
1

Adam S.Z Belloum
Software and Network engineering group

University of Amsterdam

Introduction to Spark ML

AmpLab	view	on	BigData	

2	

Time		

Money	
Answer		
Quality	

Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

Massive	
Diverse		

&	
Growing		
Data		

Massive	
Diverse		

&	
Growing		
Data		

Something’s	goIa	give	…	

AmpLab	view	on	BigData	

3	Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

Time	to	
execute	on	
enKre	dataset	

Er
ro
r	

ExecuKon	Kme	

InteracKve	
queries	

30mn		5	sec	
Er
ro
r	

ExecuKon	Kme	

InteracKve	
queries	

30mn		5	sec	

Time	to	
execute	on	
enKre	dataset	

Pre-exisKng	
Noise	in	the	
data	

AMP	Key	resource	

4	Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

Berkeley	Data	AnalyKcs	Stack	

5	

ML		

ecosystem	

Conceptually,	how	Spark	works					&		
							What	really	happens	inside	Spark	

6	

Modelling	Lifecycle	

7	

•  “ML is a scientific discipline that deals with the
construction and study of algorithms that can lean form
data. Such Algorithms operate:
1.  by building a model based on inputs
2.  and using that make predictions and decision rather that

following explicitly programmed instructions “		

ML	Problems	

•  Real data often not Real number
•  Real data not well-behaved according to algorithms
–  Features need to be engineered (extracted)
–  Transformations need to be applied
–  Hyper parameters need to be tuned

8	Source:	Evan	Sparks	from	AMPLab,	Amp	camp	5	

Feature		
extracKon		 Train		

Score	

Model	
Ev
al
ua
Ko

n	

Feature		
extracKon		

Training		
Data	

Test	
Data	

(1)	

(2)	

ML	Pipeline	(1)	

Build	models		

make	predicKons	and	decision		

	Data	

	Data	

Spark	ML	
•  Basic statistics: summaries, correlation, sampling, testing, …
•  Classification and regression: linear models , trees, ensembles, …
•  Clustering: k-mean, Gaussian mixture models, …
•  Dimensionality reduction: PCA, SVD
•  Feature extraction and transformation

•  Optimization: gradient descent, and L-BFGS

9	

MLlib	to	ML	

•  Proposed in 2014 & included in Spark in 2015
•  High-level and more flexible
•  Use processing ideas from scikit-learn

•  Use DataFrames (from R and Pandas) instead of
RDD used in MLlib

10	

History	of	Spark	API	

11	

Catalyst	opKmizer	
•  Typical	DB	opKmizers	across	SQL	and	DF	

–  Extensibility	via	opKmizaKon	Rule	wriIen	in	scala	
–  Open	source	opKmizer	development		
–  Code	generaKon	for	inner	loops,	iterator	removal	

•  Extensible	data	sources:	CSV,	Avro,	Parquet,	JDBC,	…	
–  via	tableScan	(all	cols),	PrunedScan	(project),	FiltredPrunedScan	(push	

advisory	selecKon	and	projects)	catalystScan	(push	advisory	full	catalyst	
expression	trees)		

•  Extensible	(user	Defined)	Types		

12	Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

13	

0	 2	 4	 6	 8	 10	

Time	to	Aggregate	10	million	int	pairs	(secs)	

DataFrame	SQL	
DataFrame	R	

DataFrame	Python	
DataFrame	Scala	

RDD	Python	
RDD	scala	

Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

ApproximaKon	

•  DBAS	user	ApproximaKon	in	two	main	ways:	
•  BlinkDb	
–  Run	queries	on	a	sample	of	the	data		
–  Return	answers	and	confidence	intervals		
–  Can	adjust	Kme	vs	confidence	

•  Sample	Clean	
–  Clean		sample	of	the	data	rather	than	whole	date	set		

•  Run	query	on	the	Clean		sample	(get	error	bars)		OR	
•  Run	query	on	dirty	data	and	correct	the	answers		

14	Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

BlinkDB	
•  A	data	analysis	(warehouse)	systems	that	…	
– Build	on	Shark	and	Spark	
– Returns	fast,	approximate	answers	with	error	bars		
by	execuKng	queries	on	a	small	sample	of	data		

– Trading	precision	for	speed	

15	Spark	Summit	2013	-	Big	Data	Research	in	the	AMPLab	-	Mike	Franklin	

RDD,	DataFrame,	and	DataSets	

16	

•  RDD contain anything
è VERY flexible (could be counter productive)

–  Nested objects (can slow the execution)
•  memory management for creating these objects and Garbage collection
•  solution flatten out the data structure looks like going back to table

structure (then why not let spark do this by defining schema)

–  From Python process to JVM: open a pipe between Process
Python and the JVM

Main	concepts	
•  DataFrame: flexible data type from Spark SQL allowing parallelism

•  Transformer: algorithm which transform one DataFrame to another
•  Estimator: algorithm which is fitted on the DataFrame returning a model
•  Parameters: uniform structures for Estimators and transformers

•  Pipeline: chain of transformers and estimators

17	

Part	of	the	ML	Spark	API	

Feature		
extracKon		 Train		

Score	

Model	

EvaluaKon	Feature		
extracKon		

Training		
Data	

Test	
Data	

DataFrame	

•  A	distributed	collecKon	of	rows	organized	into	
named	columns	
– Similar to tables in a RDB (R and Pandas)
– Created from file, regular RDD, or other sources
– Supports a variety of data types: vectors, text,

images, and structured data
– Columns can be named using names as “features”

and “Label”

18	

System	concept	Spark	API	

Transformer	

A Transformer is an abstraction that includes
•  Feature transformers: tokenisation, hashing,

normalisation
•  Learned models: result form estimation, eg.

Outputting prediction

Implements the method transform(), which
converts one DataFrame into another

19	

Abstrac7on	of	the	Spark	API	

EsKmator		

An Estimator abstracts the concept of
•  a learning algorithm or any algorithm that fits or

trains on data

Implements the method fit(), which:
–  takes a DataFrame
–  returns a learning model, which is a transformer

20	

Abstrac7on	of	the	Spark	API	

Pipeline	
•  Sequence of stages of Transformers/estimators.
– Estimators are fitted on DataFrame turning them into

transformers to keep the chain going

•  A pipeline itself is an estimator
–  it is fitted on the DataFrame
–  turning it into a PipelineModel (transformer)	

21	

Feature		
extracKon		 Train		Training		

Data	

(inspired by scikit-learn)	

Abstrac7on	of	the	Spark	API	

Example:	Classifying	Reuters	arKcles	

•  Data:
–  21578 articles with metadata divide in 22 JSON files

•  problem:
–  based on the words in the body in an article, determine

whether the article has “earn” as one it of its topics

22	

Example:	Classifying	Reuters	arKcles	

•  Logistic Regression: is a regression model where
the dependent variable is categorical

•  Feature hashing: turning arbitrary features into
indices in a vector or matrix
Ø applying a hash function to the features and using

their hash values as indices directly

23	

Feature		
extracKon		 Train		

Score	

Model	

EvaluaKon	Feature		
extracKon		

Training		
Data	

Test	
Data	

?	

Pipeline		

24	

Transform()	 Transform()	 fit()	

PipelineModel	è	PredicKon	

25	

Feature		
extracKon		 Train		

Score	

Model	

Feature		
extracKon		

Training		
Data	

Test	
Data	 evalua7on	

evaluaKon		

26	

Feature		
extracKon		 Train		

Score	

Model	

EvaluaKon	Feature		
extracKon		

Training		
Data	

Test	
Data	

•  Classification models
•  Regression models

h=ps://spark.apache.org/docs/latest/mllib-
evalua7on-metrics.html			

Test	Set	Accuracy		=	0.975			
(with	an	execuKon	Kme	27s)	

Model	selecKon	using	cross-validaKon		

27	

Test	Set	Accuracy		=	0.979			
(with	an	execuKon	Kme	3mn)	

Example:	churn prediction model	
•  Data:
–  Dataset coming from UC Irvine Machine Learning Repository
–  Input data is in CSV format “structured data”

•  problem: study the risk of a customer to go to another
company.

•  Objective: building a churn prediction model

–  http://blog.cloudera.com/blog/2016/02/how-to-predict-telco-
churn-with-apache-spark-mllib/

28	

from pyspark.sql import SQLContext
from pyspark.sql.types import *

sqlContext = SQLContext(sc)
schema = StructType([\
 StructField("state", StringType(), True), \
 StructField("account_length", DoubleType(), True), \
 StructField("area_code", StringType(), True), \
 StructField("phone_number", StringType(), True), \
 StructField("intl_plan", StringType(), True), \
 StructField("voice_mail_plan", StringType(), True), \
 StructField("number_vmail_messages", DoubleType(), True), \
 StructField("total_day_minutes", DoubleType(), True), \
 StructField("total_day_calls", DoubleType(), True), \
 StructField("total_day_charge", DoubleType(), True), \
 StructField("total_eve_minutes", DoubleType(), True), \
 StructField("total_eve_calls", DoubleType(), True), \
 StructField("total_eve_charge", DoubleType(), True), \
 StructField("total_night_minutes", DoubleType(), True), \
 StructField("total_night_calls", DoubleType(), True), \
 StructField("total_night_charge", DoubleType(), True), \
 StructField("total_intl_minutes", DoubleType(), True), \
 StructField("total_intl_calls", DoubleType(), True), \
 StructField("total_intl_charge", DoubleType(), True), \
 StructField("number_customer_service_calls", DoubleType(),
True), \
 StructField("churned", StringType(), True)])

churn_data = sqlContext.read \
 .format('com.databricks.spark.csv') \
 .load('churn.all', schema = schema)

Create		DataFrame	

29	

state	
account	length	
area	code	
phone	number	
interna7onal	plan	
voice	mail	plan	
number	vmail	messages	
total	day	minutes	
total	day	calls	
total	day	charge	
total	eve	minutes	
total	eve	calls	
total	eve	charge	
total	night	minutes	
total	night	calls	
total	night	charge	
total	intl	minutes	
total	intl	calls	
total	intl	charge	
number	customer	service	calls	
churned	

The	full	set	of	fields,		
from	the	data	subscripKon	
In	CSV	format	

Specify	Feature	ExtracKon	

30	

from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler

label_indexer = StringIndexer(inputCol = 'churned', outputCol = 'label')
plan_indexer = StringIndexer(inputCol = 'intl_plan', outputCol = 'intl_plan_indexed')

reduced_numeric_cols = ["account_length", "number_vmail_messages", "total_day_calls",
 "total_day_charge", "total_eve_calls", "total_eve_charge",
 "total_night_calls", "total_intl_calls", "total_intl_charge"]

assembler = VectorAssembler(inputCols = ['intl_plan_indexed'] + reduced_numeric_cols,outputCol = 'features')

Model	training		

31	

Feature		
extracKon		 Train		

Score	

Model	

EvaluaKon	Feature		
extracKon		

Training		
Data	

Test	
Data	

from	pyspark.ml	import	Pipeline	
from	pyspark.ml.classificaKon	import	RandomForestClassifier	
		
classifier	=	RandomForestClassifier(labelCol	=	'label',	featuresCol	=	'features')	
pipeline		=	Pipeline(stages=[plan_indexer,	label_indexer,	assembler,	classifier])	
model					=	pipeline.fit(train)	

Model	EvaluaKon		

32	

The	AUROC	is	0.494987527228	

from	pyspark.ml.evaluaKon	import	BinaryClassificaKonEvaluator	
		
predicKons	=	model.transform(test)	
evaluator	=	BinaryClassificaKonEvaluator()	
auroc	=	evaluator.evaluate(predicKons,	{evaluator.metricName:	"areaUnderROC"})	

Example:	Image	Classifier		

•  Data:
–  Input data is in images

•  problem:

33	

Conclusion	

Advantages	
•  General purpose big-data

package

•  Good scalability with
parallelisation

•  High flexibility/class
standardisation

•  Actively developed

Disadvantages		
•  Inferior to others in single-

processor performance

•  in early development
teething troubles

34	

