two voting ensemble techniques were used to generate the final predictions - hard voting

and soft voting. A hard voting ensemble sums the votes for class labels from all models and

presents the class with the most vote as the final prediction (60). A soft voting ensemble

sums the predicted probabilities for class labels and presents the label with the highest

sum probability (60). A soft voting ensemble additionally requires a probability threshold

to finalise the label as positive. A high threshold of 90% was used due to the physics

requirement of minimising false positives and correctly classifying event timeslices as much

as possible.

The existing L1 trigger (Section 1.2.1) was also applied on the dataset. The results from

the L1 trigger were contrasted against PointNet to identify if any improvements could be

noted. The L1 trigger is known to save noise timeslices as relevant, so PointNet would have

to perform better in that instance. The training and testing data was therefore prepared

42

6.3 Ensemble Methods for Results

to ensure that a good range of event sizes were covered. Further, two edge cases for event

timeslices were also prepared to establish the extent of the network’s learning capacity.

Majority voting ensemble was seen as a robust, simple ensemble technique and used to

obtain final predictions.

43

7

Classification Results

Accuracy score is typically used to identify optimal models, however as a metric it is often

not interpretable and discriminative (61). Moreover, an accuracy score is almost always

biased towards the majority class. The goal was to ensure that timeslices with neutrinos

did not get mislabelled as noise. Therefore, recall was the most significant metric for the

classification task. Based on the highly imbalanced nature of the dataset and the physics

goal, a few other metrics were also required (62). This chapter establishes the relevant

metrics selected for classification and discusses the results obtained through plots and

summaries.

Precision measures the percentage of results that are relevant. It is the ability of the

classifier to not label a negative sample as positive (62). Precision is given by the number of

true positives (Tp) over the number of true positives (Tp) plus the number of false positives

(Fp):

P =
Tp

Tp + Fp

Recall refers to the percentage of total relevant results correctly classified, and is the

ability of the classifier to find all positive samples (62). It is given by the number of true

positives (Tp) over the number of true positives (Tp) plus the number of false negatives

(Fn):

R =
Tp

Tp + Fn

F1 Score is a weighted harmonic mean of the precision and recall (62). It is given by:

F1 = 2× P ×R
P +R

Receiver Operating Characteristic (ROC) Curves depict the trade-off between

true positive rate and false positive rate for different probability thresholds (62).

44

7.1 Dataset 1: x, y, time

Precision-Recall (PR) Curve shows the trade-off between precision and recall for

different thresholds (62). A high area under the curve represents both high recall and high

precision.

Confusion Matrix visualises the number of true positives, false positives, true negatives

and false negatives (63) .

Each of the three datasets - (x, y, time), (x, z, time), and (y, z, time) were trained

using the same PointNet model parameters (Table 6.1), and their results combined using

ensemble techniques. Table 7.1 shows the final classification accuracy scores for each of

the three datasets and the results after applying two majority voting ensemble methods.

x, y, time 95% (loss = 0.003)
x, z, time 90% (loss = 0.006)
y, z, time 99% (loss = 0.005)
Ensemble 1: Hard Voting 97%
Ensemble 2: Soft Voting 90%

Table 7.1: Accuracy Scores

A classification report was generated for each dataset and the two ensembles to obtain

detailed performance report on precision, recall and F1 Scores. ROC Curves and PR

Curves were both plotted to compare against each other. This is because ROC curves

are more appropriate for balanced classes and PR curves are better suited for imbalanced

datasets. Keeping in mind the physics goal, analysis was more focused on the model’s

performance in (mis)classifying event timeslices (class_1).

7.1 Dataset 1: x, y, time

The x, y, time model reported a 95% accuracy. Classification report in Table 7.2 shows

that the model did not mislabel any noise (class_0) as event class_1 timeslices. Further,

90% of the total relevant results were correctly classified as class_1. Support indicates

that 40 test cases were used for each class.

x, y, time

precision recall F1-score support
class_0 0.91 1.00 0.95 40
class_1 1.00 0.90 0.95 40

Table 7.2: x, y, time: Classification Report for class_0 and class_1

45

7. CLASSIFICATION RESULTS

Figure 7.1 shows the relevant plots of metrics for the dataset. The ROC curves are

towards the top left of the graph and indicate a desirable, high true positive rate against

the baseline performance plotted on the diagonal. Complementing the ROC, the Precision-

Recall (PR) curves show a high area under the curve, indicating high precision and recall.

Precision was mostly stable for increasing recall, but it fell dramatically for class_1 after

85% recall. The confusion matrix shows that 4 of the 40 timeslices with event hits were

incorrectly labelled as noise, but none of the noise timeslices were incorrectly labelled.

Figure 7.1: x, y, time: Classification Plots

7.2 Dataset 2: x, z, time

x, z, time

precision recall F1-score support
class_0 0.83 1.00 0.91 40
class_1 1.00 0.80 0.89 40

Table 7.3: x, z, time: Classification Report for class_0 and class_1

The x, z, time model reported a lower accuracy of 91%. This is because it wrongly

46

7.3 Dataset 3: y, z, time

classified a higher percent of class_1 samples (Table 7.3). The model was however much

better at detecting noise and obtained a perfect recall.

Figure 7.2 shows the relevant plot of metrics for the dataset and indicates poorer perfor-

mance compared to the previous model. The ROC and PR curves both show lower areas

under the curve. The confusion matrix shows that out of the 40 test cases, 8 of the event

timeslices class were incorrectly labelled as noise. Again, none of the noise timeslices were

wrongly classified.

Figure 7.2: x, z, time: Classification Plots

7.3 Dataset 3: y, z, time

The y, z, time model reported 99% accuracy score. The classification report in Table 7.4

showed that the model did not incorrectly classify events as noise 98% of the time. More

importantly, it was able to correctly find and classify all event timeslices.

Figure 7.3 shows the relevant plot of metrics for the dataset. The ROC and PR curves

indicate very desirable results. The confusion matrix shows that out of the 40 test cases,

all of the event timeslices were correctly labelled. Although one instance of noise timeslice

was incorrectly classified as a timeslice with events.

47

7. CLASSIFICATION RESULTS

y, z, time

precision recall F1-score support
class_0 1.00 0.97 0.99 40
class_1 0.98 1.00 0.99 40

Table 7.4: y, z, time: Classification Report for class_0 and class_1

Figure 7.3: y, z, time: Classification Plots

Between the three datasets, the y, z, time model performed better than the other two,

in terms of recall. It also had the highest F1 score for the positive class. The x, z, time

model performed poorly by wrongly classifying the most number of event timeslices.

7.4 Majority Voting Ensemble

Next, results from the three models were combined using hard and soft voting. The

classification reports in Tables 7.5 and 7.6 show high precision, recall and F1 scores for

hard voting. Soft voting on the other hand predicted much lower scores. It scored especially

low on recall for class_1. The supporting plots in Figure 7.4 for hard majority voting

corroborate to the precision and recall scores. Additionally, the final models were tested

on the two edge cases - timeslices with very low event hits. All three models predicted

48

7.4 Majority Voting Ensemble

both event timeslices to be noise timeslices. These results confirmed the visual inspection

of the input meshes to PointNet (Section 6.1). Figure 7.5 shows the poorer performance

of soft majority voting especially since 8 of the event timeslices were labelled as noise.

Hard Voting: (x y time), (x z time) (y z time)

precision recall f1-score support
class_0 0.95 1.00 0.98 40
class_1 1.00 0.95 0.97 40

Table 7.5: Hard Voting: Classification Report for class_0 and class_1

Soft Voting: (x y time), (x z time) (y z time)

precision recall f1-score support
class_0 0.93 1.00 0.91 40
class_1 1.00 0.80 0.89 40

Table 7.6: Soft Voting: Classification Report for class_0 and class_1

Figure 7.4: Hard Voting Ensemble Results

49

7. CLASSIFICATION RESULTS

Figure 7.5: Soft Voting Ensemble Results

7.5 Comparison Against L1 Trigger

The L1 trigger was applied to same test cases used for evaluating PointNet. Figure 7.6

indicates that it can correctly classify all 40 event timeslices. However, it wrongly classified

5 noise timeslices. Like the PointNet model, it was unable to classify either of the two edge

cases. Therefore, PointNet demonstrated better performance than L1 Trigger, especially

in terms of minimising false positives.

Figure 7.6: Confusion Matrix From L1 Trigger to Testing Data

50

7.6 Other Performance Metrics

7.6 Other Performance Metrics

Execution time for the pre-processing pipeline and the deep learning model was measured

for the ensemble. Additionally, throughput and energy efficiency were calculated for the

PointNet model. The ensemble comprised of the three datasets - (x, y, time), (x, z,

time) and (y, z, time). Each dataset contained 400 timeslices, so a total of 1200 times-

lices were processed. As each timeslice contained around 8000 rows, the complete ensemble

had approximately 9,600,000 rows of data. The pre-processing was run on a Macbook Pro

with 8GB of memory and 2 cores. All deep learning performance metrics were measured

on Google Colab’s Tesla T4 GPUs.

Python’s cProfile 1 was used to obtain execution times for the complete pre-processing

pipeline, starting from generation of 3D coordinates, to finally separating data into training

and testing datasets. The total execution time was recorded to be 3771.85 seconds for the

entire ensemble of three datasets. Figure 7.7 shows the execution time for individual

components of the pipeline. As expected, the main bottleneck arises from the conversion

of 3D coordinates to 3D meshes.

3D Coordinates Feature Engineering Mesh Generation Train/Test Split
0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

Figure 7.7: Combined Execution Time for 3 Data sets for Each Stage in Pre-Processing
Pipeline for the three datasets

Next, execution time for PointNet was obtained, keeping in mind that execution time for

deep learning typically involves only the feedforward functions (64, 65). The three datasets

were trained and evaluated in parallel, after which the results were combined. The mean

execution time was measured to be 94950.47 milliseconds (ms) or 1.5 minutes and the

total time for 120 epochs was approximately 3.2 hours.

The throughput of a neural network can be stated as the maximum number of input

the network can process in unit time and is an important metric for scalability (66). The
1https://docs.python.org/3/library/profile.html

51

7. CLASSIFICATION RESULTS

following formula was used to determine the throughput (66):

(number of batches×max batch size)
(total time in seconds)

The maximum batch size for the GPU was found by performing a binary search and was

64. It was seen that the network could process 0.34 input instances per second.

Finally, energy efficiency for the model was also calculated. Deep learning has the ability

to solve complex tasks on specialised hardware, but are often energy intensive (67). Energy

metrics are not frequently reported in deep learning, but is significant in the present global

climate (67). Table 7.7) shows the energy metrics for the PointNet model and was found

using Python’s carbontracker1. The reported 62.4 g of CO2 emissions are relatively

acceptable in comparison to an average of 4.5 kg CO2 emitted by standard deep learning

models (68).

Actual consumption for 1 epoch(s)
Time 0:01:38
Energy 0.001770 kWh
CO2eq 0.520728 g
This is equivalent to: 0.004325 km travelled by car

Predicted consumption for 120 epoch(s)
Time 3:16:20
Energy 0.212393 kWh
CO2eq 62.487393 g
This is equivalent to: 0.518998 km travelled by car

Table 7.7: Energy Metrics and Carbon Footprint for PointNet

The execution time for a single timeslice with 8500 hits including 700 event hits was also

measured. The complete pipeline took 3.5 minutes from pre-processing and then obtaining

a classification from the trained model.

7.7 Analysis

Hard voting ensemble was chosen as the final result of PointNet classification project based

on recall scores. Despite being considered naive, hard voting was suitable in this thesis

since all three datasets more or less equally contributed to the learning. Since the three
1https://pypi.org/project/carbontracker/

52

7.7 Analysis

datasets are spatial combinations, none of them would have more valuable information

about the neutrino events than the other. Soft voting resulted in lower performance as

it was affected by the x, z, time recall scores. But since all three dataset models are

equally important, a majority voting was more appropriate in finalising the results.

Overall, the model was able to perform well in classifying timeslices into noise versus

events. 97% of of the predictions were accurate overall. The final results showed that

the model was able to correctly classify all noise timeslices and had a 95% recall for the

positive class. All results showed that the models were better at classifying noise timeslices

than event timeslices. This could be because of the feature engineering itself. As the

network is tuned to handle class imbalances and overfitting, feature engineering could be

insufficient in certain cases for timeslices with events. Out of 40, it only mis-classified

2 event timeslices as noise. While the recall for the positive class is not perfect, it met

and exceeded the stakeholder requirement of 90%. It also improved over the L1 trigger’s

performance in terms of identifying false positives. These scores have to be credited to the

feature engineering and a high sampling of points per point cloud. Several experiments

were conducted with the exact same network, but with no feature engineering. Here the

model could not achieve more than 65% accuracy in identifying positive classes (Appendix

10). Additional experiments with the number of points sampled per point cloud showed

that the higher the points sampled, the better. With the default 1024 points sampled and

feature engineering, the model was able to perform only slightly better than before with

72% accuracy. It was clear that due to the highly irregular shape of the mesh, with very

low occurrences of significant areas, increasing the number of points sampled, increased

the probability that points would be taken from the event cluster parts of the mesh.

In terms of execution time, a single incoming timeslice will take 3.5 seconds to be clas-

sified. This is not ideal in real-time processing, where there may be incoming timeslices at

every second. The proposed GPU pipeline in comparison is significantly faster (26).

This chapter examined results from the three datasets, focusing on the recall for positive

class (class_1). Results from the three datasets were combined using two majority voting

techniques - hard and soft voting. Hard voting was chosen as the preferred, final result

based on the best recall and precision scores. The results also showed improvements

over the L1 trigger. There are no other similar approaches that can allow the project

to make performance comparisons against, but the results can serve as a benchmark for

future improvements. Additional execution, throughput and energy metrics also cannot be

directly compared with other models. Instead, they can be used by KM3NeT to evaluate

the feasibility of the model given their resources.

53

8

Additional Research

The 3D mesh-based classification pipeline was considered successful in learning to differ-

entiate between event and noise timeslices. However, feature engineering was required to

be able to learn sufficiently (Appendix 10). Qi et al. (2017) had highlighted that PointNet

could work with just 3D coordinates (1). Therefore, additional research was conducted to

explore an alternate 3D point-based pipeline. If successful, it would simplify the compu-

tational costs and research time. The 3D point-based pipeline was next expanded to a 4D

PointNet. Instead of generating three datasets out of x, y, z and time, they could be

directly used as 4D points to train PointNet. The final section of this chapter provides

initial exploration of the energy inference requirement (Section 1.3) and lays the path for

future research.

8.1 Alternate Pipeline: 3D Points-based PointNet

The thesis pipeline generated three sets of data and their corresponding .xyz files. It

performed feature engineering and generated 3D meshes that were used for training and

evaluation. As an alternate approach to the pipeline, the thesis attempted to determine if

PointNet could perform successful classification with just feature engineered .xyz files.

As before, three combinations of the KM3NeT dataset were prepared - (x, y, time),

(x, z, time) and (y, z, time). Feature engineering using radius-based outlier detection

was once again used to simplify the point clouds. These points were then directly passed on

to PointNet. Within the network, the point clouds were transformed in the same manner as

before. 8192 points were equally sampled per cloud. They were normalised, rotated around

the Z-axis and enhanced with random noise. Each of the three datasets were trained with

the exact same parameters as before (Table 6.1, Appendix 10).

54

8.1 Alternate Pipeline: 3D Points-based PointNet

However, results showed that this model was unable to learn from the point clouds. It

could not achieve more than 61% accuracy. While the predictions are not random, they

are enough for physics requirements. Additionally, the precision for the positive class was

found to be 0.60 and the recall was 0.65, indicating only 65% of the positive results were

correctly classified. This is further shown by the decreasing Precision-Recall (PR) curves in

Figure 8.1a. The almost diagonal curves of the Receiver Operating Characteristic (ROC)

curve in Figure 8.1a demonstrates a nearly random classifier, meaning that the model

predicted with mostly random chance (62). The confusion matrix in Figure 8.1b shows

that 14 instances of event timeslices were wrongly labelled as noise.

(a) ROC and PR curves

14

17

(b) Confusion Matrix

Figure 8.1: Results of Classification using 3D Points

While several experiments using PointNet are run on 3D points (69, 70, 71), this was

not applicable to the KM3NeT data. It could be because the points alone did not contain

sufficient information for the network to learn from. As the network also randomly samples

a fixed number of points per point cloud, it was likely that the relevant event hits were

not selected by the random sampler. While it would have been computationally beneficial

to successfully train a model without 3D meshes, these results provide justification for the

mesh generation step in the pipeline. It was evident that the 3D meshes added the required

level of detail necessary for PointNet to learn.

55

8. ADDITIONAL RESEARCH

8.2 Alternate Pipeline: 4D PointNet

Experiments were also conducted to see if PointNet could learn from the x, y, z, time

attributes at once, instead of generating three datasets. As 4D meshes are not technically

feasible, the points were only pre-processed using radius-based outlier detection. The

initial layers of the architecture were modified to accept 4 inputs (Appendix 10). Training

showed that the model was able to perform only slightly better than before. It achieved

an accuracy of 57% with 78% recall for the positive class. Figure 8.2a shows low areas

under the ROC and PR curves. The confusion matrix in Figure 8.2b indicates that the

classifier was better at classifying event timeslices over noise.

(a) ROC and PR curves (b) Confusion Matrix

Figure 8.2: Results of Classification using 4D Points

8.3 Regression Analysis for Energy Inference

The final segment of the research question was focused on inferring energy values from

timeslices classified as class_1 (1.3). Obtaining secondary properties such as the energy of

an event is important as they can help identify lesser understood events such as decay of ark

matter particles (25). While PointNet can be theoretically used for regression tasks, there is

no known research that demonstrate this yet (1). PointNet was specifically built for object

classification and segmentation tasks, so tuning the architecture for regression tasks would

56

8.3 Regression Analysis for Energy Inference

involve significant architectural changes. This indicated that a different architecture more

suited for regression should be used instead of modifying PointNet. Additionally, the thesis

pipeline started with the 3D coordinates and time values. However, these attributes were no

longer represented by the same values when the point clouds were converted to 3D meshes.

Thus, after classification, it would be challenging to map the 3D meshes to their respective

energy values and proceed with training for regression. Due to these reasons, building

a model for regression was more appropriate for a separate research project and was not

attempted further. Instead, the remainder of the thesis investigated the inference of energy

values using two non-linear techniques - decision trees and random forests bootstrapping.

That is, experiments were not considered an extension of the classification pipeline and

are only intended to lay the ground for future work.

8.3.1 Data Preparation

Figure 8.3: Number of Energy Events Per Timeslice

HDF5 files containing mc_hits and mc_info tables were used (Section 4). The energy

events in the data were specifically in the range of 10 to 100 Gigaelectron-volts (GeV).

mc_info contained additional energy information corresponding to the event hits in the

mc_hits table. It contained energy values (nu_E), the type of neutrino (type) and the

start (nu.hits.start) and end times of the event hits (nu.hits.end). The mc_hits

and mc_info tables were combined and grouped into timeslices of 15000 ns to obtain the

complete events dataset with corresponding energy values. The scatter plot in Figure 8.3

57

8. ADDITIONAL RESEARCH

shows the count of events that occurred within each timeslice. Most of the timeslices

contained a single event while very few timeslices contained more than 3 events.

Target and predictor variables were defined. energy was set to be the target variable that

the model would predict. pos_x, pos_y, pos_z and time were selected as the predictor

variables that would be used to predict energy. The predictor variables were selected using

uni-variate feature selection based on the k-best scores from mutual information. Mutual

information (MI) measures the dependency between variables and is zero when the two

random variables are independent (72). The correlation heatmap in Figure 8.4 and Table

8.1 show that energy had no significant relation with any other variables.

Figure 8.4: Correlation Heatmap of the Events Dataset

energy vs time 0.05
energy vs pos_x 0.01
energy vs pos_y 0.02
energy vs pos_z 0.005

Table 8.1: Correlation Coefficients: energy with pos_x, pos_y, pos_z and time

While all other key variables were found to have skewness close to 0, the target variable

was 0.88. This indicated a high positive skew, affirmed via the non-normal density and

probability plots in Figure 8.5.

It was evident that some transformation was required to bring the target as close to

normal as possible. Three types of transformation functions were applied - log, squared,

58

8.3 Regression Analysis for Energy Inference

Figure 8.5: Density and Probability Plot

and Box-Cox, and results were compared (73, 74). Log and squared transformations involve

taking the logarithm and square roots respectively. Box-Cox transformation makes use of

λ to approximate the best fitting values for the data (75).

y =

{
(x

λ−1)
λ ,∀λ > 0

log(x),∀λ = 0
(8.1)

(a) Log Transformation (b) Squared Transforma-
tion

(c) Box-Cox Transforma-
tion

Figure 8.6: Transformations of the Target Variable energy

Figure 8.6 shows the application of each function. The skew after log transformation was

0.12 and the corresponding plot shows a more bell-shaped curve indicating some normal-

isation (Figure 8.6a). The squared transformation did not result in useful improvements,

59

8. ADDITIONAL RESEARCH

indicated by the still right skewed data (Figure 8.6b), and a skew value of 0.49. Better

results were obtained from the Box-Cox transformation that had the lowest skew of 0.02

and the corresponding plot in Figure 8.6c showed a distribution aligned towards normal.

Thus the target variable was transformed using Box-Cox.

(a) Training Data (b) Testing Data (c) Additional Evaluation
Data

Figure 8.7: Distribution of Energy for Events in Training, Testing and Additional Evaluation
Data

50 timeslices from the dataset were randomly selected and kept aside for evaluation. The

dataset was then split into training and testing components using a 66/34 split. Figure 8.7

shows the distribution of energy corresponding to events within the training, testing and

additional evaluation data. Here, energy values were binned into 10 groups for a simpler

visualisation. Sub-figures 8.7a and 8.7b show that both the training set and testing set

contained a good balance between low and high energy events. The additional evaluation

set in Sub-figure 8.7c shows that most of the events had low energy, especially under 30

GeV. This indicated that the model could be evaluated against a challenging dataset since

lower energy events do not have many hits associated with them.

Standard regression metrics, Mean Squared Error (MSE) and coefficient of determina-

tion (R2) were chosen for performance measurement. MSE indicates the average squared

difference between the estimated value and actual value (76). R2 metric provides an indi-

cation of the goodness of fit of a set of predictions to the actual values (76). In order to

get a complete unbiased picture, both metrics were used.

8.3.2 Decision Trees Regressor

Decision Trees are a non-parametric, supervised learning method where the model makes

predictions by learning simple decision rules inferred from data features (77). They were

60

8.3 Regression Analysis for Energy Inference

chosen because they require very little data preparation and are computationally efficient

(77). 342,920 samples were selected for training and 146,966 samples were used for testing.

Sklearn’s DecisionTreeRegressor was used to initialise a decision tree, with parameters

based on experimentation. Tree depth was 20 and the minimum samples required to be at

a leaf node was set to be 1.

Training Testing Additional
MSE 100.3 116.3 269.0
R2 0.83 0.80 0.31

Table 8.2: Decision Tree Regression Metrics

MSE and R2 were used as metrics of performance (Table 8.2) for the training, testing

and additional 50 timeslices. The model obtained a 0.80 R2 score on the testing data

indicating a good fit. However, the MSE value on the testing set was 116, which indicated

large errors. After training and testing, the model was evaluated on the 50 timeslices. Here,

it showed an even larger magnitude of error of 200 and R2 scores of 0.32. Therefore, while

the model performed well during training and testing, with no data leakage, it had lower

performance on the 50 holdout timeslices. With no data leak in place, this has to be

attributed to the complexity of the examples provided and overfitting.

(a) Testing Data (b) 50 Evaluation Timeslices

Figure 8.8: Decision Trees Regressor: Actual vs Predicted Energy Values on Testing and
Evaluation Data

Figure 8.8 shows the plot of actual versus predicted energy values on the testing and

evaluation data. The model was better at predicting lower energy values. High incidence

of points in the upper left triangle of Sub-figure 8.8a further indicate that the model was

biased towards predicting lower energy values for higher energy events.

61

8. ADDITIONAL RESEARCH

8.3.3 Random Forest Bootstrapping Regressor

A random forest is an estimator that fits a number of decision trees on various sub-samples

of the dataset and uses averaging to improve the predictive accuracy and control over-

fitting. With the same train/test setup, 50 trees were chosen to build the model.

Training Testing Additional
MSE 2.6 15.93 79.8
R2 0.99 0.97 0.80

Table 8.3: Random Forest (Bootstrap Aggregation) Metrics

This time, both the MSE and R2 results were very promising (Table 8.3). MSE showed

lower errors of 15.93 on the testing data and the high R2 value of 0.97 showed good

model fit. However, there is evidence of overfitting due to the difference between MSE

scores during training and test. Additionally, evaluation on the 50 data samples gave

significantly better results than the other models. While the MSE indicated higher errors,

the R2 value of 0.80 showed a good fit with the data. The model was able to predict

energy up to 12.138 GeV for events containing only 32 hits.

(a) Testing Data (b) 50 Evaluation Timeslices

Figure 8.9: Random Forest Regressor: Actual vs Predicted Energy Values on Testing and
Evaluation Data

Figure 8.9 shows the predicted versus actual energy values on the training and 50 holdout

timeslices. The model is much better at predicting across all levels of energy due to the

closeness of the points to the diagonal. Sub-figure 8.9a indicates that the model still

62

8.4 Summary

predicted some high energy events as lower energy events.

8.3.4 Regression Analysis

Overall, random forests performed the best out of the applied models. The minimum energy

predicted was 12.138 GeV for events containing only 32 hits. This could be attributed to the

algorithm itself. They are ensemble algorithms comprising multiple trees (62). The models

are diverse since each tree is learnt on a random sample of the data and at each node, a

random set of feature are considered (62). Decision trees are known to overfit and learn the

data. This was noted in the experiment due to the difference in R2 values between training

and testing (Table 8.2). While the tree was pruned by lowering the maximum depth of

the tree, it still showed overfitting. It could be because the problem itself is too hard for

the tree to learn and not suited for the Decision tree’s learning rules. The algorithm may

also require more complex pruning techniques such as weight-based pre-pruning (62, 77).

In both cases, the model was biased towards predicting high energy events as low energy

events. This was atypical to results from other energy inference research (25, 78, 79) where

models were better at predicting higher energy events associated with a larger number of

hits. This bias may be due to the splitting parameter set in the experiments. A large value

for splitting trees results in a deeper tree with "cleaner" nodes and higher variance, but a

lower value limits the splits, leading to higher bias and lower variance (62).

8.4 Summary

Figures 8.10 and 8.11 summarise the two alternate pipeline approaches examined in this

chapter. Figure 8.10 outlines the alternate 3D points-based pipeline. Three permutations

of the KM3NeT dataset were obtained and processed using radius-based outlier filter,

but no 3D meshes were generated. This pipeline was explored to try and achieve faster

processing, but it did not result in suitable learning. Figure 8.11 outlines the second

alternative pipeline. The pipeline employed 4D data, ie., it did not make use of the

three dataset permutations. Again, no 3D meshes were generated. This approach too

demonstrated the network’s inability to classify between the two classes. Finally, energy

inference experiments indicated random forests as the best candidate for regression-based

approach. Lack of through testing with varied, larger datasets however, indicate more

work in the area.

63

8. ADDITIONAL RESEARCH

3D Coordinates
(.xyz files)

Feature
Engineering
(.xyz files)

Training Testing

Rotation

Normalisation Jitter

Point
Sampling

3D PointNet

Transformations

x, y, time

x, z, time

y, z, time

 Majority Voting Output

Pipeline

Pipeline

Pipeline

Pi
pe

lin
e

Figure 8.10: Alternate Pipeline I: 3D Points-based PointNet

x, y, z , time Output
4D

Coordinates
(.xyz files)

Feature
Engineering
(.xyz files)

Training Testing

Rotation

Normalisation Jitter

Point
Sampling

4D PointNet

Transformations

Figure 8.11: Alternate Pipeline II: 4D PointNet

64

9

Limitations and Recommendations

The thesis was able to successfully conclude on the role of PointNet and point-based

learning for neutrino detection. However, a few key drawbacks need to be addressed as

part of future work.

Despite feature engineering, PointNet was unable to accurately classify the edge cases

where timeslices had very few event hits. This was identified to be due to the loss of infor-

mation at the feature engineering step involving the surface based reconstruction technique

(Section 6). Surface based techniques like the Poisson Reconstruction make use of statis-

tical assumptions about the underlying point cloud model (80). These may not be reliable

or available in largely unordered clouds like the KM3NeT data. An alternate would be to

use a more sophisticated algorithm such as PointCleanNet - a deep learning method that

classifies and discards outlier samples (80). The approach is considered to be efficient and

robust to varying amounts of noise and outliers within large densely-sampled point clouds

(80).

The Surface Poisson Reconstruction algorithm also requires several parameter specifica-

tions. Often, these parameters are arbitrary and depend on the specific dataset being used

(54). There is no way to ensure that the parameters used in this thesis may work well on

a different version of the dataset. This lack of generalisability is a limiting factor of the

Surface Poisson Reconstruction algorithm.

Another drawback of PointNet is that it is reliant on feature engineering to learn from

the data. But given the complicated, irregular geometry of the KM3NeT data, it is unlikely

that the network will be able to learn without additional features. This is since PointNet

requires equal number of points to be randomly sampled per point cloud while training (1).

The random sampling of points does not guarantee that sufficient event hits will be picked

up, considering that they are very infrequently occurring compared to noise. PointNet2 is a

65

9. LIMITATIONS AND RECOMMENDATIONS

next generation improvement over PointNet (35). It learns hierarchical features similar to

Convolutional Neural Networks and observes non-uniform densities in natural point clouds

(35). Therefore, PointNet2 does not require equal, random sampling from every cloud.

This could be a recommended alternative to PointNet pipeline.

PointNet was deemed unsuitable for regression as its architecture was primarily devel-

oped for classification. The thesis alternatively conducted research into energy inference

using non-linear regression techniques. However, these experiments are preliminary. Re-

sults showed that they were partial towards predicting lower energy values, even for high

energy events. The bias could be addressed through different parameters or by using

boosting methods (81).

Additional testing would also be required to validate the energy predictions obtained.

Only 3D coordinates and time were used for regressing energy values, therefore the predic-

tions are only derived from these attributes. Research on energy inference use techniques

such as Maximum Likelihood Estimation (MLE) to estimate various parameters. These

parameters are then used to train decision trees (78). Some studies also address uncertain-

ties arising from DOM sensitivity, water properties, simulation and statistical uncertainties

(78, 79, 82). The drawback of these solutions is the significant reliance on a-priori infor-

mation which is what the thesis attempted to correct.

In terms of performance, the overall execution time for the pipeline from preprocessing

to evaluation was around 3 minutes. This is not ideal in real-time processing pipelines.

However, long execution times are a known fallacy of deep learning models that employ

complicated algorithms. Moreover, the pre-processing pipeline was evaluated on the CPU

with only two cores. Improvements to the execution time could be obtained by porting

the pre-processing pipeline to the GPU. Also, significant speedups could be obtained by

parallelising the pre-processing of the three datasets.

66

10

Conclusion

Particle detectors are often the source for studying and collecting data in particle physics.

These instruments gather exabytes of data that need to be thoroughly probed for relevant

signals. While the state-of-the-art in hardware has significantly improved and allowed for

detailed data collection, traditional physics controls are often unable to keep up with the

large, high dimensional, irregular data. With this gap between information extraction tech-

niques and information gathering systems, attention has shifted to artificial intelligence.

Research is required to explore the feasibility of state-of-the-art architectures to particle

data before they can be incorporated into the processing pipeline. This thesis examined

one such state-of-the-art deep learning architecture - PointNet, and its ability to learn from

3D mesh representation of neutrino data.

The goal of the thesis was to build a classification network that could label a timeslice as

0 or 1, such that noise could be discarded and events could be saved. The three research

questions were revisited based on the results from the thesis. In order to answer RQ1.0

and RQ 1.1, RQ 2.0 and RQ 2.1 were first resolved.

RQ2.0 Can the KM3NeT dataset be effectively represented using 3D meshes?

3D mesh representations of the feature engineered point clouds demonstrated that

meshes are a valid representation of the KM3NeT data. Moreover, secondary ex-

periments that used 3D and 4D point clouds showed insufficient learning through

means of low precision and recall scores (Section 8). 3D meshes likely outperformed

point-based learning because the meshes added more information to the point clouds

in the form of mesh faces and normals. Moreover, PointNet requires a fixed number

of points to be randomly sampled per point cloud. With 3D meshes, the thesis was

able to sample per mesh face, retaining much of the shape of the data.

67

10. CONCLUSION

RQ2.1 Which meshing algorithm would be most suitable for representing the data?

Poisson Surface Reconstruction was found to be most suitable for representing KM3NeT

data. Based on visual examinations, it showed greater detail, especially around event

clusters (Section 5). It was however not able to capture details in timeslices with few

event hits. Ball-Pivoting Algorithm was also used to reconstruct point clouds. While

BPA was found to be significantly faster in building meshes, it was too simplistic for

the detailed event clusters (Section 5).

RQ1.0 Can PointNet, a geometric Neural Network architecture be trained to classify times-

lices that contain neutrino event hits from timeslices that contain only background

noise?

PointNet can be successfully trained to classify timeslices of the KM3NeT data. This

was indicated via high recall scores for the positive class and the Precision-Recall

curves, measured via Hard Voting (Section 7). It also outperformed the existing L1

Trigger, which had a higher false positive rate. However, PointNet was not able to

correctly classify timeslices with events containing a few hits, for example 30 to 40

event hits.

RQ1.1 Can PointNet achieve a Precision-Recall score of greater than 0.9 for identifying

timeslices with event hits?

Hard-voting predicted a 0.95 recall and perfect precision scores for class_1 contain-

ing event hits. Therefore, it met stakeholder expectations. However, it was only able

to do so with feature engineering and mesh representations. Without feature engi-

neering, it was unable to learn between classes (Appendix 10), and without meshes,

it scored no more than 0.70 on recall and precision (Section 8).

RQ3.0 Can PointNet be extended to obtain energy properties from neutrino events?

The thesis does not recommend extending PointNet for regression tasks. As Point-

Net is built for classification, it would require several changes to make it suitable

for regression. Further, mapping the energy values to the completely randomised

and transformed point clouds after classification tasks would be inefficient. Experi-

ments are instead conducted using random forests. The trained model can predict a

minimum energy of 12.138 GeV for events containing 32 hits.

The pipeline in Figure 10.1 was the finalised thesis pipeline. Three permutations of the

KM3NeT dataset were obtained and processed using radius-based outlier filter. They were

then converted to 3D meshes and trained using PointNet. Several transformation functions

68

were applied to the data during training and testing. Majority voting was used to ensemble

results and obtain final output.

x, y, time

x, z, time

y, z, time

 Majority Voting Output

3D Mesh
Generation
(.off files)

3D
Coordinates
(.xyz files)

Feature
Engineering
(.xyz files)

Training Testing

Rotation

Normalisation Jitter

Point
Sampling

PointNet

Transformations

Pipeline

Pipeline

Pipeline

Pi
pe

lin
e

Figure 10.1: The Complete Process for KM3NeT Timeslice Classification

Despite the noted limitations, this thesis lays the groundwork for 3D point-based deep

learning for neutrino identification amidst noise. The thesis is the first known application

of 3D point-based learning for neutrino detection. It is also the first known work to use

3D meshes to represent neutrino data and achieve high precision and recall scores.

Results from this thesis can be used by physicists at KM3NeT to assess the feasibility

of adopting PointNet into the pipeline. They could also extend the architecture to classify

the three neutrino flavours (25). The event trigger is an important aspect of the KM3NeT

pipeline, both from a fiscal and physics perspective as it determines data that needs to be

saved or discarded (25). The methodology developed in this thesis demonstrates a high

recall and low false-positive rate. Thus, making use of this as a KM3NeT pipeline would

both minimise the noise being saved and ensure that timeslices with events are saved with

a high accuracy. Results from this thesis can also help ascertain the validity of novel point-

based learning for particle physics data. The methods undertaken, the problems faced and

the results obtained could serve as a starting point for others in particle physics wishing

to adopt Neural Networks to their own work.

While this thesis serves as a starting point for examination of novel deep learning ar-

chitectures for neutrino research, there is certainly more work required to understand how

complex networks could be tuned to meet the end goals in the field. Additional studies

would be required to understand performance of the pipeline on the GPU. Adopting deep

69

10. CONCLUSION

learning always presents a trade-off between superior accuracy of results and longer com-

pute times. These trade-offs would require careful examination against existing method-

ology. Despite these gaps, PointNet at its current state has a very promising role in the

future of neutrino research and by extension particle physics.

70

Appendix

PointNet Model Layers

The model layers and corresponding parameters used in the thesis pipeline (Section 5, 6,

and 7) were generated using PyTorch. The following layers were also used for 3D points-

based PointNet (Section 8.1

PointNet(

(transform): Transform(

(input_transform): Tnet(

(conv1): Conv1d(3, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=9, bias=True)

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn4): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(feature_transform): Tnet(

(conv1): Conv1d(64, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

71

10. CONCLUSION

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=4096, bias=True)

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn4): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(conv1): Conv1d(3, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=2, bias=True)

(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(dropout): Dropout(p=0.3, inplace=False)

(logsigmoid): LogSigmoid()

)

The following model summary describes the model used for the 4D PointNet experiment

(Section 8.2).

PointNet(

72

(transform): Transform(

(input_transform): Tnet(

(conv1): Conv1d(4, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=16, bias=True)

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn4): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(bn5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(feature_transform): Tnet(

(conv1): Conv1d(64, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=4096, bias=True)

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn4): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(conv1): Conv1d(4, 64, kernel_size=(1,), stride=(1,))

(conv2): Conv1d(64, 128, kernel_size=(1,), stride=(1,))

(conv3): Conv1d(128, 1024, kernel_size=(1,), stride=(1,))

(bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

73

10. CONCLUSION

)

(fc1): Linear(in_features=1024, out_features=512, bias=True)

(fc2): Linear(in_features=512, out_features=256, bias=True)

(fc3): Linear(in_features=256, out_features=2, bias=True)

(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(dropout): Dropout(p=0.3, inplace=False)

(logsigmoid): LogSigmoid()

)

Model with No Feature Engineering

The model was trained without any feature engineering, and results were collected from

hard voting. Table 10.1 indicates that the model was able to perfectly identify and classify

event timeslices. However, it was not able to identify and label a single noise timeslice.

So, despite the perfect recall for class_1, the model shows no learning ability. This

is further confirmed by the Precision-Recall (PR) and Receiver Operating Characteristic

(ROC) Curve in Figure 10.2. The ROC plot shows curves through the diagonal, indicating

that the classifier was completely random and learnt nothing. The PR curve for class_1 is

also through the diagonal, indicating that its performance was equivalent to a model with

no skill. The model could in a different instance predict the reverse, ie., perfectly classify

noise and none of the event timeslices.

Hard Voting Results: (x y time), (x z time) (y z time)

precision recall F1-score support
class_0 0.00 0.00 0.00 40
class_1 0.50 1.00 0.67 40

Table 10.1: No Feature Engineering: Classification Report for class_0 and class_1

74

Figure 10.2: Classification Metrics: Model without Feature Engineering

75

References

[1] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

652–660, 2017. v, 6, 11, 12, 13, 14, 15, 35, 36, 37, 41, 54, 56, 65

[2] Jacob D Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333,

1973. 1

[3] Jonathan J Halliwell and Stephen William Hawking. Origin of structure

in the universe. Physical Review D, 31(8):1777, 1985. 1

[4] SM Bilenky. Neutrino. History of a unique particle. The European Physical

Journal H, 38(3):345–404, 2013. 1, 2

[5] Arthur Roberts. The birth of high-energy neutrino astronomy: A personal

history of the DUMAND project. Reviews of Modern Physics, 64(1):259, 1992.

1, 2

[6] FE Gray, C Ruybal, J Totushek, D-M Mei, K Thomas, and C Zhang.

Cosmic ray muon flux at the Sanford Underground Laboratory at Homes-

take. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 638(1):63–66, 2011. 1

[7] R Acciarri, MA Acero, M Adamowski, C Adams, P Adamson, S Adhikari,

Z Ahmad, CH Albright, T Alion, E Amador, et al. Long-baseline neu-

trino facility (LBNF) and deep underground neutrino experiment (DUNE)

conceptual design report, volume 4 the DUNE detectors at LBNF. arXiv

preprint arXiv:1601.02984, 2016. 1, 2, 9, 11

76

REFERENCES

[8] R Acciarri, C Adams, R An, J Asaadi, M Auger, L Bagby, B Baller,

G Barr, M Bass, F Bay, et al. Convolutional neural networks applied

to neutrino events in a liquid argon time projection chamber. Journal of

instrumentation, 12(03):P03011, 2017. 1, 9, 10, 11

[9] A Albert, M André, M Anghinolfi, G Anton, M Ardid, J-J Aubert,

J Aublin, B Baret, S Basa, B Belhorma, et al. ANTARES and Ice-

Cube Combined Search for Neutrino Point-like and Extended Sources in

the Southern Sky. arXiv preprint arXiv:2001.04412, 2020. 1, 3

[10] Sebastiano Aiello, SE Akrame, F Ameli, EG Anassontzis, Michel An-

dre, G Androulakis, Marco Anghinolfi, G Anton, Miguel Ardid, Julien

Aublin, et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to

point-like neutrino sources. Astroparticle Physics, 111:100–110, 2019. 1

[11] D Britton and SL Lloyd. How to deal with petabytes of data: the LHC

Grid project. Reports on Progress in Physics, 77(6):065902, 2014. 1

[12] AL Edelen, SG Biedron, BE Chase, D Edstrom, SV Milton, and P Stabile.

Neural networks for modeling and control of particle accelerators. IEEE

Transactions on Nuclear Science, 63(2):878–897, 2016. 1, 2, 11

[13] Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine trans-

form. IEEE transactions on Computers, 100(1):90–93, 1974. 2

[14] Léon Bottou. Large-scale machine learning with stochastic gradient de-

scent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010. 2

[15] B Abi, R Acciarri, MA Acero, M Adamowski, C Adams, D Adams, P Adam-

son, M Adinolfi, Z Ahmad, CH Albright, et al. The DUNE far detector

interim design report volume 1: physics, technology and strategies. arXiv

preprint arXiv:1807.10334, 2018. 2

[16] John N Bahcall. Neutrino astrophysics. Cambridge University Press, 1989. 3

[17] P Adamson, C Andreopoulos, KE Arms, R Armstrong, DJ Auty, S Av-

vakumov, DS Ayres, B Baller, B Barish, PD Barnes Jr, et al. Study of

muon neutrino disappearance using the Fermilab Main Injector neutrino

beam. Physical Review D, 77(7):072002, 2008. 3, 4

77

REFERENCES

[18] Antonio Puccini. On the Bosons’ Range of the Weak Interaction. Computer

Physics Communications, 2018. 3

[19] Masahiro Tanaka, K Abe, C Bronner, Y Hayato, M Ikeda, S Imaizumi,

H Ito, J Kameda, Y Kataoka, Y Kato, et al. Search for proton decay

into three charged leptons in 0.37 megaton-years exposure of the Super-

Kamiokande. Physical Review D, 101(5):052011, 2020. 3

[20] AA Aguilar-Arevalo, M Backfish, A Bashyal, B Batell, BC Brown,

R Carr, A Chatterjee, RL Cooper, P Deniverville, R Dharmapalan,

et al. Dark matter search in a proton beam dump with MiniBooNE.

Physical review letters, 118(22):221803, 2017. 3

[21] Bruce Denby. Neural networks in high energy physics: a ten year perspec-

tive. Computer Physics Communications, 119(2-3):219–231, 1999. 3, 4, 5

[22] GA Voss and BH Wiik. The electron-proton collider HERA. Annual Review

of Nuclear and Particle Science, 44(1):413–452, 1994. 4

[23] Halina Abramowicz, Allen Caldwell, and Ralph Sinkus. Neural network

based electron identification in the ZEUS calorimeter. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, 365(2-3):508–517, 1995. 4

[24] Serguei Chatrchyan, V Khachatryan, AM Sirunyan, W Adam, B Arnold,

H Bergauer, T Bergauer, M Dragicevic, M Eichberger, J Ero, et al.

Performance of the CMS Level-1 trigger during commissioning with cosmic

ray muons and LHC beams. Journal of Instrumentation, 5, 2010. 4

[25] Adrian et al. Martinez. A Letter of Intent for KM3NeT 2.0, Apr 2017. 4,

6, 19, 25, 56, 63, 69

[26] Konrad Karas. Data processing pipeline for the KM3NeT neutrino tele-

scope, 2019. 5, 19, 20, 53

[27] A Aurisano, A Radovic, D Rocco, A Himmel, MD Messier, E Niner,

G Pawloski, F Psihas, Alexandre Sousa, and P Vahle. A convolu-

tional neural network neutrino event classifier. Journal of Instrumentation,

11(09):P09001, 2016. 8, 10, 11

78

https://www.km3net.org/letter-of-intent-for-km3net-2-0/

REFERENCES

[28] Zbigniew Szadkowski and Krzysztof Pytel. Artificial neural network as a

FPGA trigger for a detection of very inclined air showers. IEEE Transactions

on Nuclear Science, 62(3):1002–1009, 2015. 8, 11

[29] MicroBooNE Collaboration. Convolutional Neural Networks Applied to

Neutrino Events in a Liquid Argon Time Projection Chamber. arXiv preprint

arXiv:1611.05531, 2016. 9, 10

[30] MicroBooNE Collaboration, C Adams, M Alrashed, R An, J Anthony,

J Asaadi, A Ashkenazi, M Auger, S Balasubramanian, B Baller, et al.

Deep neural network for pixel-level electromagnetic particle identification

in the MicroBooNE liquid argon time projection chamber. Physical Review

D, 99(9):092001, 2019. 10

[31] Liangpei Zhang, Ke Wu, Yanfei Zhong, and Pingxiang Li. A new sub-pixel

mapping algorithm based on a BP neural network with an observation

model. Neurocomputing, 71(10-12):2046–2054, 2008. 10

[32] IceCube Collaboration et al. Evidence for high-energy extraterrestrial

neutrinos at the IceCube detector. Science, 342(6161):1242856, 2013. 11

[33] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski,

Zahra Ronaghi, Prabhat Prabhat, Wahid Bhimji, Michael Bronstein,

Spencer Klein, and Joan Bruna. Graph neural networks for icecube signal

classification. In 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), pages 386–391. IEEE, 2018. 11

[34] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic

particles in high-energy physics with deep learning. Nature communications,

5:4308, 2014. 11

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a metric space.

In Advances in neural information processing systems, pages 5099–5108, 2017. 12, 66

[36] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Convolutional

networks. In Deep learning, 2016, pages 330–372. MIT Press Cambridge, MA,

2016. 12, 35, 42

79

REFERENCES

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bron-

stein, and Justin M. Solomon. Dynamic Graph CNN for Learning on Point

Clouds. ACM Trans. Graph., 38(5), October 2019. 13

[38] Goodfellow Ian and Courville Aaron. Deep Learning (Adaptive Com-

putation and Machine Learning series), 2016. 14

[39] Michael Waskom and the seaborn development team. mwaskom/seaborn.

Journal of Machine Learning Research, 12:2825–2830, September 2020. 21, 22

[40] Aron Eklund. Beeswarm: the bee swarm plot, an alternative to stripchart.

R package version 0.1, 5, 2012. 24

[41] Ikuru Otomo, Masahiko Onosato, and Fumiki Tanaka. Direct construc-

tion of a four-dimensional mesh model from a three-dimensional object

with continuous rigid body movement. Journal of Computational Design and

Engineering, 1(2):96–102, 2014. 25

[42] Isabelle Guyon and André Elisseeff. An introduction to variable and

feature selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

27

[43] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepi-

ane, Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source

Mesh Processing Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo

Erra, editors, Eurographics Italian Chapter Conference. The Eurographics Associa-

tion, 2008. 28, 34

[44] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer.

Parameterization-free projection for geometry reconstruction. ACM Trans-

actions on Graphics (TOG), 26(3):22–es, 2007. 28

[45] Yuankai Qi, Shengping Zhang, Lei Qin, et al. Hedged Deep Tracking.

Computer Vision and Pattern Recognition, 2016. 28

[46] Xiaojuan Ning, Fan Li, Ge Tian, and Yinghui Wang. An efficient outlier

removal method for scattered point cloud data. PloS one, 13(8):e0201280,

2018. 28, 29

80

https://doi-org.vu-nl.idm.oclc.org/10.1145/3326362
https://doi-org.vu-nl.idm.oclc.org/10.1145/3326362
https://doi.org/10.5281/zenodo.592845

REFERENCES

[47] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in

computer graphics. Computers & Graphics, 28(6):801–814, 2004. 28

[48] Dawei Li, Yan Cao, Guoliang Shi, Xin Cai, Yang Chen, Sifan Wang, and

Siyuan Yan. An overlapping-free leaf segmentation method for plant point

clouds. IEEE Access, 7:129054–129070, 2019. 29

[49] Niloy J Mitra and An Nguyen. Estimating surface normals in noisy point

cloud data. In Proceedings of the nineteenth annual symposium on Computational

geometry, pages 322–328, 2003. 30

[50] Haihua Cui, Wenhe Liao, Xiaosheng Cheng, Ning Dai, and Changye Guo.

Flexible point cloud matching method based on three-dimensional image

feature points. Advances in Mechanical Engineering, 10(9):1687814018795032, 2018.

31

[51] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern

library for 3D data processing. arXiv preprint arXiv:1801.09847, 2018. 31

[52] Seok-Il Kim and Rixie Li. Complete 3D surface reconstruction from un-

structured point cloud. Journal of mechanical science and technology, 20(12):2034–

2042, 2006. 33

[53] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva,

and Gabriel Taubin. The ball-pivoting algorithm for surface reconstruc-

tion. IEEE transactions on visualization and computer graphics, 5(4):349–359, 1999.

33

[54] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface

reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry

processing, 7, 2006. 34, 65

[55] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013. 35

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. Pytorch: An imperative style, high-performance deep

learning library. In Advances in neural information processing systems, pages 8026–

8037, 2019. 35

81

REFERENCES

[57] Matthew F Dixon, Nicholas G Polson, and Vadim O Sokolov. Deep learn-

ing for spatio-temporal modeling: Dynamic traffic flows and high frequency

trading. arXiv preprint arXiv:1705.09851, 2017. 39

[58] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An introduction to statistical learning, 112. Springer, 2013. 39

[59] Urvesh Bhowan, Mark Johnston, Mengjie Zhang, and Xin Yao. Evolving

diverse ensembles using genetic programming for classification with unbal-

anced data. IEEE Transactions on Evolutionary Computation, 17(3):368–386, 2012.

42

[60] Ian H Witten and Eibe Frank. Data mining: practical machine learn-

ing tools and techniques with Java implementations. Acm Sigmod Record,

31(1):76–77, 2002. 42

[61] Mohammad Hossin and MN Sulaiman. A review on evaluation metrics for

data classification evaluations. International Journal of Data Mining & Knowledge

Management Process, 5(2):1, 2015. 44

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011. 44, 45, 55, 63

[63] Tariq Jaffery and Shirley X Liu. Measuring campaign performance by

using cumulative gain and lift chart. In SAS Global Forum, page 196, 2009. 45

[64] Luting Yang, Bingqian Lu, and Shaolei Ren. A Note on Latency Vari-

ability of Deep Neural Networks for Mobile Inference. arXiv preprint

arXiv:2003.00138, 2020. 51

[65] David A Teich and Paul R Teich. PLASTER: A Framework for Deep

Learning Performance. Technical report, Tech. rep. TIRIAS Research, 2018. 51

[66] Jussi Hanhirova, Teemu Kämäräinen, Sipi Seppälä, Matti Siekkinen, Vesa

Hirvisalo, and Antti Ylä-Jääski. Latency and throughput characterization

of convolutional neural networks for mobile computer vision. In Proceedings

of the 9th ACM Multimedia Systems Conference, pages 204–215, 2018. 51, 52

82

REFERENCES

[67] Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan.

Carbontracker: Tracking and predicting the carbon footprint of training

deep learning models. arXiv preprint arXiv:2007.03051, 2020. 52

[68] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and pol-

icy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243,

2019. 52

[69] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Si-

mon Lucey. Pointnetlk: Robust & efficient point cloud registration using

pointnet. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7163–7172, 2019. 55

[70] Liuhao Ge, Yujun Cai, Junwu Weng, and Junsong Yuan. Hand pointnet:

3d hand pose estimation using point sets. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8417–8426, 2018. 55

[71] Alberto Garcia-Garcia, Francisco Gomez-Donoso, Jose Garcia-

Rodriguez, Sergio Orts-Escolano, Miguel Cazorla, and J Azorin-Lopez.

Pointnet: A 3d convolutional neural network for real-time object class

recognition. In 2016 International Joint Conference on Neural Networks (IJCNN),

pages 1578–1584. IEEE, 2016. 55

[72] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Er-

ratum: estimating mutual information [Phys. Rev. E 69, 066138 (2004)].

Physical Review E, 83(1):019903, 2011. 58

[73] Jason Osborne. Notes on the use of data transformations. Practical assess-

ment, research, and evaluation, 8(1):6, 2002. 59

[74] David Ruppert and Raymond J Carroll. Data Transformations in Regres-

sion Analysis with Applications to Stock—Recruitment Relationships. In

Resource Management, pages 29–47. Springer, 1985. 59

[75] George EP Box and David R Cox. An analysis of transformations. Journal

of the Royal Statistical Society: Series B (Methodological), 26(2):211–243, 1964. 59

[76] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.

Introduction to linear regression analysis, 821. John Wiley & Sons, 2012. 60

83

REFERENCES

[77] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J

Stone. Classification and regression trees. Belmont, CA: Wadsworth. In-

ternational Group, 432:151–166, 1984. 60, 61, 63

[78] Rasha Abbasi, Yasser Abdou, T Abu-Zayyad, J Adams, JA Aguilar,

M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, et al. Measure-

ment of the atmospheric neutrino energy spectrum from 100 GeV to 400

TeV with IceCube. Physical Review D, 83(1):012001, 2011. 63, 66

[79] Giacomo D’Amico. Flavor and energy inference for the high-energy Ice-

Cube neutrinos. Astroparticle Physics, 101:8–16, 2018. 63, 66

[80] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J

Mitra, and Maks Ovsjanikov. Pointcleannet: Learning to denoise and

remove outliers from dense point clouds. In Computer Graphics Forum, 39,

pages 185–203. Wiley Online Library, 2020. 65

[81] Tom Dietterich. Overfitting and undercomputing in machine learning.

ACM computing surveys (CSUR), 27(3):326–327, 1995. 66

[82] Maicon Hieronymus, Bertil Schmidt, and Sebastian Böser. Reconstruc-

tion of Low Energy Neutrino Events with GPUs at IceCube. In International

Conference on Computational Science, pages 118–131. Springer, 2020. 66

84

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Neutrinos
	1.1.2 Neural Networks in Neutrino Physics

	1.2 KM3NeT
	1.2.1 Event Triggers
	1.2.2 GPU Pipeline

	1.3 Research Questions
	1.4 Research Outcomes

	2 Relevant Literature Study
	2.1 Feed-Forward Networks
	2.2 Convolutional Neural Networks (CNNs)
	2.3 Graph Neural Networks (GNNs)

	3 Relevant Concepts
	3.1 Properties of Input Point Sets
	3.2 PointNet Architecture
	3.2.1 Permutation Invariance
	3.2.2 Transformation Invariance

	4 Data Generation and Exploration
	4.1 Noise Generation
	4.2 Event Hits Generation
	4.3 Data Combination
	4.4 Key Attributes
	4.5 Visual Analysis

	5 The Pipeline
	5.1 Generation of Point Clouds
	5.2 Feature Engineering
	5.3 3D Mesh Generation
	5.4 PointNet
	5.4.1 PointNet Transformations

	6 Evaluation Methodology
	6.1 Training and Testing Data
	6.2 Model Specifications
	6.3 Ensemble Methods for Results

	7 Classification Results
	7.1 Dataset 1: x, y, time
	7.2 Dataset 2: x, z, time
	7.3 Dataset 3: y, z, time
	7.4 Majority Voting Ensemble
	7.5 Comparison Against L1 Trigger
	7.6 Other Performance Metrics
	7.7 Analysis

	8 Additional Research
	8.1 Alternate Pipeline: 3D Points-based PointNet
	8.2 Alternate Pipeline: 4D PointNet
	8.3 Regression Analysis for Energy Inference
	8.3.1 Data Preparation
	8.3.2 Decision Trees Regressor
	8.3.3 Random Forest Bootstrapping Regressor
	8.3.4 Regression Analysis

	8.4 Summary

	9 Limitations and Recommendations
	10 Conclusion
	References

