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Abstract

This paper describes an autonomous landing procedure for the Parrot AR.Drone 2.0 quad-

copter. An autonomous landing is defined as a landing with correct orientation on a predefined

target marker without human intervention. The landing procedure should be initiated after first

recognition of the specified landing location and untill then manual control is assumed.

Within the available time, the authors were unable to succesfully demonstrate the AR.Drone

landing on the marker due to the circumstantial difficulties discussed in section 6. However, using

the methods described in this paper they believe any quadcopter equipped with an altitude sensor

and full-color downward facing camara should be able to execute an autonomous landing after

recognition of a predefined marker.

1 Introduction

Commercial consumer focussed quadcopters are

an uprising market. With capable unmanned

aerial vehicles (UAVs) like the AR.Drone start-

ing at $299 more and more of these devices find

their way into consumers’ homes. These devices

are often accompanied with very friendly user in-

terfaces to make the flying experience as smooth

as possible. However, due to battery limitations

flight times are often very short and more time is

spent charging and assembling the device, than

actually flying it. By designing software that,

upon a user’s request, can return the quadcopter

to its docking station, land, connect, charge and

prepare for a next flight, consumer quadcopters

will be much less likely to end up in the attic after

the owner became frustrated with the downside

of his- or her flying dream.

The given problem can be decomposed into

three single steps: reach landing site, execute

landing manoeuvre and connect with the dock-

ing station. This paper focuses on performing

the landing. Reaching the landing location is

beyond the scope of this paper but could be

achieved by using a quadcopter with GPS or run-

ning a Simulatanious Localization and Mapping

(SLAM) (Durrant-Whyte and Bailey, 2006) al-

gorithm from takeoff. In this paper manual con-

trol is used to direct the drone to the landing

site. Docking with a landing platform will most

likely be a vendor specific problem. This pa-

per assumes landing with correct orientation on

a predefined marker will be a sufficient replace-
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ment.

The landing procedure can also be broken

down into three steps: moving into horizontal

position, orienting the direction the drone is fac-

ing and decreasing altitude while maintaining

orientation and location until the surface has

been reached. These three steps will be achieved

by a recognition and an actuation module. The

vision module will be presented with images from

the drone, it recognizes the marker and passes its

location to the actuator. The actuator then uses

the location data of the drone and the informa-

tion about the marker from the vision library to

calculate the appropriate movement parameters

(see figure 1).

By utilizing the Parrot AR.Drone 2.0 drone’s

downward facing camera and altitude sensor, it

should be possible to create a representation of

the current situation accurate enough initiate the

landing procedure.
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Figure 1: Process cycle

2 Materials

The quadcopter used to experiment is the Parrot

AR.Drone 2.0. This quadcopter is equipped with

multiple sensors and two cameras. The down-

ward facing camera has a resolution of 640 by

360 pixels and runs at 60 fps, sufficient for de-

tecting our predefined marker. It also contains

the required altimeter. For a full specification,

see appendix A.

The predefined marker used in this paper is a

red ‘H’ symbol. The red colour should make sure

the marker is distinguishable and the ‘H’ form

will allow the quadcopter to align it’s front with

the symbol. Also ‘H’ is the universal symbol for

a helicopter landing pad.

The communication with the quadrocopter is

based on node-ar-drone (Geisendörfer, 2013),

a Node.js based library with functions to control

the drone and receive its video stream.

The vision module is based upon OpenCV

(Bradski, 2000) and written entirely in C++.

3 Methods

The implementation proposed in this paper

is built as a ardrone-webflight (Eschenauer,

2013) plugin. Ardrone-webflight is an implemen-

tation on top of node-ar-drone that allows for

user and automated piloting of the drone while

streaming video and running custom made plu-

gins.

The basic contol flow of our ‘landingPlatform’

plugin is as follows: listen for new data from

the videostream, grab and save that as png, run

marker recognition, transform coordinates into

movement, send movement correction to drone,

re-enable listening for new frames. This work-

flow saves and analyzes 8-10 frames per second.

As ardrone-webflight also hosts a webinterface, it

also uses HTML5 canvas technology to draw the

location of the found marker over the received

videostream.

3.1 Vision

The vision module of the program is responsi-

ble for detecting the landing position (see fig-

ure 2) in a still image taken with the downward

facing camera of the quadcopter. The problem

of detecting the landing position is seperated
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Figure 2: Target marker for landing

in four different steps, namely, colour segmen-

tation, contour detection, contour selection and

candidate validation. These steps are described

below, the effectivity of the combination of these

steps is discussed in section 4.

3.1.1 Colour Segmentation

The first step in the process is that of colour

segmentation. The target is red, therefore any

object in the photo that is not red can be ex-

cluded from the set of potential targets. For

this, a thresholded or binary image is created. In

this image all objects/areas in the picture that

are predominantly red are converted to white

areas. Everything else is converted to black.

To achieve this, the pixel values are converted

from RGB (red, green, blue) to HSV. The HSV

colour space is a different way to express colours

in which a colour is expressed in hue (the pure

color expressed in degrees between 0◦ and 360◦),

saturation (the amount of white that is ‘mixed’

with the pure colour) and value (the amount of

black that is ‘mixed’ with the pure colour). Fig-

ure 3 displays a visual representation of the HSV

colour space.

After converting the colour data to HSV, a

thresholded image can easily be generated by

converting all pixels that have a hue value be-

tween a upper and lower bound to white and

all other pixels to black. The result of this can

be seen in figure 5. An upper and lower bound

can also be set for saturation and value, this may

make the filter less sensitive to different lightning

conditions and improve the overall result.

Figure 3: HSV colour space

(taken from: www.profstark.com)

3.1.2 Contour Detection

To find the target in the image, contours are gen-

erated of all red areas in the image. A contour

is a set of (x, y) coordinates in the image that

marks the edge of an area. A contour consists

of c1, c2, . . . , cn coordinates for n ≥ 2. Every co-

ordinate ci is connected with a straight line to

coordinate ci+1 and cn is connected to c1. The

contours in the image are detected using the bor-

der following algorithm as described by Suzuki

et al. (1985). This algorithm takes a binary im-

age as input and finds all borders. The algo-

rithm makes a distinction between outer borders

and hole borders, with that the contours are cre-

ated1.

1In the authors implementation the OpenCV imple-

mentation of the border following algorithm was used.
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3.1.3 Contour Selection

After all the contours in the image have been

found, the contour that best matches the shape

of the target marker is selected. For this the con-

tour of the target marker is created as described

in the previous section using a model image of

the target marker. All contours found in the im-

age are compared to this model contour and the

best match is selected. To calculate the match

between two contours the seven Hu moment in-

variants are calculated (Hu, 1962). These seven

moments are (weighted) averages of the binary

image and are invariant to scaling, rotation and

translation. An example of a Hu moment invari-

ant is the area of the shape. This makes the Hu

moment invariants an easy way to compare two

contours. A ‘matching’ metric is calculated as

follows (OpenCV, 2013)

Match(A,B) =
∑

i=1...7

|mA
i −mB

i |

This results in a metric that approaches 0 when

the shapes are similar to each other. The contour

that results in the lowest match metric is the

contour that best matches the model contour. A

maximum match score is set that ensures that

only legitimate matches are returned. If only

matches with a high matching score are found it

is assumed that there is no valid match in the

image.

When there are matches lower than the max-

imum matching score, the contour with the low-

est matching score is selected as the candidate

contour.

3.1.4 Candidate Validation

When there is a red rectangle in de picture but

no target marker, the contour detection often

(falsely) selects the red rectange as the target

marker. The contours of the target marker and a

rectangle are to similar when compared using the

described method. Therefore an extra validation

step is performed on the candidate contour. To

filter the false contours the convex hull of the

candidate contour is computed. The convex hull

of a contour can be seen as the shape that a rub-

ber band would take when it is streched around

all the points in a contour. An example of a

convex hull is given in figure 8.

It is expected that the convex hull of a rectan-

gle and the rectangle self are similar and there-

fore score a low score when compared using the

method described in the previous section.Based

on this assumption the convex hull of the candi-

date is compared to the candidate. If the match-

ing score is below a specified threshold (the con-

vex hull and contour are similar) then the con-

tour is rejected and the conclusion is drawn that

there is no matching contour.

Figure 4: Convex hull (red) of contour (black)

3.1.5 Output

If a contour is selected the center point of that

contour in the image measured from the center

of the image is computed. Also the radius of the
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smallest circle that circumfences the contour and

the angle under which the contour is. Because

the target marker used is symmetrical the angle

is within the range [−90, 90]. The sign hints the

actuation module in which direction the quad-

copter should turn to reach the final position

above the marker with the least effort.

3.2 Actuation

After the image has been processed the actua-

tion module, which is implemented as a move-

ment function in our ‘landingPlatform’ plugin,

processes its results and generates the according

movement. If the vision module is unable to rec-

ognize a marker, the drone is put in hover mode

and turned to manual control.

The node-ar-drone movement interface allows

for setting rotorspeed for movements such as for-

ward, backward, left, right, clockwise rotation,

counter clockwise rotation, up, down. These val-

ues can be set individually, after which the con-

trol software calculates the resulting speed for

all four rotors to send it to the drone. When the

drone receives this movement command, it will

maintain these speeds for each of its engines until

another speed command or the hover command

is received.

Movement is not directly controlled by the

output of a single frame from the vision module.

Instead, a PID (proportional-integral-derivative)

controller is used to take previous movement ac-

tions into account. A PID controller is based

on a mathematical algorithm and calculates an

‘error’ between a measured value and a target

value. The output of a PID controller is the sum

of the weighted constants (P, I and D) applied

to the input value. Each output of the vision

module is routed through the appropriate PID

controller (x-position, y-position, angle of rota-

tion), the PID controller then outputs a value to

send to the drone.

The horizontal information received from the

vision module are the x- and y offsets of the cen-

ter of the marker to the center of the drone’s

downward camera. The x-amount of movement

and the y-amount of movement are initialized by

updating the PID-controllers with the negation

of the OpenCV data to correct for the drone’s

inverse movement commands. The resulting val-

ues from the PID-controllers are then scaled to

rotor speeds between 0 and 1.

If the resulting rotor speeds are insignificant,

this means the drone is hovering above the center

of the marker. To achieve a correct orientation,

the angle of rotation from the vision module is

processed by a PID and scaled like in the xy

movement process and a according clockwise or

counter clockwise rotation speed is set.

If the rotation speed is also insignificant, the

remaining step is to decrease altitude until reach-

ing ground. The default ‘land’ command of the

drone is too inaccurate to achieve the desirable

landing, because it just decreases altitude with-

out the requirement of staying in the same posi-

tion. This makes it prone to errors introduced by

previous momentum or wind. Instead of directly

using the ‘land’ command we introduce a down-

ward command in the run loop until a reference

height is achieved. This moves the drone closer

to the target while still being able to adjust its x,

y and angle with reference to the marker. When

the reference height is reached (a height from

which the default landing can be executed with-

out compromising the achieved location), the de-

fault landing procedure is initiated to put the

drone on the ground.

4 Results

The project is divided into two different compo-

nents, namely actuation and vision. Therefore

the results will also be discussed separately.
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4.1 Vision

As described in section 3 the module for vi-

sual recognition uses a combination of tech-

niques. The techniques are disccused incremen-

tally. That is, the techniques fit together like a

puzzle and build on the results of previous tech-

niques.

4.1.1 Colour Segmentation

The results of the colour segmentation using the

HSV colour space to detect red objects in an

image are shown in figure 5. In this figure a

tresholded image is created from a photo that

contains the red target marker on a green back-

ground. The image clearly shows that the red

objects are detected. The authors expected that

detecting the red colours would pose problems

as red is at both ends of the hue wheel of the

HSV colour space. However, to detect the red

colour marker only the reds in the upper ranges

of the colour wheel need to be detected, that is

240◦ − 360◦. Manipulation the range of the sat-

uration of value that pixels did not result in a

better detection of red areas so no further con-

ditions for the selection of pixels where added.

Figure 5: Tresholded image

4.1.2 Contour Detection

The border detection algorithm works as ex-

pected and detects all borders in the tresholded

image. In figure 6 an example of a detected con-

tour is shown. The contour is drawn in blue on

top of the target marker. After computing the

contours there is a is a good representation of all

(red) shapes in the original image.

Figure 6: Contour detection

When the target marker is in the original

photo the contour is detected in nearly all cases,

however the border detection algorithm uses the

thresholded image as input and therefore is only

as good as the generated thresholded image. An

example of this is included in figure 7. In this

figure two objectes in the original photo are com-

bined into a single blob in the thresholded image.

The contour detection algorithm then wrongly

detects the combined blob as a single contour.

As said this is a problem in the tresholded im-

age generation and not of the border detection

algorithm.

Figure 7: Mismatch contour
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4.1.3 Contour Selection

The difference in the Hu moment invariants of

two contours is a clear and concise metric to ex-

press similarity of two contours. When a target

marker is present in the photo and a contour is

correctly generated it is always detected as the

best matching contour. However, when no tar-

get marker is present in the photo but another

red rectangle shaped object is, it is often rec-

ognized as the target marker with a matching

score comparable to the matching score of the

real target. This is only observed with red rect-

angle shaped objects, red objects of any other

form are not detected as the target marker. By

requiring the candidate contour to have a match-

ing score below a predefined maximum score it

is ensured that objects that are unsimilar to the

target marker are rejected.

4.1.4 Candidate Validation

As discussed in the previous section, reactan-

gle shaped objects are falsely detection as target

markers when there is no target marker present.

The similarity of the convex hull of the contour

and the contour is a good metric to determine

if the contour is rectangle shaped. When the

contour is rectangle shaped the similarity score

between the contour and the convex hull is low

(it approaches zero). The similarity of the con-

vex hull of a contour of the target marker and

the contour itself results in a significantly higher

matching score. When the similarity score is

low the candidate contour can safely be rejected

and no target marker is found in the original

photo. An example of the computed convex hull

is shown in figure 8

4.1.5 Output

Besides these techniques which are applied to

find the right landingspot when visible, it was

Figure 8: Convex hull

also of importance to find the center of the land-

ing marker and the angle for landing. By detect-

ing the smallest bounding circle, the centre point

could easily be drawn. See figure 9. This figure

also shows that the right red object is found and

the contour.

Figure 9: Bounding circle

The angle was calculated by drawing the

bounding box which could also be rotated.

Drawing this box gave the following result, see

figure 10.

4.2 Actuation

The results of the actuation module were not as

expected. The problem was that the AR.Drone

began to give more and more unexplainable bugs

during the projectweek. A minor problem was

that after a crash landing, the AR.Drone could

still be processing some packets from a previous
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Figure 10: Bounding box

session. When it was reset, it sometimes ran-

domly started to repeat the last command it got.

A major problem was that when the actual land-

ing code was implemented, the AR.Drone even

did not work as expected while using the stan-

dard iOS application (Parrot, 2013). So the only

result as far as there could be tested, was that

the AR.Drone flew perfectly above the marker,

making small turns to get the marker in the right

angle.

5 Conclusions

This research focused on the autonomous land-

ing of quadcopter. This task was divided into

two subproblems: vision and actuation. The vi-

sion subproblem is examined with various tech-

niques for colour segmentation, contour detec-

tion and shape matching. The combination of

techniques resulted in a satisfying program capa-

ble of detecting the target marker in various sce-

narios. The actuation subproblem is examined

with a PID controller that enables the program

to keep a tight feedback loop on the movements

of the quadcopter.

Based on instructions generated by the pro-

gram the authors believe that a quadcopter

should be able to autonomously land on a pre-

defined target marker using the techniques pro-

posed in this paper. However, as mentioned be-

fore, due to technical difficulties and limited time

no actual autonomous landing was observed.

6 Discussion

Possibilities for future work could be perfecting

the landing marker recognition part of the pro-

gram, although the authors of this paper are

quite positive about what is reached on this sub-

ject during four days. The actuation part though

was less successful. The authors were quite

surprised about the troubles that came with

the AR.Drone, because most actuation problems

were due to this device. The very last moment

of the very last day they had been told that the

AR.Drone could cause some problems if the bat-

tery was running on a specific level. Such hard-

ware problems are very hard to fix and made it

impossible to let the AR.Drone fly properly. An

option for better investigation would be using an

other device without these bugs.
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Appendices

A Specifications Parrot AR.Drone 2.0

A.1 Video

The AR.Drone 2.0 is equipped with two camera’s.

• HD Camera. 720p 30fps

• Wide angle lens : 92 degrees diagonal

• H264 encoding base profile

• Low latency streaming

• Video storage on the fly with the remote device

• JPEG photo

• Video storage on the fly with Wi-Fi directly on your remote device or on a USB key

A.2 Structure

The quad has several features for protecting himself for damage.

• Carbon fiber tubes : Total weight 380g with outdoor hull, 420g with indoor hull

• High grade 30%

• fiber charged nylon plastic parts

• Foam to isolate the inertial center from the engines’ vibration

• EPP hull injected by a sintered metal mold

• Liquid Repellent Nano-Coating on ultrasound sensors

• Fully reparable: All parts and instructions for repairing available on the internet

A.3 Electronic assistance

AR.Drone 2.0 on-board technology contains automatic stabilization features.

• 1GHz 32 bit ARM Cortex A8 processor with 800MHz video DSP TMS320DMC64x

• Linux 2.6.32

• 1Gbit DDR2 RAM at 200MHz
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• USB 2.0 high speed for extensions

• Wi-Fi b,g,n

• 3 axis gyroscope 2000 degrees/second precision

• 3 axis accelerometer +-50mg precision

• 3 axis magnetometer 6 degrees precision

• Pressure sensor +/- 10 Pa precision

• Ultrasound sensors for ground altitude measurement

• 60 fps vertical QVGA camera for ground speed measurement

A.4 Motors

The quadcopter is equipped with four propellors to keep him stable and flexible.

• 4 brushless inrunner motors. 14.5W 28,500 RMP

• Micro ball bearing

• Low noise Nylatron gears for 1/8.75 propeller reductor

• Tempered steel propeller shaft

• Self-lubrificating bronze bearing

• Specific high propelled drag for great maneuverability

• 8 MIPS AVR CPU per motor controller

• 3 elements 1000 mA/H LiPo rechargeable battery (Autonomy: 12 minutes)

• Emergency stop controlled by software

• Fully reprogrammable motor controller

• Water resistant motor’s electronic controller

B Software Specifications

B.1 Quadcopter interaction

1. Node.js v0.10.12

2. Node Packaged Modules (NPM) 1.2.32

3. Bower (0.9.2)
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4. node-ar-drone (commit 9307871755)

5. ardrone-webflight (commit efc3033d7a)
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