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Context 

Courtesy [1] T. J. Mueller, “On the birth of micro air vehicles,” International Journal of Micro Air Vehicles, 

vol. 1, no. 1, pp. 1–12, 2009. 



Smaller UAVs 

Delfly Micro, TU Delft 

Black Widow, Courtesy AeroVironment Inc. MAV of the University of Florida 

http://www.youtube.com/watch?v=nTz297_xhkQ


Experience with UAVs 

The versatile scouting capabilities of  

small air vehicles make them very useful for 

surveillance, inspection and search & rescue 



Hard to provide autonomy 

The limited sensor suite and the fast movements 

make it quite a challenge to fully automate the 

navigation for such platform 

http://nickd.nl/wiki/lib/exe/fetch.php?cache=&media=usarsim_sonar_fixed.png


Autonomy increasingly important 

 



Autonomy factor αK 

 

 1 http://www.imav2013.org 

http://www.imav2013.org/


Motion model: 

Validation of the simulation model 

Carsten van Weelden and Nick Dijkshoorn 

Universiteit van Amsterdam 

Informatica Instituut 



AR.Drone is stabilized quadrotor  

The AR.Drone is mainly controlled  

with his angle of attack α (θ in xB) 

Courtesy Hoffman et al. 



Hovering  

The AR.Drone is stabilized by optical flow of 

bottom camera. The variance in position is 

7.07±0.12 cm and in velocity is 0.0422 m/s. 



Horizontal movement  

The AR.Drone is given 

forward and backward 

steppulses with a 

fixed amplitude. 

 

The 5 second pulses 

are used to estimate 

the speed at this 

angle.  

Pulses with amplitude (s=0.15). 



Horizontal movement  

Experiments with different amplitudes of the 

signal s revealed the following relationship 

between angle of attack α and the speed v. 



Simulation model  

Parrot provided a very detailed 3D-model. Our team 
created a simplified model with 3142 vertices. 

 

Overall, the dynamic behavior closely resembles the 
dynamics of the real system. 





Sensor model: 

Optical Flow based  

Obstacle Avoidance  

Robrecht Jurriaans 

Robrecht Jurriaans, Flow based Obstacle Avoidance for Real World Autonomous Aerial 

Navigation Tasks, Bachelor thesis, Universiteit van Amsterdam, August 2011. 



Optical Flow algorithm  

• Pyramidal Lucas-Kanade implementation 

• Tracking of Shi-Tomasi features 

• RANSAC to classify inliers / outliers 

• Hartley’s algorithm to estimate the translation of the 
camera in world coordinates 



Disparity map (low texture)  

• Not enough features to build reliable disparity map 



Disparity map (added texture)  

• The disparity map shows more detail 



Disparity map (higher resolution)  

• Nearly enough features for a robust estimation of 

the translation in Hartley’s algorithm 



# Features needed  

• Typically, the Shi-Tomasi algorithm can pair 75% of the points 
in both images  

• Typically, RANSAC removes 25-50% of the point pairs 



Depth Map  

• Hartley’s algorithm cannot provide scale. To estimate depth time 
to contact has to be estimated from the optical flow. 

• Disparity can be used to create a repulsive force when an 
obstacle is approached 



Localization and Mapping challenge: 

Visual SLAM combined with 

sonar and inertia measurements 

Nick Dijkshoorn 

Universiteit van Amsterdam 

Informatica Instituut 



Map Stitching algorithm  

• Tracking of SURF features 

• RANSAC to classify inliers / outliers 

• Back-projection with least-square optimization to estimate the 
perspective transformation (replaced by an estimate of the 
camera’s transformation in OpenCV’s SolvePNP) 



Map Stitching results  

Care has been taken to 

reproduce the real 

circumstances: 

• decreased saturation, 

• increased brightness,  

• downsampled resolution. 



Map Stitching results  

In addition, white balance 

variations are added. 

Now the average feature 

distance increases from 

22.1px to 32.9px (real 

AR,Drone 32.7px) 



Scaling up results  

When the map is scaled 

up 3x, the lack of 

global optimization 

becomes visible. 

 





Additional information results  

Including information 

from inertia sensors 

(using a extended 

Kalman filter) solves 

part of the problem. 



Comparison of methods 

  

• Localization results 

improve a factor 2 

with localization. 

Map used for localization 



Comparison of methods 

 

• Localization make 

visual odometry 

more robust. 

Map used for localization 



Restrictions on variables 

• Reducing the degrees of freedom results 

in more robustness against noise. 



Resumé  

A visual map can be created with the low resolution bottom 

camera, which could be used for localization. 

Two rounds of autonomous flight by UvA team at IMAV 2011 

http:/www.youtube.com/watch?v=Zg8cF9TRk2U


Comparison 

• Model based approach 

[9] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A system for autonomous flight using 

onboard computer vision,” in IEEE international conference on Robotics and automation (ICRA), 2011, pp. 

2992–2997. 

PixHawk localization based on markers [9]. 

Two rounds of autonomous flight by PixHawk team at IMAV 2010 

http://www.youtube.com/watch?v=83YR15vf718


Localization and Mapping challenge: 

Elevation map based on sonar 

Nick Dijkshoorn 

Universiteit van Amsterdam 

Informatica Instituut 



Update and refinement 

With the transformation A-1[R T] known, the height can 

be stored in a grid, which means that the flat floor 

assumption can hold.   



Automatic Height Estimation 



Resulting Map 

• The height estimation underestimates the 

height of the staircase in our building. 



Resulting Map 

• Sudden elevations are well estimated, 

gradual elevations are cut off. 



Resumé 

• Height estimates can only be made by a careful 

sensor fusion of external and internal 

measurements (sonar and inertia). 

 

Universiteit van Amsterdam 

UvA Rescue 



Navigation challenge: 

Optimizing Artificial Force Fields  

Martijn van der Veen 

Martijn van der Veen, Optimizing Artificial Force Fields for Autonomous Drones in the Pylon 

Challenge using Reinforcement Learning, Bachelor thesis, Universiteit van Amsterdam, July 2011. 



Initial Force Field  

An initial field can be build up with a-priori knowledge 



Optimizing Force Field  

The force field can be optimized by value iteration of 

positive and negative experiences: 

 



Improvement  

The initial force field is 

already quite good, but 

can be further optimized. 



Result  



Conclusion 

• Autonomous navigation with micro UAV is 

possible under favorable circumstances. 

• Lack of features and the characteristics of the 

onboard camera make it a real challenge. 

• The International Micro Air Vehicle flight 

competition becomes a benchmark for 

autonomous cooperating robot teams. 

 

Universiteit van Amsterdam 

Maneki-Neko Team 



  

Universiteit van Amsterdam 

Maneki-Neko Team 


