Metagenomics 101

Session X: Metatranscriptomics

Anna Heintz-Buschart
April 2022

Metagenomics (+ other omics) pipeline

Today

- Why metatranscriptomics?
- Challenges in metatranscriptomics
- Workflows for metatranscriptomics

Metaomics

rRNA amplicon studies:

metagenomics:

functional omics:

Metaomics

- metatranscriptomic profiles are much more variable

Sample to data

Data integration

Sample to data

Workflow

Taxonomic profiles?

a

0.64	0.7	2
0.15		
	0.36	
0.91	0.	
.	0.73	
0.75	0.5	
0.64	0.4	
	0.52	
0.84	0.	
-0.0	0.	
0.60	0	
0.58	0.	0.64
0.66	0.8	0.90
0.44	0.45	6
$r^{2 r^{2}}$		

Spearman correlation

Milanese, A., Mende, D.R., Paoli, L. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun 10, 1014 (2019). https://doi.org/10.1038/s41467-019-08844-4

MetaT vs metaG - taxonomic profiles

Patterns

- metatranscriptomics-based taxonomic profiles show similar results to metagenomics

- metatranscriptomics have similar power to metagenomics

Workflow

Workflow

Workflow

Ludwig et al., Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016 May 5;44(8):3865-77. doi: $10.1093 / n a r /$ gkw116

Workflow

Workflow

Workflow

MetaT vs metaG - what do we detect?

- overall similar origins, but larger organisms are more represented
- often more host!

MetaT vs metaG - functional profiles

functional profiles:

- functional profiles at metagenomic and metatranscriptomic levels are less similar than taxonomic profiles

Patterns

MetaT vs metaP - functional profiles

metaP vs metaG:

metaP vs metaT:

- metaproteome is more related to metatranscriptome

Coding and non-coding transcripts

- non-coding elements
- some highly expressed transcripts are non-coding

Example - OLE (ornate, large, extremophilic) RNA

 Life Sciences

- found in Firmicutes
- ~ 600 nt length

Firmicutes mOTU:

Clostridia mOTU:

Workflow

Workflow

Expression per genome

[^0]
Example who expresses a gene of interest?

example: protein with cellulose-binding domain

metaT

metaG

Expression per and across genomes

mOTU genes:

- motu linkage group 115 - Clostridiales
- Roseburia inulinivorans
- motu linkage group 316 - Clostridiales
non-house-keeping genes:

Example - non-coding elements in a Parabacteroides distasonis genome

- 4.7 Mbp
- ~4,600 ORFs
> 3,600 expressed
>16 proteins detected
- 2,949 UTRs
- 84 annotated non-coding regions (+ 45 S rRNAs and 55 tRNAs)
- 46 CRISPR repeats
- 1 bacterial nc RNA (Bacteroidales-1)
- 12 riboswitches
- other potential regulatory elements

CRISPR region:

Example - non-coding elements in a Parabacteroides distasonis genome

- 4.7 Mbp
- ~4,600 ORFs
> 3,600 expressed
> 16 proteins detected
- 2,949 UTRs
- 84 annotated non-coding regions (+ 45 S rRNAs and 55 tRNAs)
- 46 CRISPR repeats
- 1 bacterial nc RNA (Bacteroidales-1)
- 12 riboswitches
- other potential regulatory elements
cobalamin riboswitches and gene function:

genes of unknown functions

Thanks for your attention!

[^0]: binned population-level genomes - taxonomy

 - G2.2.2 - Butyrivibrio crossotus
 - G11 - Firmicutes
 - G31 - unclassified Clostridiales O32 - unclassified Clostridiales O50 - Ruminococcus sp.
 - C1.1.2 - Collinsella aerofaciens
 - C24.1 - unclassified Clostridiales

