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AmpLab	view	on	BigData	
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AMP	Key	resource	
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Berkeley	Data	AnalyKcs	Stack	
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Conceptually,	how	Spark	works					&		
							What	really	happens	inside	Spark	
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Modelling	Lifecycle	
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•  “ML is a scientific discipline that deals with the 
construction and study of algorithms that can lean form 
data. Such Algorithms operate:
1.  by building a model based on inputs 
2.  and using that make predictions and decision rather that 

following explicitly programmed instructions “		



ML	Problems	

•  Real data often not Real number 
•  Real data not well-behaved according to algorithms 
–  Features need to be engineered (extracted)
–  Transformations need to be applied 
–  Hyper parameters need to be tuned 
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Spark	ML	
•  Basic statistics: summaries, correlation, sampling, testing, …
•  Classification and regression: linear models , trees, ensembles, …
•  Clustering: k-mean, Gaussian mixture models, …
•  Dimensionality reduction: PCA, SVD
•  Feature extraction and transformation

•  Optimization: gradient descent, and L-BFGS
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MLlib	to	ML	

•  Proposed in 2014 &  included in Spark in 2015
•  High-level and more flexible
•  Use processing ideas from scikit-learn

•  Use DataFrames (from R and Pandas) instead of 
RDD used in MLlib
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History	of	Spark	API	
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Catalyst	opKmizer	
•  Typical	DB	opKmizers	across	SQL	and	DF	

–  Extensibility	via	opKmizaKon	Rule	wriIen	in	scala	
–  Open	source	opKmizer	development		
–  Code	generaKon	for	inner	loops,	iterator	removal	

•  Extensible	data	sources:	CSV,	Avro,	Parquet,	JDBC,	…	
–  via	tableScan	(all	cols),	PrunedScan	(project),	FiltredPrunedScan	(push	

advisory	selecKon	and	projects)	catalystScan	(push	advisory	full	catalyst	
expression	trees)		

•  Extensible	(user	Defined)	Types		
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ApproximaKon	

•  DBAS	user	ApproximaKon	in	two	main	ways:	
•  BlinkDb	
–  Run	queries	on	a	sample	of	the	data		
–  Return	answers	and	confidence	intervals		
–  Can	adjust	Kme	vs	confidence	

•  Sample	Clean	
–  Clean		sample	of	the	data	rather	than	whole	date	set		

•  Run	query	on	the	Clean		sample	(get	error	bars	)		OR	
•  Run	query	on	dirty	data	and	correct	the	answers		
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BlinkDB	
•  A	data	analysis	(warehouse)	systems	that	…	
– Build	on	Shark	and	Spark	
– Returns	fast,	approximate	answers	with	error	bars		
by	execuKng	queries	on	a	small	sample	of	data		

– Trading	precision	for	speed	
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RDD,	DataFrame,	and	DataSets	
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•  RDD contain anything 
è VERY flexible (could be counter productive)

–  Nested objects (can slow the execution) 
•  memory management for creating these objects  and Garbage collection 
•  solution flatten out  the data structure looks like going back to table 

structure (then why not let spark do this by defining schema)

–  From Python process to JVM: open a pipe between Process 
Python  and the JVM



Main	concepts	
•  DataFrame: flexible data type from Spark SQL allowing parallelism

•  Transformer: algorithm which transform one DataFrame to another
•  Estimator: algorithm which is fitted on the DataFrame returning a model
•  Parameters: uniform structures for Estimators and transformers 

•  Pipeline: chain of transformers and estimators 
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Part	of	the	ML	Spark	API	
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DataFrame	

•  A	distributed	collecKon	of	rows	organized	into	
named	columns	
– Similar to tables in a RDB (R and Pandas)
– Created from file, regular RDD, or other sources
– Supports a variety of data types: vectors, text, 

images, and structured data
– Columns can be named using names as “features” 

and “Label”
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System	concept	Spark	API	



Transformer	

A Transformer is an abstraction that includes 
•  Feature transformers: tokenisation, hashing, 

normalisation
•  Learned models: result form estimation, eg. 

Outputting prediction 

Implements the method transform(), which 
converts one DataFrame into another 
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Abstrac7on	of	the	Spark	API	



EsKmator		

An Estimator abstracts the concept of
•   a learning algorithm or any algorithm that fits or 

trains on data

Implements the method  fit(), which:
–   takes a DataFrame
–   returns a learning model, which is a transformer
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Pipeline	
•  Sequence of stages of Transformers/estimators.
– Estimators are fitted on DataFrame turning them into 

transformers to keep the chain going 

•  A pipeline itself is an estimator 
–  it is fitted on the DataFrame 
–  turning it into a PipelineModel (transformer)	
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Example:	Classifying	Reuters	arKcles	

•  Data: 
–  21578 articles with metadata divide in 22 JSON files

•  problem: 
–  based on the words in the body in an article, determine 

whether the article has “earn” as one it of its topics 

22	



Example:	Classifying	Reuters	arKcles	

•  Logistic Regression: is a regression model where 
the dependent variable is categorical

•  Feature hashing: turning arbitrary features into 
indices in a vector or matrix 
Ø applying a hash function to the features and using 

their hash values as indices directly
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Pipeline		
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Transform()	 Transform()	 fit()	



PipelineModel	è	PredicKon	
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evaluaKon		
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•  Classification models 
•  Regression models

h=ps://spark.apache.org/docs/latest/mllib-
evalua7on-metrics.html			

Test	Set	Accuracy		=	0.975			
(with	an	execuKon	Kme	27s)	



Model	selecKon	using	cross-validaKon		
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Test	Set	Accuracy		=	0.979			
(with	an	execuKon	Kme	3mn)	



Example:	churn prediction model	
•  Data: 
–  Dataset coming from UC Irvine Machine Learning Repository
–  Input data is in CSV format “structured data”

•  problem:  study the risk of a customer to go to another 
company. 

•  Objective: building a churn prediction model

–  http://blog.cloudera.com/blog/2016/02/how-to-predict-telco-
churn-with-apache-spark-mllib/ 
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from pyspark.sql import SQLContext
from pyspark.sql.types import *
 
sqlContext = SQLContext(sc)
schema = StructType([ \
    StructField("state", StringType(), True), \
    StructField("account_length", DoubleType(), True), \
    StructField("area_code", StringType(), True), \
    StructField("phone_number", StringType(), True), \
    StructField("intl_plan", StringType(), True), \
    StructField("voice_mail_plan", StringType(), True), \
    StructField("number_vmail_messages", DoubleType(), True), \
    StructField("total_day_minutes", DoubleType(), True), \
    StructField("total_day_calls", DoubleType(), True), \
    StructField("total_day_charge", DoubleType(), True), \
    StructField("total_eve_minutes", DoubleType(), True), \
    StructField("total_eve_calls", DoubleType(), True), \
    StructField("total_eve_charge", DoubleType(), True), \
    StructField("total_night_minutes", DoubleType(), True), \
    StructField("total_night_calls", DoubleType(), True), \
    StructField("total_night_charge", DoubleType(), True), \
    StructField("total_intl_minutes", DoubleType(), True), \
    StructField("total_intl_calls", DoubleType(), True), \
    StructField("total_intl_charge", DoubleType(), True), \
    StructField("number_customer_service_calls", DoubleType(), 
True), \
    StructField("churned", StringType(), True)])
 
churn_data = sqlContext.read \
    .format('com.databricks.spark.csv') \
    .load('churn.all', schema = schema)

Create		DataFrame	
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Specify	Feature	ExtracKon	
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from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
 
label_indexer = StringIndexer(inputCol = 'churned', outputCol = 'label')
plan_indexer = StringIndexer(inputCol = 'intl_plan', outputCol = 'intl_plan_indexed')
 
reduced_numeric_cols = ["account_length", "number_vmail_messages", "total_day_calls",
                        "total_day_charge", "total_eve_calls", "total_eve_charge",
                        "total_night_calls", "total_intl_calls", "total_intl_charge"]
 
assembler = VectorAssembler( inputCols = ['intl_plan_indexed'] + reduced_numeric_cols,outputCol = 'features')



Model	training		
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from	pyspark.ml	import	Pipeline	
from	pyspark.ml.classificaKon	import	RandomForestClassifier	
		
classifier	=	RandomForestClassifier(labelCol	=	'label',	featuresCol	=	'features')	
pipeline		=	Pipeline(stages=[plan_indexer,	label_indexer,	assembler,	classifier])	
model					=	pipeline.fit(train)	



Model	EvaluaKon		
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The	AUROC	is	0.494987527228	

from	pyspark.ml.evaluaKon	import	BinaryClassificaKonEvaluator	
		
predicKons	=	model.transform(test)	
evaluator	=	BinaryClassificaKonEvaluator()	
auroc	=	evaluator.evaluate(predicKons,	{evaluator.metricName:	"areaUnderROC"})	



Example:	Image	Classifier		

•  Data: 
–  Input data is in images 

•  problem:  
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Conclusion	

Advantages	
•  General purpose big-data 

package

•  Good scalability with 
parallelisation  

•  High flexibility/class 
standardisation

•  Actively developed 

Disadvantages		
•  Inferior to others in single-

processor performance 

•  in early development 
teething troubles 
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