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“Metabarcoding”

• Coupling high-throughput sequencing with our ability to associate 
sequences from eDNA with a taxonomic name is called “eDNA 
metabarcoding” (Deiner et al. Mol Ecol. 2017)

• “massively parallel tag sequencing strategy” (Sogin et al. PNAS 2006)

• descendant of DGGE profiles (Ferris et al. Appl Environ Microbiol. 1996)
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Overview of today

• A look at the aims
• Overview of the method
• Limitations – from sample to sequencing data
• How do we try to deal with these limitations?
• Which problems persist?

• dadasnake – aims and realization
• dadasnake: options in detail
• Q&A
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About me
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MSc Biology (Microbiology, Botany, 
Molecular & Cell Biology)

2021

2017
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PhD: Fungal human pathogen 
- compound screening, mode-of action
- gene expression analysis  

Assistant Prof Microbial Metagenomics
- meta-omics integration
- human and plant microbiomes

Postdoc: Gene regulatory network modelling

Postdoc: Integrated meta-omics
- human microbiome, wastewater treatment
- metagenomics, metatranscriptomics, 

metaproteomics
- lab automation
- bioinformatics pipelines

Metagenomics support: 
- biodiversity
- soil, plants, animal microbiomes
- bioinformatics pipelines
- data integration
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transcriptomics 
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human & primate 
microbiomes
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Questions

what is in my sample?
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mixed community

who is in my 
community?

what is in my samples?

how do my samples compare?
which of my samples are similar? 
what shapes my samples?

who is there often/in high numbers?
who is there with whom?

✔

✔

✔

✔

✔✔ ✔

✔✔

✔

✔✔

✔

✔

when are they there? 
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Measuring microbiomes: 
DNA based methods

sample processing

sampling + preservation
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Measuring microbiomes: 
marker genes
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• classical target: 16S rRNA gene

• pre-requisites: 
oconserved regions for primers to bind
o variable regions with suitable 

phylogenetic resolution
o similar mutation rates across all 

measurable taxa
ono horizontal gene transfer
o suitable length



Measuring microbiomes: 
marker genes
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• classical target: 16S rRNA gene

• pre-requisites: 
oconserved regions for primers to bind
o variable regions with suitable 

phylogenetic resolution
o similar mutation rates across all 

measurable taxa
ono horizontal gene transfer
o suitable length

• other targets: 
o18S rRNA genes
o internal transcribed spacers 

(ITS)
o28S rRNA genes
o12S rRNA genes
ocytochrome c oxidase 

subunit 1 gene (COI)
o RuBisCO large chain (rbcL)
o tRNALeu intron (trnL)
oRNA polymerase (rpoB)



Omics paradigm

microbiome processing measurementsampling

identification

delineation

quantification
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data

compensate for things 
that went wrong before 

bioinformatics:
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What could go wrong?
Sample storage/processing

Watson et al., 2019, Scientific Reports 
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What could go wrong?
Amplification

method 1

rel. abundance

method 2

rel. abundance
Cynthia Albracht et al., unpublished



Omics paradigm

microbiome processing measurementsampling

identification

delineation

quantification
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data

compensate for things 
that went wrong before 

bioinformatics:

things that go wrong here, stay in the data



Metabarcoding workflow
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Measuring microbiomes: sequencing

16adapted from https://bitesizebio.com/13546/sequencing-by-synthesis-explaining-the-illumina-sequencing-technology/

amplify



What does sequencing data look like?
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Line 1: Name
Line 2: Sequence

Line 3: anything Line 4: Quality at each position
.
.
.
.
.
.
.
.
.

as many as 
we have 
reads

(forward- & 
reverse files) 
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What’s “wrong” with sequencing data?
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• there are amplification errors and sequencing errors
Øsequencers recognize some sequencing errors and give quality scores

oquality can affect: 
onumber of usable sequences 
o trade-off between resolution and misinterpretation of errors as real 

sequences



What’s “wrong” with sequencing data?
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• everything is measured at once
• off-target sequences

Øsamples are marked (“indexed”)
Øprimer sequences are recognizable
Øsequences carry phylogenetic signal

o remove dubious/un-informative sequences
o interpret numbers with caution



What’s “wrong” with sequencing data?
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• numbers of reads per sample have no meaning
• there are no intensities/concentrations

Øreads can (must) be counted

o interpret numbers with caution
oproportions can be misleading



What’s “wrong” with sequencing data?
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• amplicon length ≠ read length
Øoverlaps are recognizable, mismatches are informative

• idiosyncrasies of formats and technologies
Øyou need to know how your data was created



Metabarcoding workflow
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ASVs (aka. ESVs, zOTUs)
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o Amplicon Sequence Variants 
= Exact Sequence Variants 
= zero-radius OTUs

o current generation of computational tools 
(appeared in ~2017)
o deblur
o DADA2
o unoise
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ASVs (aka. ESVs, zOTUs)
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o make use of quality information
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s: ATTAACGAGATTATAACCAGAGTACGAATA...

r: ATCAACGAGATTATAACAAGAGTACGAATA...

Error rates depend on....
- Substitution (eg. A->C) 
- Quality score (eg. Q=30) 
- Batch effect (eg. run)

p(r|s) =
LY

i=1

p(r(i)|s(i), qr(i), Z)

Using more data!
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ASVs (aka. ESVs, zOTUs)
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+ pipeline including denoising & filtering, chimera 
removal, OTU table merging…

+ R interface

+ steady maintenance

+ good documentation

+ use cases for targets other than 16S

+ settings for non-Illumina data

- not the most resource-efficient
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- A replacement for OTU picking
- Accurate and high-resolution
- Implemented in an R package
- Open source

  DADA2 is...

@bejcal -- https://github.com/benjjneb/dada2   



ASVs (aka. ESVs, zOTUs)
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o cross-study comparability
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 Consistent Labels: Comparison

Sequence Tables

Study 1

Study 2

Study 3

Cross-study comparison
merge

Eliminates need for joint reprocessing of raw data.

real 
sequences



s: ATTAACGAGATTATAACCAGAGTACGAATA...

r: ATCAACGAGATTATAACAAGAGTACGAATA...

Error rates depend on....
- Substitution (eg. A->C) 
- Quality score (eg. Q=30) 
- Batch effect (eg. run)

p(r|s) =
LY

i=1

p(r(i)|s(i), qr(i), Z)

Using more data!

  DADA2: Error model

ASVs (aka. ESVs, zOTUs)
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o model substitutions for every run 
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Quality filtering
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o a few positions with low quality don’t hurt 

o off-target sequences should be removed before modelling
Øspike-in (phiX174)
Øincomplete sequences
Ødark-cycle positions from novaseq and nextseq machines 

(2-color chemistry)

onote: errors from PCR are not detected by error models
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Unequal sampling depth 
does not reflect biology
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• it’s pure chance how many reads a sample gets
• representation can be unfair
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• number of new species in increasing subsamples

1024 reads

observed species after x reads 
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• number of new species in increasing subsamples

100 reads

observed species after x reads 
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• subsample reads to keep equal numbers per sample

100 reads
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+ all samples have the same 
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! most people do this after 
ASV generation



post-ASV rarefaction does not work

41Weißbecker et al., 2020, bioRxiv, doi: 10.1101/2020.05.17.095679v1
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Wu et al. 2009 Nature

phylogenetic tree
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compare the 
taxa
in the database

to your ASVs

Taxonomic classification of ASVs
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Naïve Bayesian Classifier

Wang et al. 2007 Applied & Environmental Microbiology

P(taxon|sequence composition) = P(sequence composition|taxon) * P(taxon) / P(sequence composition) 

read: the probablity of the taxon being right given the sequence data 
is equal to 

the probablity that the sequence composition is correct given the taxon 

(while the probabilty of the taxon and the probability of the sequence composition being true are constant)



sequence of one ASV/taxon:
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Taxonomic classification of ASVs

aatttcaa
atttcaaa
…
65,536 possible words



Wu et al. 2009 Nature

phylogenetic tree
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compare the 
~500,000 taxa x 65,536 possible words
in the database

to the words in your ASVs

Taxonomic classification of ASVs
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Wu et al. 2009 Nature

count the number of reads 
per ASV/taxon

taxon Bact. 1 Bact. 2 Bact. 3 Bact. 4
Sample 1 1 2 1 4
Sample 2 2 2 3 2
Sample 3 1 0 0 1
Sample … … … … …
Sample N 4 1 7 0

ASV 1 ASV 2 ASV 3 ASV 4
Sample 1 1 2 1 4

Taxonomic profiling
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The problems with always counting 
reads out of a total
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• the sum of reads is often not 
representative of anything we know

• we need to measure the total to be sure

OR
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• taxa 1 and 2 have no special 
relationship

Compositionality - example
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• taxon 3 introduces a positive 
correlation
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Add to that: bias
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• assuming a constant bias for every ASV/taxon:

• you can transform data and correct for biases M
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A word on functional prediction
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• large proportion of the community is 
not taken into account
• usefulness depends on the context
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Summary

• research questions can ask about sample-sample or sample-(exp.)factor or taxon-

taxon or taxon-(exp.)factor relationships

• marker genes determine target organisms and resolution – studies using different 

markers are incomparable

• biases in sample processing persist

• sequencing data processing needs to be error-aware

• sequencing data processing to ASVs dictates pre-processing

• use of ASVs (also OTUs) facilitates taxonomic profiling

• functional predictions need to be handled with caution

• metabarcode-sequencing-based numbers are treacherous
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After the break….

QC 
& 

clustering

taxonomic annotation,
functional predictions,
phylogenetic treeing

“OTU” table interpretation
statistics

&
visualization

amplicon 
sequencing



Thanks for your attention!

a.u.s.heintzbuschart@uva.nl github.com/a-h-b                                           twitter.com/_a_h_b_
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