Scientific workflow management a
way to enable e-science on both
Grids and Clouds

Adam Belloum
Institute of Informatics
University of Amsterdam
a.s.z.belloum@uva.nl

SHIWA summer school MTA STAKI, Budapest HU July 2012

X
L;‘zl UNIVERSITEIT VAN AMSTERDAM

COMMIT/

Outline

e Introduction
e Life cycle of e-Science Workflow

o Different approaches to workflow scheduling

— Workflow Process Modeling & Management In
Grid/Cloud

— Workflow and Web services (intrusive/non
intrusive)

e Provenance

COMMIT/

101 i%j‘i UNIVERSITY OF AMSTERDAM
Computational
)1] Science

e Objective of the group

— address the research issues related to building an
e-Science framework which enables scientist to
share, use knowledge add use geographically
distributed resources (grids, clouds)

o Keywords:
— Grid, Scientific workflow, SOA, provenance,
interoperability

Collaborative e-Science e)zpet_'iments: from scientific workflow to knowlecz/?e_
sharing A.S.Z. Belloum, Vlaaimir Korkhov, Spiros Koulouzis, Marcia A Inda, and Marian

Bubak JULY/AUGUST, IEEE Internet Computing, 2011

The project: COMMIT

COMMIT is a public-private research
community solving grand challenges in
information and communication science
shaping tomorrow’s society.

COMMIT has 15 projects and 200 people
in 80 organisations such as universities,
TNO, Thales, Logica, Philips, AMC, and
SME’s like DevLab, Hyves, Waagqg.

COMMIT delivers science, disseminates its
results, measures its impact, generates

synergy.

www.Commit-nl.nl

Information retrieval for
information services

f_! Interaction for universal access

g Virtual worlds for well-bei

Soclally-enriched access to
¥ linked cultural media

-

SWELL: Smart reasoning

'+ . systems for well-being at work
and at home

Sensor networks for public
| safety

‘«'[Very large wireless sensor
. networks for well-bel

W4 Com ble embedded systems
‘ for_healthcare
. B
4 Metis: Dependable cooperative
systems for public safety

. Trusted healthcare services

_"{ st Spatiotemporal data warehouses
g for trajectory exploitation

e-Infrastructure virtualization for
e-sclence applications

- From data to semantics for
":- scientific data publishers

e-Biobanking with imaging for
- healthcare
70 B

SN e-Foodlab

Workflow management system

Workflow - ——
management system is gt s —
a computer program that o o —aa
manages the execution of =

a workflow on a set of
computing resources.

D EPR is set to:<Del dEPR xsi:type="ns1:EndpointReferenceType" xmlIns:xsi="|
<ns1:Address xsi:type="ns1:AttributedURI">https://146.50.22.71:8443 /wsrf/services/Del
s1 erencePropertiesType"

pertiesType">
.globus.org/08/2004/delegationService">f21

etersType"/>

The user interface of the WS-VLAM a
workflow management system developed
in the VL-e project to execute application
workflow on geographically distributed
computing resources

Deployed as service on Dutch super Computer (DAS3), and Dutch NGI (BigGrid) Clusters

COMMIT/

Workflow

A workflow is a model to represent a
reliably repeatable sequence of operations/
tasks by showing explicitly the
interdependencies among them.

Human transcriptome map

| SWMedian
n

=] LocalFileWriter
u = SigWinSelect

SWMedianProb n
LocalFileReade @

|
| ColumnReader | - Sample2Freq | = FDRThreshold]

|
http://www.youtube.com/watch?v=R6bTFrzaR_w&feature=player_embedded

SigWin-Detector workflow has been developed in the VL-e project to detect ridges in

for instance a Gene Expression seguence or Human transcriptome map, BMC Research
Notes 2008, 1:63 do0i:10.1186/1756-0500-1-63.

COMMIT/

List of applications developed using WS-VLAM

e sigWin detector [Micro-Array Dept-UvA]
o Affymetrix Permutation [Micro-Array Dept-UvA]
e Omnimatch [UU/Leiden]

e wave propagation [TUE]

e Blast [AMC]

e gut microbiota [cwI]

e Smart Infrastructure [SNE-UVA]

e Dynamic network control [sne-uvaj

° GridSFEA, [TU Munchen]

More applications www.science.uva.nl/~gvlam/wsvlam/Applications

COMMIT/

Let us Start with an UvA-Slide: Virtual Laboratory

for eScience

oxNl
Cal

Stepl: desthepZ: performing Step3: analyzing

an experiment the experiment

the experiment
results

Scientific Workflow Management

:>i Process Flow

success

In VL-e: model both computing tasks and human activity based processes,

|
|
|
i Systems
| Process Flow | <
i Template : Taverna, Kepler, and Triana: Template
i ' model processes for computing tasks.
i PFT in VLAMG PFT instances in VLAMG
|

and model them from the perspective of an entire lifecycle. It tries to support

*Collaboration in different stages
«Information sharing
*Reuse of expenment

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

28, Februar 2011 | 3

V

JNIVERSITY OF APPLIED SCIENCES

FH AACHEN

COMMIT/

Complex Scientific experiments model

(1)Problem (2) Experiment
investigation: Prototyping:

J Look for relevant problems e Design experiment workflows

o Browse available tools L— | e Develop necessary components

o Define the goal

. Decompose into steps

T L | repostories | 1 L

(4) Results \\/43.) Experiment
Publication: Execution:
e Annotate data e Execute experiment processes
e Publish data e Control the execution
e Collect and analysis data

Collaborative e-Science e)((Jperiments: from scientific workflow to knowledge
sharing A.S.Z. Belloum, Vlaaimir Korkhov, Spiros Koulouzis, Marcia A Inda, and Marian
Bubak JULY/AUGUST, IEEE Internet Computing, 2011

COMMIT/

argets

o co-allocate resources needed for workflow
enactment across multiple domains?

e achieve QoS for data centric application
workflows that have special requirements on
network connections?

e achieve Robustness and fault tolerance for
workflow running across distributed resources?

e jncrease re-usability of Workflow, workflow
components, and refine workflow execution?

COMMIT/

e Introduction

Outline

o |Lifecycle of an e-science workflow

e Different approach to workflow scheduling
— Workflow Process Modeling & Management In

Grid/Cloud

— Workflow and Web services Workflow and Web
services (intrusive/non intrusive)

e Provenance

(1)
Problem N—/

investigati?r’ S

4

(4)
Results
Publication:

Expeﬁ%ent

hared
1C \repositories

,——Prototyping

Expér%)nent

Execution:

Workflow composition

. DistriomkiNwevkiiow
‘Management system

Workflow execution

Web Service Interface

OGSA DAL |::

| |

Web Service Interface

Grid JJ
Services

Engine

Workflow J
Web service

| |

Grid Middleware:
Data management

Grid Middleware:

Process & resource management

Network & storage Resources

Data Management Stack

Network & Computing Resources

Process Management Stack

Bob Hertberger keynote talk at 2nd IEEE Conf on eScience & grid computing , Amsterdam 2006

COMMIT/

WS-VLAM Engine: architecture (1/2)

Service host(s)

compute element(s)

GT4 Java Container

JoP f pre-ws-GRAM J
ful ‘l) "

e I\

2 . I

: s

Delegate

Workflow

service components

Delegation J

GOMMIT/

Client

Delegate

WS-VLAM Engine: archltecture (2/2)

cenaﬁo-agenk——————

- MY
— —— - o JU>
_ a4l XXxx-agent] 3
=
- S
e / |oscsgent) -
/
/
(3) bre-ws-GRAM|
Worker
nodes ii
pre-ws-GRAM
VVorker
[RFT or VFS
Delegatlon b

Step 1

Step 2 <

Step 3 <

Sequence-diagram

1. Create: delegation credential

Get the delegation credential EPR

. Submit workflow execution plan

v

3. Submit workflow compo

ent

Get the RTSM instance EPR

~
e ECETETEEE PR B

4. Create: RTSM instance

¥

B. subscribe: to notification events
Get the notification events

v

eSS

Sequence-diagram

Create:
. delegation credenti

«Get the delegation

-Step 1 ecredential EPR

2. Submit Meta-workflow
e execution plan ¢3. Create:

oRM instance

¢2. Submit workflow >
e execution plan

o4, Create:
¢RTSM instanc

¢4, Create:
eRTSM instance

\ 4

eGet the RM instance EP

v

5. subscribe: to notification events

\ 4

*Step 3 < Get the notification events

WSRF Services
- WS-VLAM engine
- workflow component repository

Current depl

VLe Studio A Nl
o WS-VLAM composer gj
° VBrowser e- Studlo

o Semantic tools
SAW: Semantic Annotation for Workflow

CLAMP: Connecting LAnguage for Modules & Programs

HAMMER: Hybrid-bAsed MatchMaker for e-Science
Resources

ara: National Supe
computing center

J

Server host

% Computing Nodes

. Workflow components

o Grid Middleware > GT4 Experimental

Enviropment

COMMIT/

Model of computation

e Model of computation: stream-based process
network.

- Engine co-allocates all workflows.
- Components waste time idling.
— Co-allocation difficult.
e Communication: time coupled
— Assumes components are running
- Simultaneously
— Synchronized p2p
- Fixed TCP/IP

WS-VLAM communication library

RTS

XML description of

experiment

| Resource Manager |
A

]v
RTSM Factory

= RTS Manager
Y
GRAM i GRAM
Globus . Globus IoP
gatekeeper gatekeeper
il v v i, v v

i N VN
Node A Module core Node B Module core

Fie. 1. Run-Time System Architecture.

/'/ VLAM-G module \
|, \
)/ Module core
;oL vimain())
/
/ Input 4 VLport library) Output
/
// Por ’ CORBA connection handler | Port
/
,'/ (X Datastream support (GASS, GridFTP)) S

-
’/
-

Fig. 4. Port hb@mem[%né\t architecture.

V. Korkhov et al. VLAM-G: Interactive data driven workflow engine for Grid-enabled resources,
Scientific Programming 15 (2007) 173-188 173 IOS Press

WS-VLAM communication library

Data transfer rate as a function
of the data block size (average
of 10 measurements per each
data-block

time, sec

with the deviation not
exceeding 5 percent)

1000

100

10 100 1000 10000
data size, MB

—— libviport —-m-—GridFTP —-&—fast GridFTP

throughput, MB/sec

10 100 1000 10000
data size, MB

[—e—libviport —-m-—GridFTP ——&—fast gridftp

Fig. 7. Average performance of the RTS library on WAN compared with standard Globus data transfer tool.

V. Korkhov et al. VLAM-G: Interactive data driven workflow engine for Grid-enabled resources,

Scientific Programming 15 (2007) 173-188 173 10S Press

COMMIT/

Model of computation

e Model of computation: dataflow network
— components scheduled depending on data
— components only activated when data is available
- no need for co-allocation

e Communication: time decouples
— messaging communication system.
— components not synchronized
— communication not strictly TCP/IP

COMMIT/

Additional features-Farming

e Task farming: task replication.
e Increases data consumption and production.

e Implements 3 types of farming:

— Auto Farming: The engine decides on farm size
depending on port load.

— One-to-One Farming: A task replicated for every
message received.

— Fixed Farming: Statically defined.
e Allows parameter sweep studies.
e A task becomes a parameter engine

GuUl
Composer

VLAM XML DAG

Workflow

e =

Submitter N

! Datafluo - Rnﬁstem H
. Hearbeat H
' :

/__-» Monitor H

Enactment E
Engine <‘\’ :
Message :

Farming | Exchange '
¢ :

1 .

Resource Reactor :
Submission Server .
Scheduler - — E

ue Monitor
Server

E Task Dynamic Module

Task

Task Harness

:

. —

a 1
.

.

. Resource

.

Globus I /
/
I N N T m S Em R S
: Distributed R urces :
. .
1 S
H
Resource .
Information
Service

Logging

Message Fabric

1
1
|
I"—I_I GsiFtp |

Reginald Cushing, Spiros Koulouzis, Adam S. Z. Belloum, Marian Bubak, Prediction-based Auto-
scaling of Scientific Workflows, 7th IEEE International Conference on e-Science, December 2011,
Stockholm, Sweden

System Overview

Message Queues

Message
Enactment (e

/ Router
Engine

.la* - - - - - A"
Auto-Scaling

\
\
} \
7 \

Resource h
Submission

Schedll i Pluggabe

cheduler Fault l\ Task Data Store

Tollerance \ /
/
\ Task Harness ¢
N 4
. . 4
Submitter N . 7

monitor

Loosely coupled
modules revolving
around a message
broker

Reginald Cushing, Spiros Koulouzis, Adam S. Z. Belloum, Marian Bubak, Prediction-based Auto-scaling
of Scientific Workflows, Proceedings of the 9th International Workshop on Middleware for Grids, Clouds

and e-Science, ACM/IFIP/USENIX December 12th, 2011, Lisbon, Portugal

Enactment
Engine

Message Queues

Enactment Engine

Message
Router

Task
Auto-Scaling

l

Resource
Submission
Scheduler

Submitter

monitor

-

Fault
Tollerance

-——— -
e

Pluggabe
Task

Task Harness

—— - - -

Dataflow engine
(top-level
scheduler) based on
Freefluo®

Models workflows
as dataflow graphs

Vertices are tasks
while edges are
dependencies(data

Tasks have ports to
simulate data
channels

Dataflow model dictates that only tasks which have input are scheduled for

execution.

§http://freefluo.sourceforge.net

essage Queues

Enactment
Engine

Task
Auto-Scaling

l

Resource
Submission
Scheduler

Fault

Tollerance

Submitter

monitor

Message Broker

Message
Router

- - - = .
- -

-
Resources: Grid, Cloud

Pluggabe
Task

Task Harness

- - - -

Message broker
plays a pivotal role
in the system

Message broker
acts as a data buffer

Communicating
tasks are time
decoupled

Through queue
sharing we can
achieve scaling

Tasks communicate through messaging where messages contain
references to actual data

Enactment
Engine

Message Queues

Submission System

Message

Router

——

Task
Auto-Scaling

A 4

Resource
Submission

Scheduler

Submitter

monitor

- =
- Rl

Fault
Tollerance

L Pluggabe
! Task

\ Task Harness

- - -

Pluggable
schedulers (bottom-
level) for task
match-making

Submitters (drivers)
abstract actual
resources such as
cluster, grid, cloud

Scheduler matches
a task to a submitter

Submitter does
actual task/job
submission

COMMIT/

ask Harnessing

:OZO’O 5 Task harness is a
! Message Queues - late binding, pilot-
EnEactment e / Routegr jOb mEChar“Sm
ngine
/_ _______ A harness is
A“t‘;lgi;"ng Res;urces: Grid, Cloud SmeIttEd WhICh WI"
l pull the actual job
Resource 4\] The harness
esour
Shader —] Pluggive . | separatesf data
Tollerance I /‘ tl’anSpOft I’0m
1 TaskHarmess / scientific logic

Submitter

Better control of
tasks

monitor

Message Queues

Enactment
Engine

s

Message
Router

Task
Auto-Scaling

- —— -
e

2 Resources: Grid, Cloud

A 4

Resource
Submission
Scheduler

Fault
Tollerance

Submitter

monitor

Pluggabe
Task

Task Harness

- - - -

ask Auto-scaling

Messages between
tasks are monitored

Queued data and
mean data
processing time are
used to calculate
task load

Auto-scaling
replicates a
particular task to
ameliorate the task
load

Replicated tasks (clones) partition data by sharing same input message

queues

COMMIT/

Scaling Concepts

atomic
[Task }

parcels(messages)

COMMIT/

Scaling Concepts

Data organized in
atomic
parcels(messages)

Task processes data
sequentially
Task

COMMIT/

Scaling Concepts

atomic

parcels(messages)

Task processes data
sequentially

Task

COMMIT/

Scaling Concepts

S

—

Data organized in
atomic
parcels(messages)

Task processes data
sequentially

COMMIT/

Scaling Concepts

atomic

parcels(messages)

Tasks processes

A \'\ > data concurrently
Task } Adding more tasks
increases message

consumption rate

COMMIT/

Scaling Concepts

&' B
e

L

Data organized in
atomic
parcels(messages)

Task processes data
sequentially

Adding more tasks
iInCreases message
consumption rate

Challenge: How
many tasks to
create?

Too many and tasks get stuck on queues. Too few and optimal performance

not achieved

COMMIT/

Load Prediction

. + { Task } = X seconds

IR ~ 6x seconds

Time Slot

[J = k seconds
Task

Simplified Load = 6x/k time slots

Assumption: Size of data directly proportional to computation time. May
not always be the case

COMMIT/

Auto-scaling steps

Calculate data processing rate for designated port

size(Cip.t,.)

proc(ipt,) = =5

=2 mitip,tk (mj—l) mj)

COMMIT/

Auto scaling steps

Calculate data processing rate for designated port

size(Cip.t,.)

proc(ipe,

Size of Consumed Data Data Processing time

COMMIT/

Auto scaling steps

Calculate data processing rate for designated port

size(Cip.t,.)

proc(ip:,) = ==

j=2 mitip,tk (mj—l) m])

Predict processing time for queued data

pred(ipe,) = size(Qip.t,) X proc(ips,)

COMMIT/

Auto-scaling Steps

Calculate data processing rate for designated port

size(Cip.t,.)

proc(ipy)|= wm Mitip.t, (Mji—1,M;)

j=2
Predict procwdata
pred(z'ptk_)(— size(Qip.t,)| X |proc(ipe,,)

Data size of queued data

COMMIT/

Auto-scaling Steps

Calculate data processing rate for designated port

size(Clip.t,.)

proc(ipt,) = ==

=2 mz’tip,tk (mj—l) mj)

Predict processing time for queued data

pred(ipt,) = size(Qip.t,) X proc(ips,,)

Calculate needed replicated instances

20
repl(ty) = e tgiptk)
k

COMMIT/

Auto-scaling Steps

Calculate data processing rate for designated port

size(Cip.t,)

proc(ip:,) = ==

j=2 m’l:tqu,tk (mj—l) m])

Predict processing time for queued data

pred(ipe,)|= size(Qip.t,) X proc(ips,)

Calculate n~e\eded~ze\plicated Instances

\
E___/”" Ime Quantum for tas

COMMIT/

Auto-scaling Steps (summary)

e Clones are submitted in bursts so not to flood resources

e Port is continuously monitored and further bursts can be
submitted

e Once clones are active, message consumption is faster since
clones share same queues

COMMIT/

Queue sharing

+ Cloning Queue Layout
]

Parent Task

Clone Task 1

Clone Task 2

Data partitioning using message queues. Shadow(gray) queues allow
non partitionable data to be received by all clones

COMMIT/

Use case

Image processing workflow

{ Parameters

Collector }

Core modules are Matlab
functions

Converterl

[Directory] {Norma"ze \ Histogram }’[Results 1

Reader Difference

Input: set of images
Output: histogram distance

Converter2

Images converted to different color spaces Collector J

Histogram difference is calculated between color spaces

COMMIT/

Use case

Color coded workflow to
better understand the result
graphs

Converter2

Time

Workflow Without Scaling

R ¥ " ' "

00:55:00
00:50:00
00:45:00
00:40:00
00:35:00
00:30:00
00:25:00
00:20:00
00:15:00
00:10:00
00:05:00
00:00:00 — — D 1 L 'l
0 2 4 6 8 10
Jobs
DirectoryReader mmmm Converter 1 —— Histogram
Normalize &= Converter 2 s Results s
Parameters s ImageCollector ——

Normal workflow execution. Parallelism only achieved through
workflow structure

Time

00:55:00
00:50:00
00:45:00
00:40:00
00:35:00
00:30:00
00:25:00
00:20:00
00:15:00
00:10:00
00:05:00
00:00:00

Workflow Without Scaling

0 2 4 6 8 10
Jobs
DirectoryReader mmmmm Converter 1 —— Histogram s
Normalize === Converter 2 s Results s
Parameters ImageCollector ———

Slow task causing a bottleneck in the workflow

COMMIT/

Part of workflow stalled
because of bottleneck in
workflow

Scaling Converterl can
circumvent the bottleneck

Bottleneck causes other
tasks to lay idle waiting
for data

Use Case

Converter2

Workflow execution with Scaling

Time

e

05:00

03:00

02:00

01:00

00:00

‘,
—
-

=

- ““"“l“""l"“""' ﬂun""""

|
1 P

1

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Jobs
DirectoryReader mmmmm Converter1 —— Histogram
Normalize === Converter2 s Results

Parameters ImageCollector ——

Time

07:00

05:00

03:00

02:00

01:00

00:00

‘,
—
-

=

“
|| ‘ 4
| ‘
4
4

1 1 P

1

-

0

2

4 6 8

DirectoryReader mmmmm
Normalize &=—/=2
Parameters s

Jobs

Convertert ——
Converter2 s
ImageCollector ——

Histogram s
Results

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Time

07:00

05:00 i
04:00 [
03:00 I
02:00 I

00:00

“"““I“I““"l"""'"i “”"""H

L

1 .) l l 1

L

L \ l l 1 l

L , l l | |

-

0

2

4

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Normalize
Parameters =—

Converter! ——
Converter2
ImageCollector

Histogram
Results

Time

07:00

05:00 F
04:00 |
03:00 |
02:00 P

01:00

00:00

,,
I
-

4

. 1 L 1 1 L 1

L 1 1 L

.
4
| 4
T
-
1 i L 1 1 L 1 1

1

s

1

"

"

1

4

1

-

4 6 8

DirectoryReader
Normalize &=/
Parameters s

Jobs

Converter! ——
Converter2 cmmmm
ImageCollector ——

Histogram s
Results

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Time

05:00

03:00

02:00

01:00

00:00

Other Scaled Task -1

L 1

]
|

]
1

.

1

4
4
s
- ll “
i <
-
[e
s
-
[-
[R
T =
4

-

.,
I
-

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Jobs
DirectoryReader mmmm Converter1 —— Histogram
Normalize === Converter2 s Results s
Parameters ImageCollector m——

ImageCollector was set to a fixed amount (4)

Time

07200

05:00

03:00

02:00

01:00

00:00

Y T Y

.
—
-

-

PR Y

| —

]
1

1

|||““"“l“l"""“""' . ||ﬂ

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Jobs
DirectoryReader mmmmm Converter1 —— Histogram
Normalize === Converter2 mmm Results
Parameters ImageCollector —

HistogramDifference was set to one-to-one scaling.
Each parameter generates a new task

Extension to support Cloud resources

Gul
Composer [VLAM XML DAG

Workflow
pmmmmmcmcccce e e e e e e e e m e m e ———————————
: Datafluo - R me System :
. Hearbeat :
H /—" rMonitor :
H .
Enactment

H
E Eoaine '\.

. Message
E Farming I Exchange
H

3

TGrid Manager

1
Submitter N I ’ :
Globus I E et e e ———————

: H

:---.7 7-----------------------.‘ g Task

L]

Resource

I 8 -
- . -
H . =
H H -
- Information HE N e
- Service s
H A el s e e s oo
: : H 1 :
- . | .
. Resource H H 1 H
. H : GsiFtp I .
H

Resource on-demand using multiple cloud providers, Super-computing 2010, and SCALE 2012

COMMIT/

Outline

e Introduction
e Lifecycle of an e-science workflow

e Different approach to workflow scheduling

- Workflow and Web services (Workflow and

Web services (intrusive/non intrusive)
e Provenance

(1)
Problem N—/

investigati?r’ S

(4

)
Results
Publication:

Expeﬁ%ent

hared

,——Prototyping
1C \repositories

Expe(rslznent

Execution:

COMMIT/

Usage of Web Services in e-science

o WS offer interoperability and flexibility in a large
scale distributed environment.

e WS can be combined in a workflow so that
more complex operations may be achieved,

e but any workflow implementation is potentially
faced with a data transport problem

Message Queues

Service Submission

Results
Output

Bootstrap
A _—
l I
0220
|
N
Service
Submission — — =
Resources:
l / Grid, Cloud
L /
Submitter " Web
. Service
monitor \
\
N
~

— —

Service
Library| @

~

—

Tasks/Jobs can be queued on
the runqueue by any entity. The
service submission listens on
the runqueue and picks up new
tasks to submit

Resources such as Grid or Cloud
are abstracted using submitters
plugins

Enabling a new resource is a
matter of writing its submitter

Service Submission performs
matchmaking between services
and resources to run on

Reginald Cushing, Spiros Koulouzis, Adam S. Z. Belloum, Marian Bubak, Dynamic Handling for
Coo&eratm Scientific Web Services, 7th IEEE International Conference on e-Science, December 2011,

Stockholm, Sweden

COMMIT/

Bootstrap

Service Container Module

Message Queues

Results
/ Output

Service

Library

Service
Submission

—

|
Submitter
monitor

Resources:
V4 Grid, Cloud
/
Web
Service
\
\

e The service container (Axis2)

is the actual task that is
submitted to a resource.

The service container acts as a
pilot-job mechanism Once
active it will pull a web service
to host.

Axis2 is heavily modified to
invert web service invocation
from passive to active.

Scaling, orchestration and
communication are all handled
within the service container

COMMIT/

N\

Bootstrapping Workflows

Message Queues

>

Results
Output

Service
Submission

l

|
|
Submitter "
monitor

— —

.
Resources:

/ Grid, Cloud

Web
Service

Service
Library

The architecture has no
central coordinator to
orchestrate a workflow.
Hence a workflow is only
bootstrapped i.e. submit
the starting services. The
rest are autonomously
scheduled by the service
containers on the resources.

The bootstrap client submits
the first service and waits
for output of the last
service.

Orchestration Steps

Submission Web 1. Workflow is bootstrapped by

: Service
Message geryice submitting the workflow entry points

Client : :
Broker Container Service onto the queue

- |
Bootstrap '|' Get 2. Submission service picks up the
| | service queued service and submits to a
Pull resource.
Wait Mb“) . .
Results < Get Inputs invoke 3. Service container starts executing on a
. —> resource
Submit Return 4. Service container pulls a web service
7 WR——— - Services e T and polls for data to be consumed by
Output the service.
‘RESUItS 4 .. |
5. Service container outputs data to the
T T -|_ next service

6. Service container queues the next
service if none exist

COMMIT/

Service Container - Transport

Web
Service

Scaling
Furzzy
Controller

Command

Handl
andier Workflow

Enactor

Message
Transformer

SOAP Sca*ng Commands Next }ervices S&AP
in out in out out

Transport handler requests
SOAP from message broker
queues instead of passively
listening for HTTP

Pull model allows web
services to “bypass” firewalls
and thus can be deployed
within networks

Transport Sender picks up
the return SOAP message and
sends it to the message broker

COMMIT/

Service Container - Control

Web
Service

/\\

Scaling
Fuzzy
Controller

Vi

ommand
Handler

Workflow Message
Enactor | Transformer

SOAP Scazng Commands Next jervices SX(

in out in out out

Fuzzy controller
implements auto-scaling
routines

Workflow enactor
implements autonomous
orchestration which makes a
central coordinator
redundant

e Message transformer transforms a SOAP output to SOAP input

for other services in the workflow

e The message transformer allow back-to-back service

communication

COMMIT/

Resource management

e Within a single workflow services are competing
for resources.

e Scaling one service without any regard to the whole
workflow may starve parts of the workflow and
hamper progress

e It would be ideal to have a mechanism to greedily
consume resources if no one is using them but
donate back resources once they are requested.

Fuzzy controller tries to do just that.

taskLoad

15 20 25 3.

Membership
o

a very_high a ideal a high = low very_lowl

|

Fuzzy Controller

e Task (web service) load and
Resource load are inputs to
the fuzzy controller.

Rule Base
Inference —
Engine

Membership
o o o

replication

l

& pos!

a replication:NaN (CenterOfGravity) a positive_slow
itive_a

gr a negative_agr « zero negative_slow

resourcelLoad

100/
0.75
0.50 1
0.25
0.00
0.0 05 10 15 20 25 3.0

In very_high & normal a high = low very_lowl

Membership

J

e The controller applies a
number of fuzzy rules to
determine the output which
is the replication factor.

e IF taskLoad IS very_high AND resourcelLoad IS very_low
THEN replication IS positive_aggressive.

e IF tasklLoad IS very_low AND resourceLoad IS high THEN
replication IS negative_aggressive.

Membership
o o o

tasklLoad

a very_high a ideal a high = low very_low|

15 20 25 3.0

A 4

A

Rule Base
Inference
Engine

a

Membership

resourkcelLoad

1.00
0.75-
0.50
0.25-
0.00
0.0 0.5 10 15 2.0 25 3.0

Invery_high a normal & high = low very_low|

IF(taskLoad) I

THE plicatio 56

Fuzzy Controller

repllca tion

Membership
o (=] o

a replication:NaN (CenterOfGravity) a positive_slow
& positive_agr a negative_agr « zero negative_slow

Task (web service) load and Resource
load are inputs to the fuzzy controller.

The controller applies a number of
fuzzy rules to determine the output

which is the replication factor.

AND resourcelLoad IS very_low

Eiw Ive_aggressive.

IF taskLoad IS very_low AND resourcelLoad IS high THEN
replication IS negative_aggressive.

COMMIT/

Fuzzy Rule Map

e Service load is based on the amount
of data being queued on the service
and the time quantum for the

® service to run

° o The service container continuously
s monitors the data processing rate
and estimates the computation time
needed to process all the queued
data within a time frame of the data
and the processing time are directly
proportionate. This might not be the
case for all problems.

Replication

Resource Load

The estimated processing time and the time quantum given by the
resource for executing the service are used to derive the service load.

Thus a service load of 2 means that it will take twice as much time as the
allocated quantum to process the data.

COMMIT/

Back-to-Back Communication

Pipeline e Back-2-Back communication
(A.methodl()) (B.memodm) allows web services to
communicate directly
R B Ca G without the need for an
| Service A ‘/—\ A.method1.input intermediate client.
methodl() |€&——— A.methodl.connections o]
>__’ —ry— . * This is achieved through the
Y g | e
method1()

connections queues.

..

Foreach connection in A.method1l.connections
SOAPTemplate = getTemplate(connection);
destinationQueue = getDestination(connection);
newSOAP = transformSOAP(A.method1.output, SOAPTEmplate);
write(newSOAP, destinationQueue);

COMMIT/

Autonomous Orchestration

Pipeline

~ e The service container can
(A.methodl()) (B-methOdlﬂ) query the message broker to
.. deduce if and instance of B is
Back-to-Back Communication runn | ng .
Sarvicai ‘/—\ A.methodl.input :
methodl() |&——— Amethodl.connections | i@ [f no instance of B is running,
| emethoslimput . the service container for A
Senangl -+ St it ~ submits B to the runqueue.
: method1()
et . SEFVICE CONtAINErs are mMyopic

Foreach connection in A.method1l.connections
SOAPTemplate = getTemplate(connection);
destinationQueue = getDestination(connection);
newSOAP = transformSOAP(A.method1.output, SOAPTEmplate);
write(newSOAP, destinationQueue);
If not active(destinationQueue)
submit(getService(connection));

COMMIT/

Use Case

| e Workflow with 2 pipelines.
—»| localAlignment htmIRender . .
The pipelines perform
sequence alignments using
>_. *‘ data from UniProtKB
sink
» e Each pipeline performs 22500
alignments i.e. 45100 total

alignments in all

e All modules are standard web services which are hosted in the modified
Axis2 container

e The alignments where performed using BioJava api

e Source and sink are part of the bootstrapping sequence. Source submits
the getSequenceld service while sink waits for output from the
htmIRenderer

e The Distributed ASCI Computer 3 (DAS3) was used as the resource pool.

WWW.uniprot.org

service load

25

-
o

0.5

Evaluating Auto- Scallng

T

T 1 1 I 1 1

globaIAhgnment

localAlignment
getSequencelds -+

htmIRender

50 100 150 200 250 300 350 400 450
seconds

Service Load

500

service instances

16

14

12

—
o
T

<o

<

L]

T

gIobaIAhgnment

localAlignment
getSequencelds -+

htmIRender

50 100 150 200 250 300 350 400 450
seconds

Running Service instances

500

Scale up we

| ' global;\lignment
localAlignment
getSequencelds -~
htmIRender
25 ‘
2k
T
@
o
815
4
Q
7]
1k
05 |
o L : . s — . | | |

0 50 100 150 200 260 300 350 400 450 500

Peaks in load(left) will result in peaks in instances(right).
The fuzzy controllers scale up the web services to meet

the demands

seconds

b services

service instances

1 I
globalAlignment
localAlignment
getSequencelds
htmIRender

I

50 100

200

service load

25

-
o

0.5

' ' ' I '] global;\lignment
localAlignment
uenwlds
[Render
A N
0 50 100 150 200 250 300 350 400 450 500

seconds

service instances

Scale up we

b services

16

14

12

—
o

<o

<

1 T |l 1 T I ' : l
globalAlignment
localAlignment
getSequencelds -+
i htmIRender -
1 1 l l | \ | l l
0 50 100 150 200 250 300 350 400 450 500

seconds

25

service load
o

0.5

Greedy Scale up

' '] I '] ' globaIAhgnment gIobaIAhgnment ' I I ' ‘ 'l
localAlignment localAlignment
getSequencelds -+ getSequencelds -+
htmIRender 14 htmIRender .
- ‘ -
|
12 1
w10< i |
8 !
< ' | |
g :
7} '
i | T E 8 i E r‘ | l)
-8 E]
e z
o :
(1} 6 L ‘ al
"-. atio]
: ; }
/ | ! 2 L | | | n
y I 1 J N 1 """""""")] 1 I 0] ! ! ! ! L]]]
0 50 100 15 200 260 300 350 400 450 500 0 50 100 150 200 250 300 35 400 450 500

seconds seconds

service load

25

-
o

0.5

Scale down web services

T 1 1 I 1 1 | 1 16 1 = I T T T T T T 1
globalAlignment globalAlignment
localAlignment localAlignment
getSequencelds -+ getSequencelds -
htmIRender 14 htmlRender |
- | .
12+ 1
LOF :
8 e
c ' | |
o :
7} '
o 4 £ 8 W V | l 9
| I8 ..:
G z
o :
(] 6 L . H
IS 1
' b
1 | 2 | | ! -
I 1 J N 1 """""""")]] I 0 !] !] ! L. !]]
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450

seconds seconds

500

COMMIT/

Outline

e Introduction
e Lifecycle of an e-science workflow

e Different approach to workflow scheduling

- Workflow and Web services (Workflow and

Web services (/non intrusive)
e Provenance

(1)
Problem N—/

investigati?r’ S

(4

)
Results
Publication:

Expeﬁ%ent

hared

,——Prototyping
1C \repositories

Expe(rslznent

Execution:

Usage of Web Services in e-science

e In service orchestration, all data is passed to the workflow
engine before delivered to a consuming WS

e Data transfers are made through SOAP, which is unfit for
large data transfers

Service
Container

Service
Container

ProxyWs

Large Data
for streaming

Large Data
for streaming

Data Transfers

Enabling web services to consume and produce

large distributed datasets Spiros Koulouzis, Reginald Cushing, Konstantinos Karasavvas,
Adam Belloum, Marian Bubak to be published JAN/FEB, IEEE Internet Computing, 2012

ProxyW$s

e uses multitude of protocols to transport large data
— used as an interface for developing WSs able to stream data.

— Or as enabler for legacy web services to stretch their current potential
by referencing data that would otherwise be delivered via SOAP

Service
Container

@rvioe
Container

Large Data
for streaming

Large Data
for streaming

Data Transfers

GridFTP

. . (LFc]
Enabling web services to consume and produce (ire)

large distributed datasets Spiros Koulouzis, Reginald Cushing, Konstantinos Karasavvas,
Adam Belloum, Marian Bubak to be published JAN/FEB, IEEE Internet Computing, 2012

COMMIT/

Indexing Name Entry Recognition

e AIDA provides a set of components which
enable the indexing of text documents in
various formats.

e AIDA's Indexer component, called
IndexerWS is a WS able to index document
with the use of the Streaming library.

(i) Indexing

COMMIT/ &
Results Indexing Web Services for Information
Retrieval (Indexing)

18

& Total

< Prestage
16 V Execution

& Poststage

- & <
<]

16 32

Number of nodes

Enabling web services to consume and produce large distributed datasets Spiros
Koulouzis, Reginald Cushing, Konstantinos Karasavvas, Adam Belloum, Marian Bubak to be
publishec/ JAN/FEB, IEEE Internet Computing, 2012

COMMIT/ &
Results Indexing Web Services for Information
Retrieval (NER)

Time, sec

Number of documents

Enabling web services to consume and produce large distributed datasets Spiros
Koulouzis, Reginald Cushing, Konstantinos Karasavvas, Adam Belloum, Marian Bubak to be
publishec/ JAN/FEB, IEEE Internet Computing, 2012

COMMIT/

e Introduction

Outline

e Lifecycle of an e-science workflow

e provenance

(1)

Problem

4

Expeﬁn%ent

\N—

investigati?r’ S

L — ototyping
hared
1C \repositories

Re(su)lts Expér%%ent
Publication: Execution:

COMMIT/

Provenance/ reproducibility

e "A complete provenance record for a data
object allows the possibility to reproduce
the result and reproducibility is a critical
component of the scientific method”

e Provenance: The recording of metadata
and provenance information during the
various stages of the workflow lifecycle

Workflows and e-Science: An overview of workflow system features

and capabilities Ewa Deelmana, Dennis Gannonb, Matthew Shields ¢, Ian Taylor, Future
Generation Computer Systems 25 (2009) 528540

History-tracing XML (FH Aachen)

e provides data/process
provenance following an

approach that

— maps the workflow graph
to a layered structure of

an XML document.

— This allows an intuitive
and easy processable
representation of the
workflow execution path,

— which can be, eventually,
electronically signed.

<patternMatch>
<events>

<PortResolved> provenance
data</PortResolved>

<ConDone>provenance data
</ConDone>

</events>
<fileReader2>

<events> ... </events>

<sign-fileReader2> ...

</signfileReader2>

</fileReader2>
<sffToFasta>

Reference
</sffToFasta>
<sign-patternMatch> ...

</sign-patternMatch>
</patternMatch>

M. Gerards, Adam S. Z. Belloum, F. Berritz, V. Snder, S. Skorupa, A History-tracing XML-base

Proveannce Framework for workflows, WORKS

010, New Orleans, USA, November 2010

PLIER is an implementation of the OPM 1.1 specifications.

It's API provides a set of functions to build, store, and share workflow experiments
as graphs.

It also implements an optimal relational database as back-end storage that captures
the concepts of the OPM model, using the Java Persistence API (JPA 2.0) and
Hibernate.

In addition, the PLIER API provides specific interfaces, using JDO 3.1, to transform,
or serialize, the provenance data into specific formats (e.g. RDF, XML, and DOT).

éd_h36813958

r%sHItPatternM gaog)\g'fl'ﬁetzoo _Hc’!l] tléllt_resm
param -
Id1

Ribosomal_H
uman.gz
8 .
inpu a%gerngqe |n‘p-{,|\t f||e /mput_flle
ERRE SO A paran '\Gter /

~ T Tinput—fi

- mput_flle

output_file !output file
ou{gua&q:g 428, ereSs%7|43f32t65 _outp K lp& e ize°- D@%&% OUD

TrigeredBy

e
-

=
-~
=
—

Measuremenis
Du" Detances BVF &1

Input parameters
z

I final

Wave propagation model Cutput paramolers |, Estimated parameters
- v Y comresponding to the
- S best fit

©

¥ameter optimizatic
£z = g(ey)

[Biomedical engineering Cardiovascular

biomechanics group TUE])

wave]propagation model of blood flow in Iar?e
yess;e_ s using an approximate velocity profile
unction:

a biomedical study for which 3000 runs were
required to perform a global sensitivity analysis

of a blood pressure wave propagation in arteries

BigGrid project 2009, presented EGI/
BigGrid technical forum 2010

User Interface to compose workflow (top
right), monitor the execution of the farmed
workflows (top left), and monitor each run
separately (bottom left) data

Cadiovascular Provenance Query Interface =
o

555555

Tien

eeeeeeeeeee

Query interface for the provenance data
collected from 3000 simulations of the “wave
propagation model of blood flow in large
vessels using an approximate velocity profile
function”

Blast Application

fileReader Ml B fileWriter

| sffrolir.l | fileWriter
: '"‘“"'“l [Department of Clinical
. . ‘ . - Epidemiology, Biostatistics and
ileReader . as i

Bioinformatics (KEBB), AMC]

fileReader M

EEEEEEEEEEEEEE

The aim of the application is the alignment ...
of DNA sequence data with a given
reference database. A workflow approach is -
currently followed to run this application on
distributed computing resources.

-

o

H

-

S

1) S =

| R
H

For Each workflow run

eThe provenance data is collected an stored
following the XML-tracing system

eUser interface allows to reproduce events that
occurred at runtime (replay mode) e |
eUser Interface can be customized (User can = I -
select the events to track) ,
eUser Interface show resource usage on-going work UvA-AMC-fh-aachen

‘Times of Workflows

More References

. A.S5.Z. Belloum, V. Korkhov, S Koulouzis, M. A Inda, and M. Bubak
Collaborative e-Science experiments: from scientific workflow to
knowledge sharing JULY/AUGUST, IEEE Internet Computing, 2011

Ilkay Altintas, Manish Kumar Anand, Daniel Crawl, Shawn Bowers, Adam
Belloum, Paolo Missier, Bertram Ludascher, Carole A. Goble, Peter M.A.
Sloot, Understanding Collaborative Studies Through Interoperable
Workflow Provenance, IPAW2010, Troy, NY, USA

. A. Belloum, Z. Zhao, and M. Bubak Workflow systems and applications ,
Future Generation Comp. Syst. 25 (5): 525-527 (2009)

Z. Zhao, A.S.Z. Belloum, et al., Distributed execution of aggregated multi
domain workflows using an agent framework The 1st IEEE International
Workshop on Scientific Workflows, Salt Lake City, U.SA, 2007

. Zhiming Zhao, Adam Belloum, Cees De Laat, Pieter Adriaans, Bob
Hertzberger Using Jade agent framework to prototype an e-Science

workflow bus Authors Cluster Computing and the Grid, 2007. CCGRID
2007

http://www.commit-nl.nl/ . :<

vl-e

http://www.vle.nl/

http://www.science.n/~gvlam/wsvlam/

