
Gazebo

Amirreza Kabiri

Fatemeh Pahlevan Aghababa

Autumn 2017

History

 Started in fall 2002 in USC by Dr. Andrew Howard and his

student Nate Koenig as a complementary simulator to Stage,

Nate continue to develop during his PhD

 In 2009, John Hsu from Willow integrate ROS and PR2 into

Gazebo

 In 2011 Willow Garage started financial support

 In 2012 OSRF became steward of project

 In July 2013 OSRF used gazebo in Virtual Robotics

Challenge and DARPA Robotics Challenge

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

About

 It is licensed under Apache 2.0

 It uses MAJOR.MINOR.PATCH versioning system

 Major when incompatible

 Minot when functionality changes with b/w compatibility

 Patch when b/w compatible bug fixes release

 It uses Tick-tock Release Cycle

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Features

Dynamics Simulation (Access multiple high-performance physics engines

including ODE, Bullet, Simbody, and DART.)

Advanced 3D Graphics (Utilizing OGRE, Gazebo provides realistic rendering

of environments including high-quality lighting, shadows, and textures.)

Sensors and Noise (Generate sensor data, optionally with noise, from laser

range finders, 2D/3D cameras, Kinect style sensors, contact sensors, force-

torque, and more.)

Plugins (Develop custom plugins for robot, sensor, and environmental control.

Plugins provide direct access to Gazebo's API.)

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Features

Robot Models (Many robots are provided including PR2, Pioneer2 DX,

iRobot Create, and TurtleBot. Or build your own using SDF.)

TCP/IP Transport (Run simulation on remote servers, and interface to

Gazebo through socket-based message passing using Google Protobufs.)

Cloud Simulation (Use CloudSim to run Gazebo on Amazon, Softlayer, or

your own OpenStack instance.)

Command Line Tools (Extensive command line tools facilitate simulation

introspection and control.)

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Installation

Instructions to install Gazebo on all the platforms supported: Ubuntu,

Debian, Fedora, Arch, Gentoo, Mac, Windows is still under

development.

Installation on Ubuntu

One line

From repository

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Gazebo Architecture

•Run Gazebo!

•Run Gazebo with a robot

(SDF file (Simulation Description Format))

•Where are the worlds located?

•Client and server separation

gzserver gzclient(Qt based)

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Environment Variables

GAZEBO_MODEL_PATH: colon-separated set of directories where Gazebo

will search for models

GAZEBO_RESOURCE_PATH: colon-separated set of directories where

Gazebo will search for other resources such as world and media files.

GAZEBO_MASTER_URI: URI of the Gazebo master. This specifies the IP

and port where the server will be started and tells the clients where to connect

to.

GAZEBO_PLUGIN_PATH: colon-separated set of directories where Gazebo

will search for the plugin shared libraries at runtime.

GAZEBO_MODEL_DATABASE_URI: URI of the online model database

where Gazebo will download models from.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Environment Variables

•These default values are stored in source
<install_path>/share/gazebo/setup.sh

gzserver worlds/empty.world

•Example of loading a plugin on the command line:

gzserver -s <plugin_filename> <world_file>

•The same mechanism is used by the graphical client:

gzclient -g <plugin_filename>

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Communication

• Communication Between Processes

Google Protobuf for the message serializationand boost::ASIO for the transport mechanism

• Gazebo Master

This is essentially a topic name server. It provides namelookup, and topic management. A single

master can handle multiple physics simulations, sensor generators, and GUIs.

• Communication Library

• Dependencies: Protobuf and boost::ASIO

• External API:

• Internal API: None

• Advertised Topics: None

• Subscribed Topics: None

• It currently supports only publish/subscribe

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Physics Library

•Dependencies: Dynamics engine (with internal collision detection)

•External API: Provides a simple and generic interface to physics simulation

• Internal API: Defines a fundamental interface to the physics library for 3rd party

dynamic engines.

• The physics library provides a simple and generic interface to fundamental simulation

components, including rigid bodies, collision shapes, and joints for representing

articulation constraints.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Rendering Library

•Dependencies: OGRE

•External API: Allows for loading, initialization, and scene creation

• Internal API: Store metadata for visualization, call the OGRE API for rendering.

• The rendering library uses OGRE to provide a simple interface for rendering 3D

scenes to both the GUI and sensor libraries. It includes lighting, textures, and sky

simulation. It is possible to write plugins for the rendering engine.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Sensor Generation

•Dependencies: Rendering Library, Physics Library

•External API: Provide functionality to initialize and run a set of sensors

• Internal API: TBD

• The sensor generation library implements all the various types of sensors, listens to

world state updates from a physics simulator and produces output specified by the

instantiated sensors.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

GUI

•Dependencies: Rendering Library, Qt

•External API: None

• Internal API: None

The GUI library uses Qt to create graphical widgets for users to interact with the

simulation. The user may control the flow of time by pausing or changing time step

size via GUI widgets. The user may also modify the scene by adding, modifying, or

removing models. Additionally there are some tools for visualizing and logging

simulated sensor data.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

More..

• Plugins

The physics, sensor, and rendering libraries support plugins. These plugins provide

users with access to the respective libraries without using the communication system.

•Capture screenshots

The captured image will be saved to ~/.gazebo/pictures with a timestamped filename.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Build Robot
•The Model Database Repository

The model database is a bitbucket repository

•Model.config
<?xml version="1.0"?>

<model>

<name>My Model Name</name>

<version>1.0</version>

<sdf version='1.5'>model.sdf</sdf>

<author>

<name>My name</name>

<email>name@email.address</email>

</author>

<description>

A description of the model

</description>

</model>

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

SDF (Simulation Description
Format)

Components of a SDF Models

• Links:A link contains the physical properties of one body of the model. This can be a wheel, or a link in
a joint chain. Each link may contain many collision and visual elements. Try to reduce the number of
links in your models in order to improve performance and stability.

• Collision: A collision element encapsulates a geometry that is used to collision checking. This can be a
simple shape (which is preferred), or a triangle mesh (which consumes greater resources). A link may
contain many collision elements.

• Visual: A visual element is used to visualize parts of a link. A link may contain 0 or more visual
elements.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

SDF(Simulation Description
Format)

• Inertial: The inertial element describes the dynamic properties of the link, such

as mass and rotational inertia matrix.

• Sensor: A sensor collects data from the world for use in plugins. A link may

contain 0 or more sensors.

• Joints: A joint connects two links. A parent and child relationship is established

along with other parameters such as axis of rotation, and joint limits.

• Plugins: A plugin is a shared library created by a third party to control a model

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Make a Mobile Robot

 Setup your model directory

 Read through the Model Database documentation. You will be creating your own

model, which must follow the formatting rules for the Gazebo Model Database

directory structure.

1. Create a model directory
mkdir -p ~/.gazebo/models/my_robot

2. Create a model config file

gedit ~/.gazebo/models/my_robot/model.config

<?xml version="1.0"?>
<model>

<name>My Robot</name>
<version>1.0</version>
<sdf version='1.4'>model.sdf</sdf>
<author>

<name>My Name</name>
<email>me@my.email</email>

</author>
<description>

My awesome robot.
</description>

</model>

Make a Mobile Robot

3.create model.sdf file

~/.gazebo/models/my_robot/model.sdf

gedit ~/.gazebo/models/my_robot/model.sdf
<?xml version='1.0'?>

<sdf version='1.4'>
<model name="my_robot">
</model>
</sdf>

 Build the Model's Structure

 This step will create a rectangular base with two wheels.

 It is important to start simple, and build up a model in steps. The

first step is to layout the basic shapes of the model. To do this we

will make our model static, which means it will be ignored by the

physics engine. As a result the model will stay in one place and

allow us to properly align all the components.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Make a Mobile Robot

1. Make the model static by adding a <static>true</static> element to the

~/.gazebo/models/my_robot/model.sdf file:

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Make a Mobile Robot

2. Add the rectangular base by editing the
~/.gazebo/models/my_robot/model.sdf file:

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

ROS Integration

 To achieve ROS integration with stand-alone Gazebo, a set of ROS

packages named gazebo_ros_pkgs provides wrappers around the stand-

alone Gazebo. They provide the necessary interfaces to simulate a robot in

Gazebo using ROS messages, services and dynamic reconfigure Some

features of gazebo_ros_pkgs:

• Supports a stand alone system dependency of Gazebo, that has no ROS

bindings on its own

• Builds with catkin

• Treats URDF and SDF as equally as possible

• Reduces code duplication with Gazebo

• Improves out of the box support for controllers using ros_control

• Integrates real time controller efficiency improvements from the DARPA

Robotics Challenge

• Cleans up old code from previous versions of ROS and Gazebo

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

gazebo_ros_pkgs
interface

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Running Gazebo

 The names of the ROS nodes to launch Gazebo have changed slightly to

coincide with the Gazebo executable names:

rosrun gazebo_ros gazebo launch both the Gazebo server and GUI.

rosrun gazebo_ros gzclient launch the Gazebo GUI.

rosrun gazebo_ros gzserver launch the Gazebo server.

 Available nodes to run:

rosrun gazebo_ros gazebo

rosrun gazebo_ros gzserver

rosrun gazebo_ros gzclient

rosrun gazebo_ros spawn_model

rosrun gazebo_ros perf

rosrun gazebo_ros debug

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Using roslaunch to Open
World Models

 The roslaunch tool is the standard method for starting ROS nodes and bringing

up robots in ROS. To start an empty Gazebo world similar to the rosrun

command in the previous tutorial, simply run

roslaunch gazebo_ros empty_world.launch

roslaunch Arguments

 You can append the following arguments to the launch files to change the

behavior of Gazebo:

Paused: Start Gazebo in a paused state (default false)

use_sim_time: Tells ROS nodes asking for time to get the Gazebo-published simulation time,

published over the ROS topic /clock (default true)

Gui: Launch the user interface window of Gazebo (default true)

Headless: Disable any function calls to simulator rendering (Ogre) components. Does not work with

gui:=true (default false)

Debug: Start gzserver (Gazebo Server) in debug mode using gdb (default false)

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

Roslaunch command

 Normally the default values for these arguments are all you need, but just as an

example:

roslaunch gazebo_ros empty_world.launch paused:=true
use_sim_time:=false gui:=true throttled:=false headless:=false
debug:=true

 Launching Other Demo Worlds

 Other demo worlds are already included in the gazebo_ros package, including:

roslaunch gazebo_ros willowgarage_world.launch

roslaunch gazebo_ros mud_world.launch

roslaunch gazebo_ros shapes_world.launch

roslaunch gazebo_ros rubble_world.launch

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

