Autonomous Landing of a Quadcopter on a Predefined Marker
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Abstract

This paper describes an autonomous landing procedure for the Parrot AR.Drone 2.0 quad-

copter. An autonomous landing is defined as a landing with correct orientation on a predefined
target marker without human intervention. The landing procedure should be initiated after first
recognition of the specified landing location and untill then manual control is assumed.

Within the available time, the authors were unable to succesfully demonstrate the AR.Drone
landing on the marker due to the circumstantial difficulties discussed in section [f] However, using

the methods described in this paper they believe any quadcopter equipped with an altitude sensor
and full-color downward facing camara should be able to execute an autonomous landing after

recognition of a predefined marker.

1 Introduction

Commercial consumer focussed quadcopters are
an uprising market. With capable unmanned
aerial vehicles (UAVs) like the AR.Drone start-
ing at $299 more and more of these devices find
their way into consumers’ homes. These devices
are often accompanied with very friendly user in-
terfaces to make the flying experience as smooth
as possible. However, due to battery limitations
flight times are often very short and more time is
spent charging and assembling the device, than
actually flying it. By designing software that,
upon a user’s request, can return the quadcopter
to its docking station, land, connect, charge and
prepare for a next flight, consumer quadcopters
will be much less likely to end up in the attic after

the owner became frustrated with the downside
of his- or her flying dream.

The given problem can be decomposed into
three single steps: reach landing site, execute
landing manoeuvre and connect with the dock-
ing station. This paper focuses on performing
the landing. Reaching the landing location is
beyond the scope of this paper but could be
achieved by using a quadcopter with GPS or run-
ning a Simulatanious Localization and Mapping
(SLAM) (Durrant-Whyte and Bailey, 2006) al-
gorithm from takeoff. In this paper manual con-
trol is used to direct the drone to the landing
site. Docking with a landing platform will most
likely be a vendor specific problem. This pa-
per assumes landing with correct orientation on
a predefined marker will be a sufficient replace-



ment.

The landing procedure can also be broken
down into three steps: moving into horizontal
position, orienting the direction the drone is fac-
ing and decreasing altitude while maintaining
orientation and location until the surface has
been reached. These three steps will be achieved
by a recognition and an actuation module. The
vision module will be presented with images from
the drone, it recognizes the marker and passes its
location to the actuator. The actuator then uses
the location data of the drone and the informa-
tion about the marker from the vision library to
calculate the appropriate movement parameters
(see figure [1)).

By utilizing the Parrot AR.Drone 2.0 drone’s
downward facing camera and altitude sensor, it
should be possible to create a representation of
the current situation accurate enough initiate the
landing procedure.

Image
Processing
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Figure 1: Process cycle

2 Materials

The quadcopter used to experiment is the Parrot
AR.Drone 2.0. This quadcopter is equipped with
multiple sensors and two cameras. The down-
ward facing camera has a resolution of 640 by
360 pixels and runs at 60 fps, sufficient for de-
tecting our predefined marker. It also contains
the required altimeter. For a full specification,
see appendix [A]

The predefined marker used in this paper is a
red ‘H’ symbol. The red colour should make sure
the marker is distinguishable and the ‘H’ form
will allow the quadcopter to align it’s front with
the symbol. Also ‘H’ is the universal symbol for
a helicopter landing pad.

The communication with the quadrocopter is
based on node-ar-drone (Geisendorfer, 2013]),
a Node.js based library with functions to control
the drone and receive its video stream.

The vision module is based upon OpenCV
(Bradski, [2000)) and written entirely in C++.

3 Methods

The implementation proposed in this paper
is built as a ardrone-webflight (Eschenauer,
2013) plugin. Ardrone-webflight is an implemen-
tation on top of node-ar-drone that allows for
user and automated piloting of the drone while
streaming video and running custom made plu-
gins.

The basic contol flow of our ‘landingPlatform’
plugin is as follows: listen for new data from
the videostream, grab and save that as png, run
marker recognition, transform coordinates into
movement, send movement correction to drone,
re-enable listening for new frames. This work-
flow saves and analyzes 8-10 frames per second.
As ardrone-webflight also hosts a webinterface, it
also uses HITML5 canvas technology to draw the
location of the found marker over the received
videostream.

3.1 Vision

The vision module of the program is responsi-
ble for detecting the landing position (see fig-
ure [2)) in a still image taken with the downward
facing camera of the quadcopter. The problem
of detecting the landing position is seperated



Figure 2: Target marker for landing

in four different steps, namely, colour segmen-
tation, contour detection, contour selection and
candidate validation. These steps are described
below, the effectivity of the combination of these
steps is discussed in section [}

3.1.1 Colour Segmentation

The first step in the process is that of colour
segmentation. The target is red, therefore any
object in the photo that is not red can be ex-
For
this, a thresholded or binary image is created. In

cluded from the set of potential targets.

this image all objects/areas in the picture that
are predominantly red are converted to white
areas. Everything else is converted to black.
To achieve this, the pixel values are converted
from RGB (red, green, blue) to HSV. The HSV
colour space is a different way to express colours
in which a colour is expressed in hue (the pure
color expressed in degrees between 0° and 360°),
saturation (the amount of white that is ‘mixed’
with the pure colour) and value (the amount of
black that is ‘mixed’ with the pure colour). Fig-
ure [3|displays a visual representation of the HSV
colour space.

After converting the colour data to HSV, a
thresholded image can easily be generated by
converting all pixels that have a hue value be-

tween a upper and lower bound to white and
all other pixels to black. The result of this can
be seen in figure [5} An upper and lower bound
can also be set for saturation and value, this may
make the filter less sensitive to different lightning
conditions and improve the overall result.

Figure 3: HSV colour space

(taken from: www.profstark.com)

3.1.2 Contour Detection

To find the target in the image, contours are gen-
erated of all red areas in the image. A contour
is a set of (z,y) coordinates in the image that
marks the edge of an area. A contour consists
of ¢1,co,...,c, coordinates for n > 2. Every co-
ordinate ¢; is connected with a straight line to
coordinate ¢;4+1 and ¢, is connected to c;. The
contours in the image are detected using the bor-
der following algorithm as described by
. This algorithm takes a binary im-
age as input and finds all borders. The algo-
rithm makes a distinction between outer borders
and hole borders, with that the contours are cre-

ateCﬂ

In the authors implementation the OpenCV imple-

mentation of the border following algorithm was used.



3.1.3 Contour Selection

After all the contours in the image have been
found, the contour that best matches the shape
of the target marker is selected. For this the con-
tour of the target marker is created as described
in the previous section using a model image of
the target marker. All contours found in the im-
age are compared to this model contour and the
best match is selected. To calculate the match
between two contours the seven Hu moment in-
variants are calculated (Hu, |1962). These seven
moments are (weighted) averages of the binary
image and are invariant to scaling, rotation and
translation. An example of a Hu moment invari-
ant is the area of the shape. This makes the Hu
moment invariants an easy way to compare two
contours. A ‘matching’ metric is calculated as
follows (OpenCV| 2013)

Match(4,B) = Y |m;* —m/|

i=1...7
This results in a metric that approaches 0 when
the shapes are similar to each other. The contour
that results in the lowest match metric is the
contour that best matches the model contour. A
maximum match score is set that ensures that
only legitimate matches are returned. If only
matches with a high matching score are found it
is assumed that there is no valid match in the
image.

When there are matches lower than the max-
imum matching score, the contour with the low-
est matching score is selected as the candidate
contour.

3.1.4 Candidate Validation

When there is a red rectangle in de picture but
no target marker, the contour detection often
(falsely) selects the red rectange as the target
marker. The contours of the target marker and a
rectangle are to similar when compared using the

described method. Therefore an extra validation
step is performed on the candidate contour. To
filter the false contours the convex hull of the
candidate contour is computed. The convex hull
of a contour can be seen as the shape that a rub-
ber band would take when it is streched around
all the points in a contour. An example of a
convex hull is given in figure

It is expected that the convex hull of a rectan-
gle and the rectangle self are similar and there-
fore score a low score when compared using the
method described in the previous section.Based
on this assumption the convex hull of the candi-
date is compared to the candidate. If the match-
ing score is below a specified threshold (the con-
vex hull and contour are similar) then the con-
tour is rejected and the conclusion is drawn that
there is no matching contour.

w

Figure 4: Convex hull (red) of contour (black)

3.1.5 Output

If a contour is selected the center point of that
contour in the image measured from the center
of the image is computed. Also the radius of the



smallest circle that circumfences the contour and
the angle under which the contour is. Because
the target marker used is symmetrical the angle
is within the range [—90,90]. The sign hints the
actuation module in which direction the quad-
copter should turn to reach the final position
above the marker with the least effort.

3.2 Actuation

After the image has been processed the actua-
tion module, which is implemented as a move-
ment function in our ‘landingPlatform’ plugin,
processes its results and generates the according
movement. If the vision module is unable to rec-
ognize a marker, the drone is put in hover mode
and turned to manual control.

The node-ar-drone movement interface allows
for setting rotorspeed for movements such as for-
ward, backward, left, right, clockwise rotation,
counter clockwise rotation, up, down. These val-
ues can be set individually, after which the con-
trol software calculates the resulting speed for
all four rotors to send it to the drone. When the
drone receives this movement command, it will
maintain these speeds for each of its engines until
another speed command or the hover command
is received.

Movement is not directly controlled by the
output of a single frame from the vision module.
Instead, a PID (proportional-integral-derivative)
controller is used to take previous movement ac-
A PID controller is based
on a mathematical algorithm and calculates an

tions into account.

‘error’ between a measured value and a target
value. The output of a PID controller is the sum
of the weighted constants (P, I and D) applied
to the input value. Each output of the vision
module is routed through the appropriate PID
controller (x-position, y-position, angle of rota-
tion), the PID controller then outputs a value to

send to the drone.

The horizontal information received from the
vision module are the x- and y offsets of the cen-
ter of the marker to the center of the drone’s
downward camera. The x-amount of movement
and the y-amount of movement are initialized by
updating the PID-controllers with the negation
of the OpenCV data to correct for the drone’s
inverse movement commands. The resulting val-
ues from the PID-controllers are then scaled to
rotor speeds between 0 and 1.

If the resulting rotor speeds are insignificant,
this means the drone is hovering above the center
of the marker. To achieve a correct orientation,
the angle of rotation from the vision module is
processed by a PID and scaled like in the xy
movement process and a according clockwise or
counter clockwise rotation speed is set.

If the rotation speed is also insignificant, the
remaining step is to decrease altitude until reach-
ing ground. The default ‘land’ command of the
drone is too inaccurate to achieve the desirable
landing, because it just decreases altitude with-
out the requirement of staying in the same posi-
tion. This makes it prone to errors introduced by
previous momentum or wind. Instead of directly
using the ‘land’ command we introduce a down-
ward command in the run loop until a reference
height is achieved. This moves the drone closer
to the target while still being able to adjust its x,
y and angle with reference to the marker. When
the reference height is reached (a height from
which the default landing can be executed with-
out compromising the achieved location), the de-
fault landing procedure is initiated to put the
drone on the ground.

4 Results

The project is divided into two different compo-
nents, namely actuation and vision. Therefore
the results will also be discussed separately.



4.1 Vision

As described in section [3] the module for vi-
sual recognition uses a combination of tech-
niques. The techniques are disccused incremen-
tally. That is, the techniques fit together like a
puzzle and build on the results of previous tech-
niques.

4.1.1 Colour Segmentation

The results of the colour segmentation using the
HSV colour space to detect red objects in an
image are shown in figure In this figure a
tresholded image is created from a photo that
contains the red target marker on a green back-
ground. The image clearly shows that the red
objects are detected. The authors expected that
detecting the red colours would pose problems
as red is at both ends of the hue wheel of the
HSV colour space. However, to detect the red
colour marker only the reds in the upper ranges
of the colour wheel need to be detected, that is
240° — 360°. Manipulation the range of the sat-
uration of value that pixels did not result in a
better detection of red areas so no further con-
ditions for the selection of pixels where added.

Figure 5: Tresholded image

4.1.2 Contour Detection

The border detection algorithm works as ex-
pected and detects all borders in the tresholded

image. In figure [6] an example of a detected con-
tour is shown. The contour is drawn in blue on
top of the target marker. After computing the
contours there is a is a good representation of all
(red) shapes in the original image.

Figure 6: Contour detection

When the target marker is in the original
photo the contour is detected in nearly all cases,
however the border detection algorithm uses the
thresholded image as input and therefore is only
as good as the generated thresholded image. An
example of this is included in figure [7] In this
figure two objectes in the original photo are com-
bined into a single blob in the thresholded image.
The contour detection algorithm then wrongly
detects the combined blob as a single contour.
As said this is a problem in the tresholded im-
age generation and not of the border detection

»

algorithm.

-

Figure 7: Mismatch contour



4.1.3 Contour Selection

The difference in the Hu moment invariants of
two contours is a clear and concise metric to ex-
press similarity of two contours. When a target
marker is present in the photo and a contour is
correctly generated it is always detected as the
best matching contour. However, when no tar-
get marker is present in the photo but another
red rectangle shaped object is, it is often rec-
ognized as the target marker with a matching
score comparable to the matching score of the
real target. This is only observed with red rect-
angle shaped objects, red objects of any other
form are not detected as the target marker. By
requiring the candidate contour to have a match-
ing score below a predefined maximum score it
is ensured that objects that are unsimilar to the
target marker are rejected.

4.1.4 Candidate Validation

As discussed in the previous section, reactan-
gle shaped objects are falsely detection as target
markers when there is no target marker present.
The similarity of the convex hull of the contour
and the contour is a good metric to determine
if the contour is rectangle shaped. When the
contour is rectangle shaped the similarity score
between the contour and the convex hull is low
(it approaches zero). The similarity of the con-
vex hull of a contour of the target marker and
the contour itself results in a significantly higher
matching score. When the similarity score is
low the candidate contour can safely be rejected
and no target marker is found in the original
photo. An example of the computed convex hull
is shown in figure

4.1.5 Output

Besides these techniques which are applied to
find the right landingspot when visible, it was

Figure 8: Convex hull

also of importance to find the center of the land-
ing marker and the angle for landing. By detect-
ing the smallest bounding circle, the centre point
could easily be drawn. See figure [0} This figure
also shows that the right red object is found and
the contour.

Figure 9: Bounding circle

The angle was calculated by drawing the
bounding box which could also be rotated.
Drawing this box gave the following result, see

figure [I0]

4.2 Actuation

The results of the actuation module were not as
expected. The problem was that the AR.Drone
began to give more and more unexplainable bugs
during the projectweek. A minor problem was
that after a crash landing, the AR.Drone could
still be processing some packets from a previous



Figure 10: Bounding box

session. When it was reset, it sometimes ran-
domly started to repeat the last command it got.
A major problem was that when the actual land-
ing code was implemented, the AR.Drone even
did not work as expected while using the stan-
dard iOS application 2013)). So the only
result as far as there could be tested, was that
the AR.Drone flew perfectly above the marker,
making small turns to get the marker in the right
angle.

5 Conclusions

This research focused on the autonomous land-
ing of quadcopter. This task was divided into
two subproblems: vision and actuation. The vi-
sion subproblem is examined with various tech-
niques for colour segmentation, contour detec-
tion and shape matching. The combination of
techniques resulted in a satisfying program capa-
ble of detecting the target marker in various sce-
narios. The actuation subproblem is examined
with a PID controller that enables the program
to keep a tight feedback loop on the movements
of the quadcopter.

Based on instructions generated by the pro-
gram the authors believe that a quadcopter
should be able to autonomously land on a pre-
defined target marker using the techniques pro-
posed in this paper. However, as mentioned be-

fore, due to technical difficulties and limited time

no actual autonomous landing was observed.

6 Discussion

Possibilities for future work could be perfecting
the landing marker recognition part of the pro-
gram, although the authors of this paper are
quite positive about what is reached on this sub-
ject during four days. The actuation part though
was less successful. The authors were quite
surprised about the troubles that came with
the AR.Drone, because most actuation problems
were due to this device. The very last moment
of the very last day they had been told that the
AR.Drone could cause some problems if the bat-
tery was running on a specific level. Such hard-
ware problems are very hard to fix and made it
impossible to let the AR.Drone fly properly. An
option for better investigation would be using an
other device without these bugs.
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Appendices

A Specifications Parrot AR.Drone 2.0

A.1 Video

The AR.Drone 2.0 is equipped with two camera’s.

e HD Camera. 720p 30fps

Wide angle lens : 92 degrees diagonal

H264 encoding base profile

Low latency streaming

Video storage on the fly with the remote device

JPEG photo

Video storage on the fly with Wi-Fi directly on your remote device or on a USB key

A.2 Structure

The quad has several features for protecting himself for damage.
e Carbon fiber tubes : Total weight 380g with outdoor hull, 420g with indoor hull

e High grade 30%

fiber charged nylon plastic parts

Foam to isolate the inertial center from the engines’ vibration

EPP hull injected by a sintered metal mold
e Liquid Repellent Nano-Coating on ultrasound sensors

e Fully reparable: All parts and instructions for repairing available on the internet

A.3 Electronic assistance

AR.Drone 2.0 on-board technology contains automatic stabilization features.
e 1GHz 32 bit ARM Cortex A8 processor with 800MHz video DSP TMS320DMC64x
e Linux 2.6.32

e 1Gbit DDR2 RAM at 200MHz
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USB 2.0 high speed for extensions

Wi-Fi b,g,n

3 axis gyroscope 2000 degrees/second precision
e 3 axis accelerometer +-50mg precision
e 3 axis magnetometer 6 degrees precision

e Pressure sensor +/- 10 Pa precision

Ultrasound sensors for ground altitude measurement

e 60 fps vertical QVGA camera for ground speed measurement

A.4 Motors
The quadcopter is equipped with four propellors to keep him stable and flexible.
e 4 brushless inrunner motors. 14.5W 28,500 RMP
e Micro ball bearing
e Low noise Nylatron gears for 1/8.75 propeller reductor
e Tempered steel propeller shaft
e Self-lubrificating bronze bearing
e Specific high propelled drag for great maneuverability
e 8 MIPS AVR CPU per motor controller
e 3 elements 1000 mA/H LiPo rechargeable battery (Autonomy: 12 minutes)
e Emergency stop controlled by software
e Fully reprogrammable motor controller

e Water resistant motor’s electronic controller

B Software Specifications

B.1 Quadcopter interaction
1. Node.js v0.10.12
2. Node Packaged Modules (NPM) 1.2.32

3. Bower (0.9.2)
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4. node-ar-drone (commit 9307871755

5. ardrone-webflight (commit efc3033d7a)
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