Metagenomics 101

Session X: Metatranscriptomics

Anna Heintz-Buschart April 2022

Metagenomics (+ other omics) pipeline

imp3.readthedocs.io

2

Today

- Why metatranscriptomics?
- Challenges in metatranscriptomics
- Workflows for metatranscriptomics

Metaomics

rRNA amplicon studies:

structure of community A

structure of community B

functional omics:

×X×

Metaomics

metatranscriptomic profiles are much more variable

Heintz-Buschart & Wilmes 2018 Trends in Microbiol 26: 563-574.

Sample to data

Sample to data

sampling + preservation

Chip Information:

Chip Comments:

Chip Lot #:

Assay Origin Path:	C:\Program Files\Agilent\2100 bioanalyzer\2100 expert\assays\RNA\Prokaryote Total RNA Na rkssæy i e	
Assay Class:	Prokaryote Total RNA Nano	Version
Version:	2.5	Assay C
Assay Comments:	Total RNA Analysis ng sensitivity (Prokaryote)	

© Copyright 2003 - 2009 Agilent Technologieshipten

sampteoprocessing

UNIVERSITY OF AMSTERDAM ×X× Life Sciences

Taxonomic profiles?

Milanese, A., Mende, D.R., Paoli, L. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun 10, 1014 (2019). https://doi.org/10.1038/s41467-019-08844-4

MetaT vs metaG - taxonomic profiles

Patterns

××××

Life Sciences

taxonomic profiles:

 metatranscriptomics-based taxonomic profiles show similar results to metagenomics

 metatranscriptomics have similar power to metagenomics

12

MetaT vs metaG - what do we detect?

overall similar origins, but larger
organisms are more represented

o often more host!

MetaT vs metaG - functional profiles

functional profiles:

UNIVERSITY OF AMSTERDAM

Life Sciences

 functional profiles at metagenomic and metatranscriptomic levels are less similar than taxonomic profiles

Patterns

×X×

Life Sciences

taxonomic profiles: functional profiles: 1.0 -0.5 metaG stance seed Shannon distance 0.2 0.2 0.1 Jensen-Shannon 0.8 metaG distance 0.6 0.4 0.2 0.0 0.0 1.0 0.5 Jensen-Shannon Jensen-Shannon 0.8 0.4 distance 700 distance distance metaT 0.3 metaT 0.2 0.2 0.1 0.0 0.0 intra-individualinter-individual inter-individual inter-family intra-family intra-individual inter-family intra-family UNIVERSITY OF AMSTERDAM

Heintz-Buschart et al., Nature Microbiology, 2017

21

MetaT vs metaP - functional profiles

• metaproteome is more related to metatranscriptome

Coding and non-coding transcripts

across-sample correlation

	I	I	
-0.6	-0.1	0.5	1

non-coding elements

o some highly expressed transcripts are non-coding

Example - OLE (ornate, large, extremophilic) RNA

×X×

Expression per genome

binned population-level genomes - taxonomy

- G2.2.2 Butyrivibrio crossotus
- G11 Firmicutes
- G31 unclassified Clostridiales
- O32 unclassified Clostridiales
- O50 Ruminococcus sp.
- C1.1.2 Collinsella aerofaciens
- C24.1 unclassified Clostridiales

Example – who expresses a gene of interest?

example: protein with cellulose-binding domain

Expression per and across genomes

mOTU genes:

non-house-keeping genes:

Example - non-coding elements in a *Parabacteroides distasonis* genome

- o 4.7 Mbp
- o ~4,600 ORFs
 - ➤ ~3,600 expressed
 - ➤ 16 proteins detected
- o 2,949 UTRs
- 84 annotated non-coding regions (+ 4 5S rRNAs and 55 tRNAs)
- o 46 CRISPR repeats
- 1 bacterial nc RNA (*Bacteroidales*-1)
- o 12 riboswitches
- other potential regulatory elements

Example - non-coding elements in a *Parabacteroides distasonis* genome

- o 4.7 Mbp
- o ~4,600 ORFs
 - ➤ ~3,600 expressed
 - ➢ 16 proteins detected
- o 2,949 UTRs
- 84 annotated non-coding regions (+ 4 5S rRNAs and 55 tRNAs)
- o 46 CRISPR repeats
- 1 bacterial nc RNA (*Bacteroidales*-1)
- o 12 riboswitches
- other potential regulatory elements

cobalamin riboswitches and gene function:

genes of unknown functions

Heintz-Buschart et al., unpublished

Thanks for your attention!

a.u.s.heintzbuschart@uva.nl

SP C2.205

github.com/a-h-b

twitter.com/_a_h_b_

