Metagenomics 101

Session 2: Raw data & QC

Anna Heintz-Buschart February 2022

Metagenomics (+ other omics) pipeline

imp3.readthedocs.io

UNIVERSITY OF AMSTERDAM

Life Sciences

׊×

Metagenomics (+ other omics) pipeline

imp3.readthedocs.io

What does sequencing data look like?

CM03696:36:00000000-BGTDB:1:1101:9696:1078 1:N:0:226	пе инининскимински стастичиминининининининининининининининининин
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	8######88DFGGGGG########################
TTAAGTTCAGCGGGTATCCGGCTGATCCGAGGTCAACCGGAAAGCCGCGGAACGTCGGGGGGTCGGCGGACGCCCCLine 4: Qu	ality at each position
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
4#######/19CFGCGGDCC>#104:?FFG>DGG33)7>>4FFGFFBFFF@BFFBFF?BFF?BFF>6617< @M03696:36:00000000-BGTDB:1:1101:16337:1210 1:N:0:226 TTAAGTTCAGCGGGTATCCCTACTGCTCCGCGGGTCAAAAGTTGCAAAAGGGCTGTTGGACGCTGACC AAGCTTGAGGGTACAAATGACGCTCGAACAGGCATGCCCTTTGGAATACCAAAGGGCGCAATGTGCGTT	CTCCGAAACCAGTAGGCCGGCTGCCAACGACTTTAAGGCGAGTCTCCAGCGGACTGGAGACAAGACGCCCAACACCAAGCA
+ GGFGGGGGGGGGG:FF@FGGGGGGGGGGBFFGGGFGFGG, EFGGGFAFGCFFGEFGGGGGFG8ECEGEGGF EF??CF6=C6CGFGG* <cgcfb3*.7d?f05>FDCFGGFGFFGFCFFF=@7@@FF3B2>59?BABFF05 040260+22690000000000000000000000000000000</cgcfb3*.7d?f05>	GGGDGGGGG,DGGGGGGGGGGGGGGGGGGGGGGGGGGG
TTAAGTTCAGCGGGTATCCCTGCTCGAGGTCGAGCGTCGGCAAAGACGCCGAACGTCGGGGGGCCGGCA ACAAGCCGCGCCTTGAGGGCAGTAATGACGCTCGGACAGGCATGCCCCCCGGAATACCCGGGGGGGCGCCAAT	AAGCCCCATACGCTCGAGGACCGGGCACGGCGCCGCCACTGCCTTTCGGGCCCGTCTCCCGGGGGAGACGAGGCCCAACAC
+ GGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TTAAGTTCAGCGGGGTCTCCCTACCTGATCCGAGGTCAACCTGATAAAATTGGGGGGGTTACTGGCAGGCA	CTACGCTCGCAGCCGGACAGCACCGCCACTGACTTTAGGGCCCGCCAGGCAGCAGAGCCCAACACCAAGCTAGGCTTGAGG
GG <ffggg9cfdggg7cfggggggggggcgcgggggggggggggggggg< td=""><td>FGGGGG@FF*B<ffgefgeggggggggggggggggggggggfgggggf?ff>EEE=EECFGGGCFGDFCFG8;FGGGG5CGG9EG<ggg6@< td=""></ggg6@<></ffgefgeggggggggggggggggggggggfgggggf?ff></td></ffggg9cfdggg7cfggggggggggcgcgggggggggggggggggg<>	FGGGGG@FF*B <ffgefgeggggggggggggggggggggggfgggggf?ff>EEE=EECFGGGCFGDFCFG8;FGGGG5CGG9EG<ggg6@< td=""></ggg6@<></ffgefgeggggggggggggggggggggggfgggggf?ff>
	GCGTAGATAATTATCACACCATAGATTAGCGGCAAAAGCCCTGCTAATGCATTTAAGGATAGCCGACTCAGGAAGCCCGCA
+ GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	FFGGGGGG, EFFGGGGGGGGGGGGGGGGGGGGGGGGGGG
(MM33096:36:000000000-BGIDB:1:1101:14775:1592 1:N:0:226 TTAAGTTCAGCGGGGTATCCCTGCCTGCCTCGCGGGGAACGACGGACG	AAGCCCCATACGCTCGAGGACCGGGCACGGCGCCGCCACTGCCTTTCGGGCCCGTCTCCCGGGGGAGACGAGACTCAACAC
GGFEFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Where do errors come from?

Sequencing

short read sequencing

long read sequencing

- A. Two representative DNA fragments from two unique samples, each attached to a specific barcode sequence that identifies the sample from which it originated.
- B. Libraries for each sample are pooled and sequenced in parallel. Each new read contains both the fragment sequence and its sampleidentifying barcode.
- C. Barcode sequences are used to de-multiplex, or differentiate reads from each sample.
- D. Each set of reads is aligned to the reference sequence.

UNIVERSITY OF AMSTERDAM Life Sciences

https://en.wikipedia.org/wiki/File:Sequencing_by_synthesis_Reversible_terminators.png

MiSeq Series O

NextSeq 550 Series O

NextSeq 1000 & 2000

NovaSeq 6000

Run Time 11-48 hours 4-55 hours 12-30 hours 360 Gb* Maximum Output 15 Gb 120 Gb 25 million ⁺ 1.2 billion* Maximum Reads Per Run 400 million Maximum Read Length 2 × 300 bp 2 × 150 bp 2 × 150 bp

~13 - 38 hours (dual SP flow cells) ~13–25 hours (dual S1 flow cells) ~16–36 hours (dual S2 flow cells) ~44 hours (dual S4 flow cells) 6000 Gb

20 billion

2 × 250**

https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/2-channel-sbs.html

https://www.illumina.com/content/dam/illumina-marketing/documents/products/techspotlights/cmostech-note-770-2013-054.pdf

Long read sequencing: Pacbio SMRT

Α

Eid, J., et al. (2009) Science, 323(5910), 133-138.

Long read sequencing: Pacbio SMRT

Life Sciences

Long read sequencing: ONT

Rang, F.J., Kloosterman, W.P. & de Ridder, J. Genome Biol 19, 90 (2018) Xu, L., Seki, M. J Hum Genet 65, 25-33 (2020)

Quality?

Phred+33 score:

An important technical aspect of our work is the use of log-transformed error probabilities rather than untransformed ones, which facilitates working with error rates in the range of most importance (very close to 0). Specifically, we define the quality value q assigned to a base-call to be

 $q = -10 \times \log_{10}(p)$

where p is the estimated error probability for that base-call. Thus a base-call having a probability of 1/1000 of being incorrect is assigned a quality value of 30. Note that high quality values correspond to low error probabilities, and conversely.

 $q = -10 \times \log_{10}(p)$

novaseq data:

@SRR15010442.1

CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGGCAGTTACAGACCAAAAAGCCGCCTTCGCCACTGGTGTTC CTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCTACCCCCC

+

novaseq data:

@SRR15010442.1

CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGGCAGTTACAGACCAAAAAGCCGCCTTCGCCACTGGTGTTC CTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCTACCCCCC

+

summary of 1 dataset:

Quality reports

summary of 1 dataset:

forward reads:

reverse reads:

Quality reports

summary of 1 dataset:

Quality reports

summary of 1 dataset:

Data preprocessing: filtering & trimming

- remove adapter sequences
- remove low-quality ends
- remove dark-cycle poly-G ends

Data preprocessing : filtering & trimming

Data preprocessing - remove contaminants!

- remove uninformative sequences:
- phiX spike-in
- host genome
- for rRNA-depleted RNAseq: remove rRNA

Data preprocessing remove contaminants!

frontiers in Microbiology PERSPECTIVE published: 22 October 2021 doi: 10.3389/fmicb.2021.755101

Open Access

COMMENTARY

Large-scale contamination of microbial isolate genomes by Illumina PhiX control

Supratim Mukherjee^{1*}, Marcel Huntemann¹, Natalia Ivanova¹, Nikos C Kyrpides^{1,2} and Amrita Pati¹

Contamination in Reference Sequence Databases: Time for Divide-and-Rule Tactics

Valérian Lupo^{1,2}, Mick Van Vlierberghe¹, Hervé Vanderschuren³, Frédéric Kerff², Denis Baurain^{1*} and Luc Cornet^{1,3}

Steinegger and Salzberg *Genome Biology* (2020) 21:115 https://doi.org/10.1186/s13059-020-02023-1

Genome Biology

Open Access

Check for updates

RESEARCH ARTICLE Removing contaminants from databases of draft genomes

Jennifer Lu^{1,2}*, Steven L. Salzberg^{1,2,3}

METHOD

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank

Thanks for your attention!

a.u.s.heintzbuschart@uva.nl

SP C2.205

github.com/a-h-b

twitter.com/_a_h_b_

