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due to prevalent genetic strain variation11, which would increase
noise. First, we benchmarked PTR using a closed reference
genome, and then the same genome fragmented into 100kb
fragments and reshuffled to mimic a draft genome for GRiD and
iRep measurements. Reads mapping to S. epidermidis were
subsampled to 0.4× and 0.2× coverage and subsequently used for
GRiD and iRep estimates. iRep performed similarly to the PTR
benchmark, but GRiD had a much lower percentage of error in
comparison to iRep at both 0.4× and 0.2× coverage (Fig. 1c). To
highlight the importance of accounting for ambiguous reads
during growth estimation, reads mapping to S. epidermidis were

re-mapped to S. capitis, S. aureus, and Propionibacterium acnes
genomes to determine the proportion of multiple-mapping reads.
Samples with increasing numbers of multi-mapped, ambiguous
reads were significantly correlated with our metric of increasing
species heterogeneity (Fig. 1d), which can increase uncertainty in
growth rate estimation. For quality control, we found that a
combination of dnaA coverage, dif coverage, and species
heterogeneity can be used to ascertain the accuracy of growth
predictions. Our findings suggest that growth rates are most
accurate when dnaA/ori and ter/dif coverage ratios approach one,
and species heterogeneity is low (<0.3, Supplementary Fig. 2A).
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Fig. 1 In situ growth estimate from ultra-low coverage bacteria. a The GRiD approach. Contigs are re-ordered to produce a pattern whereby low coverage
contigs potentially containing ter are located near the mid-region of the genome, while high-coverage contigs potentially harboring ori are located at either
extremes of the genome. GRiD values correspond to the ratio of coverage at the peak (ori) and trough (ter) regions. b Growth rate reproducibility between
GRiD and iRep using reads obtained from pure cultures of Staphylococcus epidermidis and Corynebacterium simulans. The boxplot shows the difference (delta)
in growth estimates before and after reads were subsampled to lower coverage. To avoid bias, only unrefined GRiD values (see methods) were used for
comparison with iRep. c Error rate comparison between GRiD and iRep from a skin metagenomic dataset using S. epidermidis reference genome. PTR was
calculated using a closed circular reference genome while GRiD and iRep were calculated using the same reference genome, but fragmented into 100kb
fragments and reshuffled. For samples with genome coverage > 0.2 (n= 588), mapped reads were subsampled to ultra-low coverage prior to GRiD and
iRep estimations. Here, Percent error ¼ ðmaxðpredicted;realÞÞ$ðminðpredicted;realÞÞ

ðmaxðpredicted;realÞÞ ´ 100, where “predicted” represent GRiD or iRep scores, and “real” is the PTR score.
Unrefined GRiD values were used for comparison with iRep. The figure on the right shows Pearson correlation plots of GRiD and iRep with PTR. ***= p <
0.001. d Reads from a skin metagenomic dataset mapping to S. epidermidis were remapped to the respective genomes. Re-mapped reads are considered as
ambiguous reads. The scatter plot shows the correlation (Spearman) between ambiguous reads and species heterogeneity (1−r/u), where r= refined
GRiD and u= unrefined GRiD (see Methods). ***= p < 0.001. e iRep and GRiD measurement for CPR genomes. The scatter plots below show Pearson
correlation plots of GRiD and iRep estimates before and after subsampling to ultra-low coverage. ***= p < 0.001. Center lines in boxplots represent the
median and the edges represent the first and third quartiles. Source data are provided as a Source Data file
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Today
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• what’s the aim and why is this a problem? 

• common features of genomes

• algorithms / approaches

• refinement and quality control



Aim

5

• point of reference in the absence of (suitable) cultured isolates:

• characterisation of un-cultured microbial taxa 
• resource for short-read annotation
• pangenomic potential 
• anchor for the integration of functional meta-omics



Terminology

6

• MAG: metagenome-assembled genome
• as opposed to SAGs (single-cell sequencing based genomes) and 

classical isolate-based genomes

• genome reconstructions

• bins
• binning: putting similar items in a group

• also used in the context of taxonomic profiling



Workflow

7
Bowers et al. (2017) Nat Biotechnol 35, 725–731. https://doi.org/10.1038/nbt.3893



Recap assembly

8

• puzzling sequencing reads back together

Assembly

Sequencing

adapted from Commins et al. 2009 Biol Proced Online 11: 52



Recap assembly
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• number of contigs representing a genome depends on:

• number of reads derived from 
this genome

Pop, Delcher & Salzberg https://slideplayer.com/slide/4410317/



Recap assembly
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• number of contigs representing a genome depends on:

• number of reads derived from this genome:
• sequencing depth
• diversity

• presence of difficult sequences:
• high/low GC
• repeats / low-complexity regions
• high similarity to other genomes (incl. phages)



Group contigs, but based on what?

11



Group contigs, but based on what?
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[['M1_2_V1_contig_17233',
'TACCGAGGCATATCAAGCCGCTATTGCAGCCTGATGAATGGCGACCAGGAAGGGGTTCGAACCC
TCGACCTCCGGCGTGACAGGCCGGCGTTCTAACCAGCTGAACTACCTGGCCGAATTTATGGTGGG
AACAACAGGGCTCGAACCTGTGACCCTCTGCTTGTAAGGCAGATGCTCTCCCAGCTGAGCTATGC
TCCCCACTCGAAATAATCGCTTCGGCGAACGACAAGGGTTATTATACAGAATAACCCCTGCCGTG
TCAACCTTATTTTTTGATTTTTTCAAGAAATTTTTTGAAAAGGGAAATGCATTACTTTCCCTGCT
TTTTCAGATCGGCGATCATGGCGGTCAGATCCTCTTTGGTAAAGTTCTGCACCCTGTCACAGAAC
TGGCAGGTGAGCTCAGCAGAGCCCTGCTCGTCCACGATCTTTTCAAGCTCCTTTGACCCCAGCGA
CAGCAGCGCGCGCTCCGTGCGCTCGCGCGAGCAGTAGCAGCGGTATTCGATCGGATCGACGGAGA
GGATCTCCATGTCAAAATCAGACAGCACCGTTTTGAGCAGCACCGCAGGATCAGGATTCTCCTTT
AAGAGATTCGTCACGCTGGGAGCTGCGTAGATGCCGCCCTCAACCTTGGTGATGACATCCTCACC
CGCGCCGGGGAGGAGCTGGATGAGATAGCCGCCCGCGGTGAGCACGCTGCGGTCGCGGTCGATGA

AA AC AG AT CA CC CG GA GC TA

17233 692 669 823 336 821 938 773 1010 756 167

kMer profile



AA AC AG AT CA CC CG GA GC TA

17233 692 669 823 336 821 938 773 1010 756 167

35980 931 592 796 411 734 839 765 991 739 243

14

['M1_2_V1_contig_35980',
'GCCTTATCTTCATAAATAATATAATCTCTCACATCTTTGATCCACATAAAAAAACTCTC
CTTTTATGGAGAGTATAACGTAATCTCAAACTTCCTGCAACGAAAGTTTTCCAGATTATG
AGGACGTCAAAGACGGTCATCACTTTTTACTTTTCCAGATTTCAAAAATGATGACCGTCT
CAATGTTCTTCGTTATTCAATTTATTTTCCTCTTAGTATTCTTTCTATCTTATTATAGAT
TACTTTATAGAGTTCTGTATTCAATTTTTAATATAAAGATAAATTTTATGATTCTCTGAT
TCCCTGCTCATAATCCATATGATAATACTATCACTGGTTTTACTTAGAAAGTTTTATAGA
TTTAAATTATAATTTCACGGATTATAATTTAGATTTTATTTCGAAATATCGGATACACTT
TTTCTCTCTATTCGTGATAAGCAATCATAAACCTAACTTCTTAGATTCCCAACTGTTTAT
TTATCCATTGTACTTTAACAGTTTCCAGAACACAAATGGCAGATGTTCCAATCCTCTTTG
TAAAGTATCATTTGAAAAAGTACCTTAATATTTCTTATGTAATATCCCCGTACCTTTATG

kMer profile



kMer profiles of different bacteria
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kmers, again

16

• word sizes for alignment seeding: BLAST default 11, BWA default 19

• kmers for taxonomy: kraken1/2 default 31/33

• kmers for diversity: nonpareil 24

• kmers for assembly: metaSPAdes between 25 and 127

• kmers for binning: 3-6



kMer profiles in a metagenome
co
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depth of
coverage
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Coverage, pure and simple

Albertsen et al. (2013) Nat Biotechnol 31, 533–538. https://doi.org/10.1038/nbt.2579



Clustering



Group contigs, but how?

20



CONCOCT

21

• 1 assembly: mapping of multiple samples 

• coverage vectors: average depth of coverage per contig per sample
• kmer frequency: 4-mers

• pseudo-count
• normalization of coverage vector to sequencing depth
• concatenation of both matrices
• log-transformation

• PCA (components explaining 90% of variation)
• clustering by Gaussian mixture model 

Alneberg et al. (2014) Nat Methods 11, 1144–1146. https://doi.org/10.1038/nmeth.3103



MetaBAT2

22Kang et al. (2019) PeerJ 7:e7359. https://doi.org/10.7717/peerj.7359

• 1 assembly: mapping of multiple samples

• coverage matrix: average depth of coverage per contig per sample
• kmer frequency: 4-mers
• Pearson correlation of abundances

• quantile normalization of coverage, (correlation,) and kmer data
• geometric mean of all data’s similarities as score per contig pair

• graph-based clustering (contigs as nodes, scores as edge weight):
• graph-building: incorparate set of contigs with highest similarity 
• graph-partitioning: accelerated label propagation



VAMB

23

• 1 or more assemblies: mapping of many samples

• coverage matrix: reads per kilobase per million mapped reads
• kmer frequency: 4-mers

• variational autoencoder to get a latent representation matrix, using a 
reconstruction error made up of cross-entropy as abundance error and sum of 
squares for kmer error

• clustering by adaptive iterative medoid, with cluster boundaries determined by 
cosine distance density

• repeat clustering step until everything is clustered

• optionally split by assembly of origin

Nissen et al. (2021) Nat Methods 39, 555-560. https://doi.org/10.1038/s41587-020-00777-4



MaxBin2

24

• 1 assembly: mapping of multiple samples

• coverage matrix: reads/contig length per contig per sample
• kmer frequency: 4-mers

• Expectation-Maximization algorithm (probability that contig S belongs to a 
genome based on the kmer frequency and coverage matrix):

• Gaussian distribution estimate of Euclidean distance between kmers
• Poisson distribution for coverage distance
• combination by multiplication
• initialize number of genomes based on the average number of present 

essential, single-copy genes
• iterate up to 50x

Wu et al. (2015) Bioinformatics 32, 605–607. https://doi.org/10.1093/bioinformatics/btv638



COCACOLA

25Lu et al. (2017) Bioinformatics  33:791-798. https://doi.org/10.1093/bioinformatics/btw290

• 1 assembly: mapping of multiple samples 

• coverage vectors: average depth of coverage per contig per sample
• kmer frequency: 4-mers
• linkage by paired ends in multiple samples
• alignment to the same taxonomy

• pseudo-count
• normalization of coverage vector to sequencing depth
• concatenation of both matrices
• weight matrix (normalized Laplace) for linkage/taxonomy information

• initialize clustering by K-means on L1 norm, then solve optimization (minimization) of 
genome assignment of each contig using alternating non-negative least squares



SemiBin

26

• 1 assembly: mapping of multiple samples 

• coverage vectors: average depth of coverage per contig per sample
• kmers: 4-mers
• taxonomic annotation based on sequence clustering

• pseudo-count, normalization of kmer vector to contig length
• scale coverage vectors to similar order of magnitude as kmers
• establish must-links and can’t-links based on taxonomic annotation

• embedding based on deep siamese neural network in 100 dimensions
• use euclidean distances as edges in graph
• partition the graph into communities using Infomap 

Meyer et al. (2022) Nat Methods 19, 429–440. https://doi.org/10.1038/s41592-022-01431-4



Refinement

27Sieber et al. (2018) Nat Microbiol 3, 836–843. https://doi.org/10.1038/s41564-018-0171-1

DAS Tool
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due to prevalent genetic strain variation11, which would increase
noise. First, we benchmarked PTR using a closed reference
genome, and then the same genome fragmented into 100kb
fragments and reshuffled to mimic a draft genome for GRiD and
iRep measurements. Reads mapping to S. epidermidis were
subsampled to 0.4× and 0.2× coverage and subsequently used for
GRiD and iRep estimates. iRep performed similarly to the PTR
benchmark, but GRiD had a much lower percentage of error in
comparison to iRep at both 0.4× and 0.2× coverage (Fig. 1c). To
highlight the importance of accounting for ambiguous reads
during growth estimation, reads mapping to S. epidermidis were

re-mapped to S. capitis, S. aureus, and Propionibacterium acnes
genomes to determine the proportion of multiple-mapping reads.
Samples with increasing numbers of multi-mapped, ambiguous
reads were significantly correlated with our metric of increasing
species heterogeneity (Fig. 1d), which can increase uncertainty in
growth rate estimation. For quality control, we found that a
combination of dnaA coverage, dif coverage, and species
heterogeneity can be used to ascertain the accuracy of growth
predictions. Our findings suggest that growth rates are most
accurate when dnaA/ori and ter/dif coverage ratios approach one,
and species heterogeneity is low (<0.3, Supplementary Fig. 2A).
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Fig. 1 In situ growth estimate from ultra-low coverage bacteria. a The GRiD approach. Contigs are re-ordered to produce a pattern whereby low coverage
contigs potentially containing ter are located near the mid-region of the genome, while high-coverage contigs potentially harboring ori are located at either
extremes of the genome. GRiD values correspond to the ratio of coverage at the peak (ori) and trough (ter) regions. b Growth rate reproducibility between
GRiD and iRep using reads obtained from pure cultures of Staphylococcus epidermidis and Corynebacterium simulans. The boxplot shows the difference (delta)
in growth estimates before and after reads were subsampled to lower coverage. To avoid bias, only unrefined GRiD values (see methods) were used for
comparison with iRep. c Error rate comparison between GRiD and iRep from a skin metagenomic dataset using S. epidermidis reference genome. PTR was
calculated using a closed circular reference genome while GRiD and iRep were calculated using the same reference genome, but fragmented into 100kb
fragments and reshuffled. For samples with genome coverage > 0.2 (n= 588), mapped reads were subsampled to ultra-low coverage prior to GRiD and
iRep estimations. Here, Percent error ¼ ðmaxðpredicted;realÞÞ$ðminðpredicted;realÞÞ

ðmaxðpredicted;realÞÞ ´ 100, where “predicted” represent GRiD or iRep scores, and “real” is the PTR score.
Unrefined GRiD values were used for comparison with iRep. The figure on the right shows Pearson correlation plots of GRiD and iRep with PTR. ***= p <
0.001. d Reads from a skin metagenomic dataset mapping to S. epidermidis were remapped to the respective genomes. Re-mapped reads are considered as
ambiguous reads. The scatter plot shows the correlation (Spearman) between ambiguous reads and species heterogeneity (1−r/u), where r= refined
GRiD and u= unrefined GRiD (see Methods). ***= p < 0.001. e iRep and GRiD measurement for CPR genomes. The scatter plots below show Pearson
correlation plots of GRiD and iRep estimates before and after subsampling to ultra-low coverage. ***= p < 0.001. Center lines in boxplots represent the
median and the edges represent the first and third quartiles. Source data are provided as a Source Data file
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MetaBAT2, MaxBin2, binny1, DAS tool
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• binny1:
• 1 assembly, 1 alignment

• kmers: 4-mer frequencies
• pseudo-count, centre-log ration scaling

• iterate over:
• t-SNE for embedding
• clustering by DB-SCAN
• assess completeness based on essential, single-copy genes
• split based on coverage depth



Benchmarking

30Meyer et al. (2022) Nat Methods 19, 429–440. https://doi.org/10.1038/s41592-022-01431-4

• based on known genomes



Side note: why are some tools used 
more than others?
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Side note: why are some tools used 
more than others?
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Limitations

33

• binning is just as good as the assembly

• longer contigs perform better
• -> most binners use contigs >1,000 bp, some >2,500 bp

• more samples perform better than fewer samples

• the more knowledge is used, the less likely new organisms are found

• how to deal with partial genomes?



Quality assessment of MAGs

34Parks et al. (2015) Genome Res. 25(7):1043-55. doi: 10.1101/gr.186072.114.

• completeness
• contamination

• based on gene content



Quality measures and reporting

35

assembly quaility
Finished: Single, validated, contiguous sequence per replicon without gaps or ambiguities with a consensus error rate 

equivalent to Q50 or better. Assembly statistics*. 
High Quality Draft:Multiple fragments where gaps span repetitive regions. Assembly statistics*. Presence of the 23S, 16S 

and 5S rRNA genes and at least 18 tRNAs. 
Medium Quality Draft:Many fragments with little to no review of assembly other than reporting of standard assembly 

statistics*.
Low Quality Draft:Many fragments with little to no review of assembly other than reporting of standard assembly 

statistics*.
completeness score

High Quality Draft: >90%
Medium Quality Draft: >50%

Low Quality Draft: < 50%
contamination score

High Quality Draft: < 5%
Medium Quality Draft: < 10%

Low Quality Draft: < 10%
completeness software

Checkm, anvi’o, BUSCO or other

Bowers et al. (2017) Nat Biotechnol 35, 725–731. https://doi.org/10.1038/nbt.3893



Alternatives?

36

• long reads

• HiC

• single-cell genomics

• taxonomic annotation at gene/contig level

lab/computational protocols not mature

higher DNA quality demands
more expensive -> lower depth
more computational effort

lower throughput / depth
technical challenges

only works for well-described organisms
HGT events can’t be observed



Further reading
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Hickl et al.  bioRχiv https://doi.org/10.1101/2021.12.22.473795

Chen et al.  2020, Genome Res. 30(3):315-333 https://doi.org/10.1101/gr.258640.119



Thanks for your attention!

a.u.s.heintzbuschart@uva.nl github.com/a-h-b                                           twitter.com/_a_h_b_

SP C2.205


