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due to prevalent genetic strain variation11, which would increase
noise. First, we benchmarked PTR using a closed reference
genome, and then the same genome fragmented into 100kb
fragments and reshuffled to mimic a draft genome for GRiD and
iRep measurements. Reads mapping to S. epidermidis were
subsampled to 0.4× and 0.2× coverage and subsequently used for
GRiD and iRep estimates. iRep performed similarly to the PTR
benchmark, but GRiD had a much lower percentage of error in
comparison to iRep at both 0.4× and 0.2× coverage (Fig. 1c). To
highlight the importance of accounting for ambiguous reads
during growth estimation, reads mapping to S. epidermidis were

re-mapped to S. capitis, S. aureus, and Propionibacterium acnes
genomes to determine the proportion of multiple-mapping reads.
Samples with increasing numbers of multi-mapped, ambiguous
reads were significantly correlated with our metric of increasing
species heterogeneity (Fig. 1d), which can increase uncertainty in
growth rate estimation. For quality control, we found that a
combination of dnaA coverage, dif coverage, and species
heterogeneity can be used to ascertain the accuracy of growth
predictions. Our findings suggest that growth rates are most
accurate when dnaA/ori and ter/dif coverage ratios approach one,
and species heterogeneity is low (<0.3, Supplementary Fig. 2A).
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Fig. 1 In situ growth estimate from ultra-low coverage bacteria. a The GRiD approach. Contigs are re-ordered to produce a pattern whereby low coverage
contigs potentially containing ter are located near the mid-region of the genome, while high-coverage contigs potentially harboring ori are located at either
extremes of the genome. GRiD values correspond to the ratio of coverage at the peak (ori) and trough (ter) regions. b Growth rate reproducibility between
GRiD and iRep using reads obtained from pure cultures of Staphylococcus epidermidis and Corynebacterium simulans. The boxplot shows the difference (delta)
in growth estimates before and after reads were subsampled to lower coverage. To avoid bias, only unrefined GRiD values (see methods) were used for
comparison with iRep. c Error rate comparison between GRiD and iRep from a skin metagenomic dataset using S. epidermidis reference genome. PTR was
calculated using a closed circular reference genome while GRiD and iRep were calculated using the same reference genome, but fragmented into 100kb
fragments and reshuffled. For samples with genome coverage > 0.2 (n= 588), mapped reads were subsampled to ultra-low coverage prior to GRiD and
iRep estimations. Here, Percent error ¼ ðmaxðpredicted;realÞÞ$ðminðpredicted;realÞÞ

ðmaxðpredicted;realÞÞ ´ 100, where “predicted” represent GRiD or iRep scores, and “real” is the PTR score.
Unrefined GRiD values were used for comparison with iRep. The figure on the right shows Pearson correlation plots of GRiD and iRep with PTR. ***= p <
0.001. d Reads from a skin metagenomic dataset mapping to S. epidermidis were remapped to the respective genomes. Re-mapped reads are considered as
ambiguous reads. The scatter plot shows the correlation (Spearman) between ambiguous reads and species heterogeneity (1−r/u), where r= refined
GRiD and u= unrefined GRiD (see Methods). ***= p < 0.001. e iRep and GRiD measurement for CPR genomes. The scatter plots below show Pearson
correlation plots of GRiD and iRep estimates before and after subsampling to ultra-low coverage. ***= p < 0.001. Center lines in boxplots represent the
median and the edges represent the first and third quartiles. Source data are provided as a Source Data file
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What does sequencing data look like?
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Line 1: Name
Line 2: Sequence

Line 3: anything Line 4: Quality at each position
.
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.
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reverse files) 



Where do errors come from?

6



Sequencing
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short read sequencing long read sequencing



Short read sequencing

8https://bitesizebio.com/13546/sequencing-by-synthesis-explaining-the-illumina-sequencing-technology/



Short read sequencing

9Patterson, J., Carpenter, E.J., Zhu, Z. et al. BMC Genomics 20, 604 (2019)



Short read sequencing

10https://www.illumina.com/techniques/sequencing/ngs-library-prep/multiplexing.html



Short read sequencing

11https://en.wikipedia.org/wiki/File:Sequencing_by_synthesis_Reversible_terminators.png



Short read sequencing
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Short read sequencing

13
https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/2-
channel-sbs.html



Short read sequencing

14
https://www.illumina.com/content/dam/illumina-marketing/documents/products/techspotlights/cmos-
tech-note-770-2013-054.pdf



Long read sequencing: Pacbio SMRT

15Eid, J., et al. (2009) Science, 323(5910), 133–138.



Long read sequencing: Pacbio SMRT

16https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/



Long read sequencing: ONT

17
Rang, F.J., Kloosterman, W.P. & de Ridder, J. Genome Biol 19, 90 (2018)
Xu, L., Seki, M. J Hum Genet 65, 25–33 (2020)



Quality?
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Phred+33 score:



Quality scoring

19Ewing B, Green P. Genome Research. 1998 8(3):186-94



Quality scoring
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error      1  0.63           0.1                0.01    0.0025    0.00079            0.0001
probability



Quality scoring
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Quality scoring

22

@SRR15010442.1
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGGCAGTTACAGACCAAAAAGCCGCCTTCGCCACTGGTGTTC
CTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCTACCCCCC
+
F:FFFF,FF:FFFF:FFFFFFFFFFFFFF:FFF,FFFFF,FFFFFFFF:FFFFFFFFFFFFFF:FFFFFF:FF
:FFFFFFFFFF,FF:F:FFFFFFFF:F:F:FFFFFF,F,FF,FFFFFF

novaseq data:



Quality scoring

23

@SRR15010442.1
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGGCAGTTACAGACCAAAAAGCCGCCTTCGCCACTGGTGTTC
CTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCTACCCCCC
+
F:FFFF,FF:FFFF:FFFFFFFFFFFFFF:FFF,FFFFF,FFFFFFFF:FFFFFFFFFFFFFF:FFFFFF:FF
:FFFFFFFFFF,FF:F:FFFFFFFF:F:F:FFFFFF,F,FF,FFFFFF

novaseq data:

error      0.63             0.079                     0.0032                0.0002
probability



Quality reports
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summary of 1 dataset:



Quality reports
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summary of 1 dataset:

forward reads: reverse reads:



Quality reports
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summary of 1 dataset:



Quality reports
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summary of 1 dataset:



Data preprocessing: filtering & trimming
• remove adapter sequences

• remove low-quality ends

• remove dark-cycle poly-G ends
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Data preprocessing : filtering & trimming

29Anthony M. Bolger, Marc Lohse, Bjoern Usadel, Bioinformatics, Volume 30, Issue 15, 2014, Pages 2114–2120



Data preprocessing –
remove contaminants!
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• remove uninformative sequences:

• phiX spike-in

• host genome

• for rRNA-depleted RNAseq: remove rRNA



Data preprocessing –
remove contaminants!
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Thanks for your attention!

a.u.s.heintzbuschart@uva.nl github.com/a-h-b                                           twitter.com/_a_h_b_
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