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Abstract

One of the main requirements in enabling autonomous behaviour of Micro Aerial Vehicle
is the tracking of visual targets. The MAV encounters several problems including a limited
point of view, a motion blur due to constant aerial movement and the localization problems
that come with aerial flight. A common visual target found in our human environment is
the QR-code. In order to successfully track such a code the detection algorithms need to
cope with its easily distorted features. While recognition is possible at close distance it
is not reliable enough for real-time tracking. A solution to this problem is a hybrid of a
recognition algorithm as provided by the ZXing[6] library and a robust tracking algorithm
as provided by openTLD[5][4][7]. This paper is a survey of the experimental circumstances
that influence the performance of such a hybrid system in a QR-code tracking task, which
is one of the challenges of the Indoor Micro Aerial Vehicle 2013 competition.

1 Introduction

In robotics one of the main goals is to develop mobile robots that can operate autonomously in
the real world environment. These autonomous robots have various purposes and are used for a
wide range of applications such as inspection, exploration and rescue. Even though reasonable
developments have been made in the robotics field, robots cannot operate autonomously in all
circumstances the real world can provide.

One of the initiatives to promote the developments in autonomous robots is the International
Micro Aerial Vehicle (IMAV) conference and competition, which is the basis of the Iran Open
Flying robot competition1. The indoor challenge of this competition consist of an arena with
several mission elements (see Fig 1). One of the mission elements are the ‘Drop zones’ (marked
with ± in Fig 1). For this mission element two drop zones are placed in the safe zone, both
marked with a QR-code. One of the two zones moves over a given trajectory while the other
remains static. Scoring is done by dropping a ball from the vehicle onto the drop zone. The
static zone can be scored once whereas the moving zone can be scored as many times as
possible. There is also a QR-code placed in the obstacle zone, points can be scored by finding
and decoding it. (marked with ¯)

The experiments described in this paper are performed prior to and after the Iran Open
Flying robot competition. The drop zone mission element of the Iran Open proved to be
considerately different from the IMAV and could not provide an indication of how well our
algorithm performs.

AR.Drone SLAM [2] is a development framework for the Parrot AR.Drone developed and
proposed by N. Dijkshoorn. This framework runs off-board and contains a real-time Simulta-
neous Localization and Mapping (SLAM) implementation based on a down-pointing camera.

1http://www.imav2013.org/ and http://2013.iranopen.ir/
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Figure 1: The indoor arena of the International Micro Aerial Vehicle (IMAV) competitions
(Courtesy IMAV committee).

Therefore, it allows a MAV to know its position and movement in the environment by generat-
ing a feature map of the environment so the MAV can localize itself on this map. Furthermore,
the framework facilitates control for a 3D mouse or a keyboard, and enables the generation
of visual and elevation maps. The algorithms described in this study are an extension of this
framework.

Indoor navigation is possible based on Visual SLAM, but when an object or location is
marked by a symbol an algorithm developed for recognizing such a symbol is more beneficial.
The human world is filled with symbols indicating important locations from helicopter platforms
to street signs. When positioning systems based on satellites are unavailable systems have to
rely on visual information. The variety of human symbols is immense, this paper limits a
symbol to a QR-code. This allows us to use the IMAV to determine the performance of our
implementation. [12] QR-codes are widely used and can be found in various public spaces,
mainly they are intended for smart phones.

Figure 2: A QR-code and an overview of its general structure.

Source http://en.wikipedia.org/wiki/QR code
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QR-code is short for Quick Response code and was developed to be quickly decodable.
It is mainly recognizable by its three corner squares, additionally the alignment cues ensure
that the three corners are part of the same code.2 Arguably the most complete open source
library of multi-format 1D/2D barcode image processing tools is ZXing[6]. It contains a QR-
code decoder available in several languages including Java and C++. The performance of the
decoder in relation to the angle at which a code is observed, has been researched.[10] This paper
is a survey for the performance of ZXing when using a camera attached to a flying micro aerial
vehicle. The influence of camera resolution and altitude are examined.

Therefore, the main research question is to determine the best altitude for a MAV with
respect to the resolution of its camera in order to detect QR-codes. It is divided up in the
following sub-questions:

• What is the optimal altitude for QR-code recognition?

• How does the resolution of the on board camera affect the optimal altitude?

Section 2 gives an overview is given over the related research regarding visual target recogni-
tion and UAV navigation. The approach of this paper is discussed in section 3. In section 4 the
experiments are illustrated and in section 5 and 6 the results will be presented and discussed. In
section 7 and 8 the conclusion of this paper will be presented and directions for future research
will be proposed.

2 Related Work

This section gives an overview of the related research that has been done regarding autonomous
navigation for unmanned aerial vehicles and QR-code detection. Since small quadcopters have
become affordable, research on this platform is moving toward autonomous and intelligent
applications. The mission elements from the IMAV show a great resemblance to autonomous
landing, for both require tracking of a zone placed below the flying vehicle and navigation to
keep the vehicle properly aligned. Beside research on the performance of ZXing this section
briefly describes applications of autonomous landing for aerial vehicles.

Landing zone recognition needs to a real-time implementation to allow for a autonomous
landing. A design and implementation has been proved to work[11], it relies on a simplification
of the landing target design that significantly simplifies the computer vision tasks. Limiting
them to corner detection and correspondence matching, customized algorithms allow for real
time computation at a frame rate of 30 Hz.

Visually-Guided Landing is a task requiring the recognition of a landing zone and au-
tonomous navigating of the Unmanned Aerial Vehicle. A successful design and implementation
on a UAV has been presented.[9] In contrast with the MAV of this paper the design is made for
a much larger vehicle. The landing algorithm is an integration of several algorithms for visual
acquisition of the helipad and a navigation algorithm towards the helipad. The algorithm works
with an arbitrary initial position and orientation. Navigation makes use of both GPS and vision
whereas precise target detection and recognition is merely based on vision. The vehicle updates
its landing target parameters based on vision and uses an onboard behaviour-based controller
to follow a path to the landing site.

ZXing QR-code decoding among with other barcode formats have been evaluated in
past research.[10] By creating a framework that can generate evaluation images by applying
all distortions one should expect for a real-world application, a large scale evaluation of ZXing
decoding tools was enabled. The QR-code delivers the best decoding results yet still suffers
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from decoding problems within certain angles. It has the best decoding probability at 90◦

whereas it most problematic angles are 45◦, 135◦, 225◦ and 315◦. Results with the framework
have been compared to results of a real world scenario and shown to be reliable.

3 Approach

In this section the main approach that defines the autonomous behaviour for this paper is
discussed.

3.1 Main Approach

The main approach of this paper for vision based tracking consists of two phases. These are
the following phases:

In the recognition phase, the images received by the on board camera are scanned for
QR-codes. If recognized an image of the found QR-code is stored.

The tracking phase using the image of a found QR-code openTLD[5][4][7] is used to track
the QR-code. OpenTLD does not search for the defining features of a QRcode enabling it to
track the QRcode when it is blurred or partly visible.

In the navigation phase, the drone is positioned above the observed QR-code, if no code
was observed the system will descend to the optimal altitude for QR-code recognition.

These phases make up a closed loop system, first the recognition phase tries to find a QR-
code if this fails the tracking phase tries to look for something that resembles the last observed
QR-code. After one of first two phases succeeds or both fail the navigation phase is initiated.
The approach is real-time and integrated in a ROS port of the AR.Drone SLAM [3] development
framework.

3.1.1 Recognition Phase

In this paper the image received from the MAV is reformatted to a binary image. ZXing
searches for the defining features of a QR-code, if found it determines the location of the three
corner squares. Using the sonar at the bottom of the MAV it determines its altitude, given the
size of the QR-code (for the IMAV it’s 15cm by 15cm) it can calculate the dimensions of the
QR-code as observed by its camera. Combining the size and the location of its corner squares,
a bounding box is drawn around the QR-code. This bounding box is passed on to the openTLD
tracker initiating its tracking and learning functions. After doing so ZXing attempts to decode
the QR-code, if successful its contents will be displayed in the interface. This does not affect
its navigation phase but may result in scoring points for other mission elements.

3.1.2 Tracking Phase

The tracking phase is only consulted if the recognition phase was unsuccessful. This means the
QR-code is partially or not visible or has been distorted in such a manner that is it no longer
recognizable as a QR-code. During flight this can be caused by blurring due to acceleration,
brightness problems, a too low resolution caused by the MAV flying at a high altitude or a
combination of the three. In these situations openTLD can still perform well, for it does not
rely on features specific to QR-codes.

Instead openTLD is based on a Median-Flow tracker[5][1], it divides the bounding box in a
grid of 10 x 10 points and estimates the motion of each of these points. By doing so it can find
the QR-code even when it blurs or shrinks.
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It also has a learning component that consists of two experts. The P-expert that predicts
new occurrences of the object and thus increases generalization of the object detection and
the N-expert generates negative training examples to prevent over-generalization. The two
experts are applied simultaneously allowing the object detector to learn new occurrences while
preventing it from giving false positives.

3.1.3 Navigation Phase

The navigation phase differs for the drop zones, navigating above a static drop zone is consider-
ately easier than attaining a stable position above the moving drop zone. Therefore each zone
has its own approach.

The static zone is after being recognized directly navigated towards. The dropping radius
of the MAV has been determined and the vehicle navigates toward to the drop zone in such a
manner that its dropping radius and the drop zone overlap. This trajectory is a straight line
to its goal. If aligned the vehicle instantly drops a ball, since this zone can only be scored once
the phase is not repeated.

The dynamic zone to avoid the complications of remaining aligned with a moving target,
the MAV does not follow its target. Instead it makes use of the fact that the target repeats its
trajectory. After its target has been recognized the MAV remains stationary, it waits for the
target to move out of its view while tracking its movements. After the target has disappeared
it moves towards the targets observed trajectory. Here it waits for the target to repeat its
movement, when the target appears again the MAV will wait to align with the target and drop
a ball when it has done so.

By avoiding fast movements that are required when a target is leaving the field of vision,
the MAV has less quick accelerations and remains at a stable angle. This allows for better
positioning and makes it less likely to overshoot.

With no found zone the MAV remains stationary, having no good estimate of where the
QR-code is. This is preferred over flying towards the last direction the target was spotted, both
zones will more likely be lost forever using this method. Whereas keeping in mind the property
that the dynamic zone returns to all its previous locations, waiting for the QR-code is a safer
approach. The MAV will slowly attain the altitude that is optimal for recognizing QR-codes
(determined in the next section).

4 Experiments

This section describes the experiments performed to determine the optimal altitude for MAV
onboard QR-code recognition using the ZXing library.

4.1 Platform

For this paper, the Parrot AR.Drone 2.02 was chosen as the MAV. The system is widely avail-
able and has both indoor on-board stabilization and is by default controlled through a wireless
connection. The implementation was made in a ROS port of the AR.Drone SLAM [3] devel-
opment framework. ROS3[8] is short for Robot Operating System, furthermore a ROS port of
openTLD was used.

2http://www.parrot.com
3http://www.ros.org
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4.2 Camera Specifications and Modifications

The standard AR.Drone has a front camera and a bottom camera, the front camera has a
resolution of 1280x720 pixels and a frame rate of 30 fps whereas the bottom camera only has
640x480 pixels and 60 fps. To examine the effect of camera resolution the front camera was
turned 90◦ so its direction matches that of the bottom camera.

It should be noted that while the front camera records images at 1280x720, they are com-
pressed to a 640x480 image before being send over the wireless connection.

4.3 Experiments

In order to investigate the optimal altitude for each camera, two experiments were conducted.
The drone was flown manually above several QR-codes while footage from the cameras was
recorded together with its corresponding altitude readings. For each camera a set of 6000
frames were randomly picked.Manually all the frames that fully displayed a QR-code were se-
lected. A QR-code is considered fully displayed when all four corner squares are completely
visible.
The collected frames are placed in bins corresponding to the altitude at which they were
recorded. Each bin has frames that fall in a span of 83 mm, the amount of frames sam-
pled per bin is shown together with the amount of frames where the QR-code was found and
read. This gives us the probability of a visible QR-code being recognized or read.

The footage was recorded under several lighting conditions and varying backgrounds.

After recording the footage for the bottom camera it became clear the AR.Drone is unable
to remain stable with an altitude of less then 40 cm. At these heights no frames from the front
camera where taken from these altitudes for the AR.Drone is unable to keep a QR-code within
its field of view. Instead for the front camera the experiment focused on altitudes greater than
40 cm since information about these heights are the most relevant.

4.4 Evaluation Criteria

To evaluate the detection algorithm we calculate recall, precision is abandoned since early
testing showed no false positives at all. This is because ZXings approach is based on a real-time
image feed. Instead of doing an exhaustive search on the image, ZXing gives up fairly quickly.
It favors a search on the next image over the risk of false negatives. A reasonable decision
considering the practical use of real-time recognition.

5 Results

In this section the results of the experiments will be presented.
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Bottom Camera
Altitude (mm) Samples Found Read Chance of Finding Chance of Reading
1 - 83 1 0 0 0 0
84 - 167 0 0 0 - -
168 - 250 2 1 1 0.5 0.5
251 - 333 3 3 3 1 1
334 - 417 19 11 11 0.58 0.58
418 - 500 34 25 25 0.74 0.74
501 - 583 78 39 31 0.5 0.4
584 - 667 108 2 2 0.02 0.02
668 - 750 84 3 2 0.04 0.02
751 - 833 148 2 2 0.01 0.01
834 - 917 634 0 0 0 0
918 - 1000 169 1 0 0.01 0
1001 - 1083 38 0 0 0 0
1084 - 1167 47 0 0 0 0
1168 - 1250 31 0 0 0 0
1251 - 1333 68 0 0 0 0
1334 - 1417 116 0 0 0 0
1418 - 1500 52 0 0 0 0
1501 - 1583 28 0 0 0 0
1584 - 1667 35 0 0 0 0
1668 - 1750 53 0 0 0 0
1751 - 1833 49 0 0 0 0
1834 - 1917 40 0 0 0 0
1918 - 2000 22 0 0 0 0
2001 - 2083 17 0 0 0 0
2084 - 2167 35 0 0 0 0
2168 - 2250 11 0 0 0 0
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Front Camera
Altitude (mm) Samples Found Read Chance of Finding Chance of Reading
1 - 83 0 0 0 - -
84 - 167 0 0 0 - -
168 - 250 0 0 0 - -
251 - 333 0 0 0 - -
334 - 417 0 0 0 - -
418 - 500 53 51 36 0.96 0.68
501 - 583 140 106 94 0.76 0.67
584 - 667 676 285 238 0.42 0.35
668 - 750 82 29 18 0.35 0.22
751 - 833 666 24 13 0.04 0.02
834 - 917 82 5 4 0.06 0.05
918 - 1000 58 0 0 0 0
1001 - 1083 68 0 0 0 0
1084 - 1167 289 0 0 0 0
1168 - 1250 655 0 0 0 0
1251 - 1333 121 0 0 0 0
1334 - 1417 69 0 0 0 0
1418 - 1500 58 0 0 0 0
1501 - 1583 104 0 0 0 0
1584 - 1667 77 0 0 0 0
1668 - 1750 118 0 0 0 0
1751 - 1833 202 0 0 0 0

Figure 3: The probability of recognizing (green) and reading (blue) a visible QR-code per
altitude in mm. Left: the bottom camera, Right: the front camera

6 Discussion

In this section the results of the experiments will be discussed.

As expected the results show front camera has a higher chance of detection at every altitude.
Moreover its recognition remains probable with an altitude up to 75 cm whereas the bottom
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camera is unreliable above 58 cm. Considering the frame rate of both cameras probabilities
around 0.1 are not as bad as them seem at first glance. With a frame rate of the front camera
at 30 fps a QR-code is expected to be found within a second.

Interestingly the probability of reading and recognizing is quite similar for the bottom cam-
era, the front camera however is clearly more likely to find the QR-code than it is to read it.
This difference can be attributed to the compression that takes place before the image is send
to the controlling unit. The compression can reduce the effect of the motion blur gained by
flight. It seems to make the corner features more distinct while distorting the data presenta-
tion, explaining the increased chance of locating and the absence of such an increase for reading.

From images recorded at an altitude above 1 meter no QR-codes where found. This suggests
that the 640x480 resolution is to low to display the required features at this height.

6.1 Effect on Approach

This places the ideal altitude for locating QR-codes between 41 and 75 cm. For the main
approach the choice has been made to remain at an altitude of 70 cm while trying to find a
QR-code. While an altitude around 45 cm has a higher probability of recognizing a visible
QR-code, 70 cm benefits of a larger field of view and more stable flight (and thus less motion
blur) while still holding a great chance of recognition.

The recognition and tracking phase performed excellent in a testing environment. While the
velocity of the the dynamic drop zone is not public the AR.drone was able to hit a smaller
target with a slightly smaller trajectory on a wide range of velocities.

7 Conclusion

This paper proposed a three phased approach that can compete in the indoor Drop Zone Mis-
sion of IMAV 2013. It consists of a phase to recognize the QR-code indicating the location of
a drop zone, a phase to keep track of the drop zone after it has been recognized and a phase
that aligns the MAV with the drop zone.

Conclusively an experiment was conducted to determine the ideal altitude for recognizing
the QR-code comparing the effectiveness of the two cameras on an AR.drone 2.0. The results
show the higher resolution camera has a higher probability of finding a visible QR-code and
the ideal altitude for recognition lies between 41 and 75 cm.

8 Future Research

The high difference in the probability of recognizing and reading for the front camera is sug-
gested to come from compression. Programmers experienced with the ZXing library recommend
the use of image compression, for the reduction in size allows for faster recognition and it can
suppress the effects of blurring. However no research has been done on the effect of compression
or other filters to boost the performance of ZXing. Perhaps a filter or compression method can
boost the recognition on higher altitudes.

9



Evaluation of tracking algorithms Oosterhuis and Visser

Acknowledgements

We would like to thank Gerald Poppinga for his support and guidance. Furthermore, we
are grateful to Nick Dijkshoorn, Camiel Verschoor and Auke Wiggers for providing of this
development framework, the ros-package ardrone tools.

References

[1] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In Computer Vision–ECCV 2010, pages 778–792. Springer,
2010.

[2] Nick Dijkshoorn. Simultaneous localization and mapping with the ar.drone. Master’s thesis,
Universiteit van Amsterdam, July 2012.

[3] Nick Dijkshoorn. Simultaneous localization and mapping with the ar.drone. Master’s thesis,
Universiteit van Amsterdam, July 2012.

[4] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Online learning of robust object detectors
during unstable tracking. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th
International Conference on, pages 1417–1424. Ieee, 2009.

[5] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, (99):1–1, 2011.

[6] Sean Owen. Zxing, October 2007.

[7] Giorgio Panin. Model-based visual tracking: the OpenTL framework. John Wiley & Sons, 2011.

[8] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, 2009.

[9] Srikanth Saripalli, James F Montgomery, and Gaurav S Sukhatme. Visually guided landing of an
unmanned aerial vehicle. Robotics and Automation, IEEE Transactions on, 19(3):371–380, 2003.

[10] Constantin Scheuermann, Martin Werner, Moritz Kessel, Claudia Linnhoff-Popien, and
Stephan AW Verclas. Evaluation of barcode decoding performance using zxing library. In Second
Workshop on Smart Mobile Applications, 2012.

[11] Courtney S Sharp, Omid Shakernia, and S Shankar Sastry. A vision system for landing an un-
manned aerial vehicle. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Inter-
national Conference on, volume 2, pages 1720–1727. IEEE, 2001.

[12] Arnoud Visser. Vision-based road-following using a small autonomous aircraft. March 2013.

[13] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report, University
of North Carolina, Chapel Hill, NC, USA, 1995.

10


	Introduction
	Related Work
	Approach
	Main Approach
	Recognition Phase
	Tracking Phase
	Navigation Phase


	Experiments
	Platform
	Camera Specifications and Modifications
	Experiments
	Evaluation Criteria

	Results
	Discussion
	Effect on Approach

	Conclusion
	Future Research

