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• idea of assembly
• alternatives
• how does assembly work?
• how to inspect assemblies
• what to assemble?
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due to prevalent genetic strain variation11, which would increase
noise. First, we benchmarked PTR using a closed reference
genome, and then the same genome fragmented into 100kb
fragments and reshuffled to mimic a draft genome for GRiD and
iRep measurements. Reads mapping to S. epidermidis were
subsampled to 0.4× and 0.2× coverage and subsequently used for
GRiD and iRep estimates. iRep performed similarly to the PTR
benchmark, but GRiD had a much lower percentage of error in
comparison to iRep at both 0.4× and 0.2× coverage (Fig. 1c). To
highlight the importance of accounting for ambiguous reads
during growth estimation, reads mapping to S. epidermidis were

re-mapped to S. capitis, S. aureus, and Propionibacterium acnes
genomes to determine the proportion of multiple-mapping reads.
Samples with increasing numbers of multi-mapped, ambiguous
reads were significantly correlated with our metric of increasing
species heterogeneity (Fig. 1d), which can increase uncertainty in
growth rate estimation. For quality control, we found that a
combination of dnaA coverage, dif coverage, and species
heterogeneity can be used to ascertain the accuracy of growth
predictions. Our findings suggest that growth rates are most
accurate when dnaA/ori and ter/dif coverage ratios approach one,
and species heterogeneity is low (<0.3, Supplementary Fig. 2A).
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Fig. 1 In situ growth estimate from ultra-low coverage bacteria. a The GRiD approach. Contigs are re-ordered to produce a pattern whereby low coverage
contigs potentially containing ter are located near the mid-region of the genome, while high-coverage contigs potentially harboring ori are located at either
extremes of the genome. GRiD values correspond to the ratio of coverage at the peak (ori) and trough (ter) regions. b Growth rate reproducibility between
GRiD and iRep using reads obtained from pure cultures of Staphylococcus epidermidis and Corynebacterium simulans. The boxplot shows the difference (delta)
in growth estimates before and after reads were subsampled to lower coverage. To avoid bias, only unrefined GRiD values (see methods) were used for
comparison with iRep. c Error rate comparison between GRiD and iRep from a skin metagenomic dataset using S. epidermidis reference genome. PTR was
calculated using a closed circular reference genome while GRiD and iRep were calculated using the same reference genome, but fragmented into 100kb
fragments and reshuffled. For samples with genome coverage > 0.2 (n= 588), mapped reads were subsampled to ultra-low coverage prior to GRiD and
iRep estimations. Here, Percent error ¼ ðmaxðpredicted;realÞÞ$ðminðpredicted;realÞÞ

ðmaxðpredicted;realÞÞ ´ 100, where “predicted” represent GRiD or iRep scores, and “real” is the PTR score.
Unrefined GRiD values were used for comparison with iRep. The figure on the right shows Pearson correlation plots of GRiD and iRep with PTR. ***= p <
0.001. d Reads from a skin metagenomic dataset mapping to S. epidermidis were remapped to the respective genomes. Re-mapped reads are considered as
ambiguous reads. The scatter plot shows the correlation (Spearman) between ambiguous reads and species heterogeneity (1−r/u), where r= refined
GRiD and u= unrefined GRiD (see Methods). ***= p < 0.001. e iRep and GRiD measurement for CPR genomes. The scatter plots below show Pearson
correlation plots of GRiD and iRep estimates before and after subsampling to ultra-low coverage. ***= p < 0.001. Center lines in boxplots represent the
median and the edges represent the first and third quartiles. Source data are provided as a Source Data file
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What is “assembly”?
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• puzzling sequencing reads back together

Assembly

Sequencing

adapted from Commins et al. 2009 Biol Proced Online 11: 52
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Do we need assembly?
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• assembly: “de novo” approaches
• also, usually: “genome-centric” approaches

• no assembly: “reference-based” approaches



Reference-based approaches
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How to solve the puzzle?
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Assembly

adapted from Commins et al. 2009 Biol Proced Online 11: 52



How does assembly work?
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How does assembly work?

11
Sohn JI, Nam JW. The present and future of de novo whole-
genome assembly. Brief Bioinform. 2018 Jan 1;19(1):23-40



How does assembly work?
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Leggett RM, Ramirez-Gonzalez RH, Verweij W, Kawashima CG, Iqbal Z, Jones JD, Caccamo M, 
Maclean D. Identifying and classifying trait linked polymorphisms in non-reference species by 
walking coloured de bruijn graphs. PLoS One. 2013;8(3):e60058

• effect of sequencing errors:



How does assembly work?
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Sohn JI, Nam JW. The present and future of de novo whole-
genome assembly. Brief Bioinform. 2018 Jan 1;19(1):23-40



Assembly outputs
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Lapidus AL, Korobeynikov AI. Metagenomic Data Assembly - The Way of Decoding 
Unknown Microorganisms. Front Microbiol. 2021 Mar 23;12:613791

• assembly graph (FASTG): • assembled contigs (FASTA):

hundreds of Mbp
ten-hundred thousands of contigs



kmers, again
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• word sizes for alignment seeding: BLAST default 11, BWA default 19

• kmers for taxonomy: kraken1/2 default 31/33

• kmers for diversity: nonpareil 24

• kmers for assembly: metaSPAdes between 25 and 127



Effect of kmer sizes
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• small kmers work better on lower coverage
• larger kmers can resolve short repeats

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

increasing kmer size -> 



Metagenomics challenges
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• diversity

• distinguishing true diversity from sequencing errors

Albertsen, M.,, A. et al. Nat Biotechnol 31, 533–538 (2013). 



Megahit
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FLi D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex 
metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015 15;31(10):1674-6



MetaSpades
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Lapidus AL, Korobeynikov AI. Metagenomic Data Assembly - The Way of Decoding Unknown Microorganisms. 
Front Microbiol. 2021 Mar 23;12:613791

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. 
Genome Res. 2017;27(5):824-834



Assembly has high computational 
demands
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• run time depends on genome length (and algorithm)
• memory depends on the kmers (and algorithm)

F. Meyer, ..., A. C. McHardy: Critical Assessment of Metagenome Interpretation -
the second round of challenges bioRxiv 2021.07.12.451567



How to inspect assemblies?

21https://www.molecularecologist.com/2017/03/29/whats-n50/



How to inspect assemblies?
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• contigs are often size filtered before analysis and further processing
(e.g. min 500 or 1000 bp)



How to inspect assemblies?
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How to inspect assemblies?
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• mapping reads back on contigs



How to inspect assemblies?
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How to inspect assemblies?
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Ryan R. Wick, Mark B. Schultz, Justin Zobel, Kathryn E. Holt (2015), 
Bandage: interactive visualization of de novo genome assemblies, 
Bioinformatics 31: 3350–3352, 
https://doi.org/10.1093/bioinformatics/btv383

• Bandage: • Metaquast:

Alla Mikheenko, Vladislav Saveliev, Alexey 
Gurevich, MetaQUAST: evaluation of 
metagenome assemblies, Bioinformatics 
(2016) 32 (7): 1088-1090. 
doi: 10.1093/bioinformatics/btv697



How to choose a assembler? Benchmarks
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What to assemble?
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• single-sample
• multi-sample

• short reads
• long reads
• short and long reads

• metagenomics, metatranscriptomics or both

diversity can cause troubles
depth can be limiting

different approaches, errors & memory can be an issue

long reads for scaffolding or co-assembly

introns or not? can increase depth, different coverage can 
be problematic



Thanks for your attention!

a.u.s.heintzbuschart@uva.nl github.com/a-h-b                                           twitter.com/_a_h_b_

SP C2.205


