
ROS
Robot Operating System

Amirreza Kabiri

Fatemeh Pahlevan Aghababa

Autumn 2017



 Why ROS? 

 Understanding ROS community level

 Levels of development in ROS

 Understanding the ROS file system level

 Understanding the ROS computation graph level

 Understanding ROS nodes, messages, topics, services, bags

 Understanding ROS Master

 Using ROS Parameter

 Running ROS Master and ROS Parameter server

 Creating a ROS package

 Working with ROS topics

 Adding custom msg and srv files

 Working with ROS services

 Working with ROS actionlib

 Creating launch files

 Applications of topics, services, and actionlib



Introduction to ROS

ROS-part1

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Why ROS?

 Robot Operating System (ROS)

 supported by the Open Source Robotics Foundation (OSRF), 

 A meta operating system 

 performing many functions of an operating system but it requires a computer's operating system such as Linux  

 in 2007 with the name Switchyard

 Willow Garage

 Other robot frameworks are such as Player, YARP, Orocos, CARMEN, Orca, MOOS, 

and Microsoft Robotics Studio.

 Provides communication between the user, the computer's operating system, and equipment external to the 

computer 

including sensors, cameras, as well as robots

 and the ability to control a robot without the user having to know all of the details of the robot 

http://playerstage.sf.net/
http://eris.liralab.it/yarp/
http://www.orocos.org/
http://carmen.sourceforge.net/
http://orca-robotics.sourceforge.net/
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/index.html
http://msdn.microsoft.com/en-us/robotics/default.aspx


Why we prefer ROS for robots?

 High-end capabilities

 Tons of tools

 Support high-end sensors and actuators

 Inter-platform operability

 Modularity

 Concurrent resource handling

 Active community

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Which robots are using ROS? 

 More than one hundered robots

 Complete list of robots

http://robots.ros.org/all/ 

 For example 

TurtleBot, a mobile robot 

Baxter, a friendly two-armed robot 

Crazyflie and Bebop, flying robots 

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 A centralized location for ROS users and developers

www.ros.org - The ROS Hub

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



www.ros.org - The ROS Hub

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 answers.ros.org - ROS Questions &

Answers

 Community-supported help for ROS users

growing community

 industrial robotics trend:

 switching from proprietary 

robotic application to ROS

 37005 question and answers 

 more than 15000 active users



Distributions

 Release rules:

• There is a ROS release every year in May.

• Releases on even numbered years will be a LTS release, 

supported for five years.

• Releases on odd numbered years are normal ROS releases, 

supported for two years.

• ROS releases will drop support for EOL Ubuntu 

distributions, even if the ROS release is still supported.

 A ROS distribution is a versioned set of ROS packages.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



The ROS Community



ros mailing lists
Getting in touch with the developer community

 http://lists.ros.org/lurker/list/ros-release.en.html— ROS release maintainers
 http://lists.ros.org/lurker/list/ros-users.en.html— Discussions among ROS users.

 To post a message to all the list members, send email to ros-users@lists.ros.org.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://lists.ros.org/lurker/list/ros-release.en.html
http://lists.ros.org/lurker/list/ros-users.en.html
mailto:ros-users@lists.ros.org


http://www.ros.org/install/

Ros Installation guide

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://www.ros.org/install/


 http://wiki.ros.org/kinetic/Installation

Kinetic Installation guide

http://wiki.ros.org/kinetic/Installation


Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017







Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Levels of development in ROS

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS File system level

 Packages

 Package manifest

 Meta packages

 Meta packages manifest

 Messages (.msg)

 Services (.srv)

 Repositories

Understanding the ROS file system level

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS packages

Structure of a typical ROS package

 config

 include/package_name

 scripts

 src

 launch

 msg

 srv

 action

 package.xml

 CMakeLists.txt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Some of the commands

ROS packages

 catkin_create_pkg

 rospack

 catkin_make

 rosdep

 rosbash

 rosrun

 roscp

 rosed

 roscd

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS meta packages

 Specialized packages with just a package.xml file.

 do not contain any tests, code, files

 Grouping a set of multiple packages

 ROS navigation stack

 an export tag

ROS navigation stack

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS messages

 Describing types of publishing data

 stored in .msg files

 field types and field name

 Here is an example of message definitions:

 As a list of data field descriptions and constant definitions

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



the built-in field types

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



The ROS services

 a request/response communication type between ROS nodes

 definitions in a .srv file

 Similar to the message definition

 An example service description format

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding the ROS computation graph level

 Computation is done by using a network of process

 Computation graph

 The main concepts of the network

 ROS Nodes 

 Master

 Parameter server

 Messages,

 Topics

 Services

 Bags

 ros_comm

 http://wiki.ros.org/ros_comm

 ROS Graph layer
Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS Graph layer

 Nodes:

 Master:

 Parameter Server:

 Messages:

 Topics:

 Services:

 Bags:

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 rqt_graph (http://wiki.ros.org/rqt_graph)

ROS Graph layer

Graph of communication between nodes using topics

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://wiki.ros.org/rqt_graph


Understanding ROS nodes

performing computation 
 using ROS client libraries 

 roscpp

 rospy

Communicating by using 
 ROS Topics,

 ROS Services, 

 ROS Parameters

 Benefits:

 Fault tolerant system

 Reduce the complexity

 Increase debug-ability

Rosbash
 introspect ROS nodes

Rosnode
$ rosnode info [node_name]
$ rosnode kill [node_name]
$ rosnode list
$ rosnode machine [machine_name]
$ rosnode ping
$ rosnode cleanup

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS topics

 buses in which ROS nodes exchange messages

 Anonymously publish and subscribe

 topics are unidirectional,

 Request/response communications 

 ROS services

 TCP/IP-based transport (TCPROS)

 ROS topic tool

$ rostopic bw /topic
$ rostopic echo /topic: 
$ rostopic find /message_type: 
$ rostopic hz /topic: 
$ rostopic info /topic: 
$ rostopic list: 
$ rostopic pub /topic message_type args
$ rostopic type /topic

 Asynchronous many-to-many communication streams



ROS messages

 ROS nodes communicate with each other by publishing messages to a topic.

 messages are a simple data structure

 standard primitive datatypes and arrays of primitive types

 MD5 checksum comparison

 rosmsg

$ rosmsg show [message]
$ rosmsg list
$ rosmsg md5 [message]
$ rosmsg package [package_name]
$ rosmsg packages [package_1] [package_2]

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS services

 using a pair of messages for request/response communications

 .srv file

 request/response datatypes

 ROS server and service client

 MD5 checksum

$ rosservice call /service args
$ rosservice find service_type
$ rosservice info /services
$ rosservice list
$ rosservice type /service
$ rosservice uri /service

 Two ROS tools

 Rossrv similar to rosmsg
 rosservice tool

 Synchronous one-to-many network-based functions.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS bags

 Storing ROS messages

 The .bag extension

 Rosbag
 data logging

$ rosbag record [topic_1] [topic_2] -o [bag_name]
$ rosbag play [bag_name]

rqt_bag

 a GUI tool for recording and managing bag files

• show bag message contents

• display image messages (optionally as thumbnails on a timeline)

• plot configurable time-series of message values

• publish/record messages on selected topics to/from ROS

• export messages in a time range to a new bag



Understanding ROS Master

 like a DNS server

the details of all nodes currently running

 single system localhost

 distributed network only one Master ROS_MASTER_URI

 A centralized XML-RPC(Remote Procedure Call) server

 Negotiates communication connections

 Registers and looks up names for ROS graph resources

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Understanding ROS Master



Understanding ROS Master



Introduction to ROS

ROS-part 2

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Using the ROS parameter

 store it as files

 A high number of parameters

 share between two or more programs too.

 a parameter server

 The parameter server supports the following XMLRPC datatypes:

 32-bit integers

 Booleans

 strings

 doubles

 iso8601 dates

 lists

 base64-encoded binary data

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



/camera/name : 'nikon' #string type
/camera/fps : 30 #integer
/camera/exposure : 1.2 #float
/camera/active : true #boolean

 YAML file

 rosparam

$ rosparam set [parameter_name] [value]
$ rosparam get [parameter_name]
$ rosparam load [YAML file]
$ rosparam dump [YAML file]
$ rosparam delete [parameter_name]
$ rosparam list:

 dyamic_reconfigure http://wiki.ros.org/dynamic_reconfigure

Using the ROS parameter

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://wiki.ros.org/dynamic_reconfigure


Running ROS Master and ROS parameter server

 start ROS Master and the ROS parameter Server
o Roscore

 a prerequisite before running any ROS node
 ROS Master

 ROS parameter server

 rosout logging nodes

 Rosout node and topic

o /rosout_agg

 aggregate stream of log messages

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



o $ roscore

 A log file is creating inside the ~/.ros/log used for debugging purposes

 A ROS launch file called roscore.xml
 Automatically starts the rosmaster and ROS parameter server.

 Parameters :
 rosdistro
 rosversion

 the rosmaster node is started using

o ROS_MASTER_URI

 The rosout node is started

Running ROS Master and ROS parameter server

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



roscore.xml

 rosversion roslaunch and rosversion -d commands

Running ROS Master and ROS parameter server

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Checking the roscore command output

$ rostopic list
 lists the active topics

$ rosparam list
 lists the available parameters

$ rosservice list
 lists the running services

Running ROS Master and ROS parameter server

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



What makes up a catkin Package?

 For a package to be considered a catkin package it 

must meet a few requirements:

 The package must contain a catkin compliant package.xml file.

 That package.xml file provides meta information about the package.

 The package must contain a CMakeLists.txt which uses catkin.

 If it is a catkin metapackage it must have the relevant boilerplate CMakeLists.txt file.

 Each package must have its own folder

 This means no nested packages nor multiple packages sharing the same directory.

 The simplest possible package might have a structure 

which looks like this:

 my_package/ CMakeLists.txt package.xml

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/catkin/package.xml#Metapackages


Packages in a catkin Workspace

 The recommended method of working with catkin packages is using 

a catkin workspace, but you can also build catkin packages 

standalone. A trivial workspace might look like this:

workspace_folder/ -- WORKSPACE 
src/ -- SOURCE SPACE 
CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin
package_1/ 

CMakeLists.txt -- CMakeLists.txt file for package_1 
package.xml -- Package manifest for package_1 
... 

package_n/ 
CMakeLists.txt -- CMakeLists.txt file for package_n
package.xml -- Package manifest for package_n

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://wiki.ros.org/catkin/workspaces


Creating a ROS package

 The basic unit of the ROS system

 Using the catkin build system which is based on CMake (Cross Platform Make) to build ROS packages

 responsible for generating 'targets'(executable/libraries) from a raw source code

 porting the package into other operating system

 rosbuild In older distributions

 create a ROS catkin workspace

 The procedure to build a catkin workspace

$ mkdir ~/catkin_ws/src
$cd ~/catkin_ws/src
$ catkin_init_workspace (Initialize a new catkin workspace, build the workspace 

even if there are no packages)

$ cd ~/catkin_ws
$ catkin_make (command will build the workspace)



 After building the empty workspace

 Overlaying the workspace (set the environment of the current workspace to be visible by the ROS system.)

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc

 Source a bash script called setup.bash

Creating a ROS package

 catkin_create_pkg is used to create a ROS package.

 catkin_create_pkg [package_name] [dependency1] [dependency2]

$ catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs actionlib actionlib_msgs

 Dependencies

roscpp
std_msgs
actionlib
actionlib_msgs



$ catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs actionlib actionlib_msgs

• Terminal messages while creating a ROS package

 build the package by the catkin_make command must be executed from the catkin 

workspace path

 start adding nodes to the src folder 

Creating a ROS package

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 The build folder 

 executables of the nodes 

 The devel folder 

 bash script, header files, and other executables 

Creating a ROS package



ROS Meta-Filesystem

 Increasing codebase flexibility

 The minimal representation of a ros package is a directory in the $ROS_PACKAGE_PATH  
which contains

 manifest.xml
 Contains package metadata (author, license, url, etc)

 Specifies system and package dependencies

 Specifies language-specific export flags

 CMakeLists.txt
 Contains ROS build rules (executables, libraries, costum build flags, etc)

 Makefile
 Just a proxy to build this package

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



CMakeLists.txt

 The CMakeLists.txt file in the package to compile and build the source code 

http://wiki.ros.org/catkin/CMakeLists.txt

 Required CMake Version (cmake_minimum_required)

 cmake_minimum_required(VERSION 2.8.3)

 Package Name (project())

 project(mastering_ros_demo_pkg)

 Find other CMake/Catkin packages needed for build (find_package())

 find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
actionlib
actionlib_msgs
message_generation

)
 find_package(Boost REQUIRED COMPONENTS system)

http://wiki.ros.org/catkin/CMakeLists.txt


 Enable Python module support before the call to generate_messages() and catkin_package()

 (catkin_python_setup())

 Specify package build info export before declaring any targets with add_library() or add_executable()

 (catkin_package())

INCLUDE_DIRS - The exported include paths (i.e. cflags) for the package

LIBRARIES - The exported libraries from the project

CATKIN_DEPENDS - Other catkin projects that this project depends on

DEPENDS - Non-catkin CMake projects that this project depends on.

CFG_EXTRAS - Additional configuration options

 catkin_package(CATKIN_DEPENDS roscpp rospy std_msgs actionlib actionlib_msgs
message_runtime)

CMakeLists.txt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Message/Service/Action Generators

 (add_message_files(), add_service_files(), add_action_files())
 Generates programming language-specific files so that one can utilize messages, services, and actions

 These macros must come BEFORE the catkin_package() macro in order for generation to work correctly.

 Your catkin_package() macro must have a CATKIN_DEPENDS dependency on message_runtime.

 You must use find_package() for the package message_generation, either alone or as a component of catkin.

add_message_files(
FILES
demo_msg.msg

)
add_service_files(
FILES
demo_srv.srv

)
add_action_files(
FILES
Demo_action.action

)

CMakeLists.txt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Specifying Build Targets with unique names
 Executable Target - programs we can run

 Library Target - libraries that can be used by executable targets at build and/or runtime

 Specify where resources can be found for said targets
 Include Paths - Where can header files be found for the code (most common in C/C++) being built

 Library Paths - Where are libraries located that executable target build against?

 include_directories(<dir1>, <dir2>, ..., <dirN>)

 link_directories(<dir1>, <dir2>, ..., <dirN>)

include_directories(
include
${catkin_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}

)

CMakeLists.txt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Invoke message/service/action generation (generate_messages())
 Actually generate the language-specific message and service files.

generate_messages(
DEPENDENCIES
std_msgs
actionlib_msgs

)

 Libraries/Executables to build (add_library()/add_executable()/target_link_libraries())
 Used to specify libraries to build

add_executable(demo_msg_publisher src/demo_msg_publisher.cpp)

add_dependencies(demo_msg_publisher mastering_ros_demo_pkg_generate_messages_cpp)

target_link_libraries(demo_msg_publisher ${catkin_LIBRARIES})

CMakeLists.txt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Working with ROS topics 

 The basic way of communicating between two nodes 

 Creating two ROS nodes for publishing a topic and subscribing the same 

 Buses in which ROS nodes exchange messages

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 demo_topic_publisher.cpp 

 publishes an integer value on a topic called 
/numbers 

Creating ROS nodes 



 The subscriber node
demo_topic_subscriber.cpp 

Creating ROS nodes 

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Building the nodes

include_directories(
include
${catkin_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}

)

#This will create executables of the nodes
add_executable(demo_topic_publisher src/demo_topic_publisher.cpp)
add_executable(demo_topic_subscriber src/demo_topic_subscriber.cpp)

#This will generate message header file before building the target
add_dependencies(demo_topic_publisher mastering_ros_demo_pkg_generate_messages_cpp)
add_dependencies(demo_topic_subscriber mastering_ros_demo_pkg_generate_messages_cpp)

#This will link executables to the appropriate libraries
target_link_libraries(demo_topic_publisher ${catkin_LIBRARIES})
target_link_libraries(demo_topic_subscriber ${catkin_LIBRARIES})

 Following codes are used in CMakeLists.txt to build the nodes.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 switch to workspace
$ cd ~/catkin_ws

 Build mastering_ros_demo_package as follows:
$ catkin_make mastering_ros_demo_package

 create executables in ~/catkin_ws/devel/lib/<package name>.

 execute the nodes

 start roscore:
$ roscore

 run both commands in two shells
$ rosrun mastering_ros_demo_package demo_topic_publisher
$ rosrun mastering_ros_demo_package demo_topic_subscriber

Building the nodes

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Building the nodes

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



• $ rosnode list

 This will list the active nodes
• $ rosnode info demo_topic_publisher

 This will get the info of the publisher node
• $ rostopic echo /numbers 

 This will display the value sending through the /numbers topic
• $ rostopic type /numbers 

 This will print the message type of the /numbers topic

 Node debugging tools 

Building the nodes

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Adding custom msg and srv files

 Custom messages and services definitions

 These definitions inform ROS about the type of data and name of data to be transmitted 

from a ROS node

 message definitions in a .msg file 

 service definition in a .srv file

•msg: msg files are simple text files that describe the fields of a ROS message. They are used to 

generate source code for messages in different languages.

•srv: an srv file describes a service. It is composed of two parts: a request and a response.

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://wiki.ros.org/msg
http://wiki.ros.org/srv


 Corresponding lines in Package.xml file and CMakeLists.txt 
 Package.xml

<build_depend> message_generation</build_depend>
<run_depend>message_runtime</run_depend>

 CMakeLists.txt
find_package(catkin REQUIRED COMPONENTS 

message_generation
) 
add_message_files(

FILES
demo_msg.msg

)
## Generate added messages and services with any 
dependencies listed here
generate_messages(

DEPENDENCIES
std_msgs
actionlib_msgs

)

Adding custom msg file 
 Create a message file called demo_msg.msg

string greeting
int32 number

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Compile and build the package:
$ cd ~/catkin_ws/
$ catkin_make

 To check whether the message is built properly, we can use the rosmsg command:
$ rosmsg show   mastering_ros_demo_pkg/demo_msg

 Now we can build a publisher and subscriber using the custom message type

Adding custom msg file 

mastering_ros_demo_pkg::demo_msg msg;
std::stringstream ss;
ss << "hello world ";
msg.greeting = ss.str();
msg.number = number_count;

#include "mastering_ros_demo_pkg/demo_msg.h"
#include <sstream>

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Run roscore:
$ roscore

 Start the custom message publisher node:
$ rosrun mastering_ros_demo_pkg demo_msg_publisher

 Start the custom message subscriber node:
$ rosrun mastering_ros_demo_pkg demo_msg_subscriber

Adding custom msg file 

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 Create a new folder called srv in the current package folder 

add a srv file called demo_srv.srv

string in
---
string out

 Corresponding lines in Package.xml file and CMakeLists.txt 
 Package.xml

<build_depend>message_generation</build_depend>
<run_depend>message_runtime</run_depend>

 CMakeLists.txt

catkin_package( …
message_runtime
)

## Generate services in the 'srv' folder
add_service_files(
FILES
demo_srv.srv
)

Adding custom srv file 

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Working with ROS services

 Create ROS nodes, which can 

use the services definition

 demo_service_server.cpp



 demo_service_client.cpp

Working with ROS services

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



rosservice commands

• $ rosservice list: 
 This will list the current ROS services

• $ rosservice type /demo_service: 

 This will print the message type of /demo_service

• $ rosservice info /demo_service: 
 This will print the information of /demo_service

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Working with ROS actionlib

When to use actionlib

 action specification

 .action file with the following parts

 Goal

 To be executed by the action server

 Feedback

 The current operation inside the callback function

 Result

 A final result of completion

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Working with ROS actionlib

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Working with ROS actionlib

 Action protocol relies on ROS topics to transport messages

Action Interface

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Creating the ROS action server

 Containing the action class definition

 Creating an action server instance

 Creating a feedback instance

 And finally creating a result instance

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



 The action constructor

Creating the ROS action server

 Registering a callback when the action is preempted

 The callback definition

 Other actionlib commands could be found in: Here

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

http://docs.ros.org/diamondback/api/actionlib/html/classactionlib_1_1simple__action__server_1_1SimpleActionServer.html#a6206d2a1c35744cc12afc73d42f425d3


Applications of topics, services, and actionlib

 topics 

 a unidirectional communication method, 
 services 

 a bidirectional request/reply communication
 actionlib

 a modified form of ROS services 

• Topics: Robot teleoperation, publishing odometry, sending robot transform (TF), and sending 

robot joint states

• Services: This saves camera calibration parameters to a file, saves a map of the robot after 

SLAM, and loads a parameter file

• Actionlib: This is used in motion planners and ROS navigation stacks

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Introduction to ROS

ROS-part 3

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Creating launch files

 launching more than one node

 Previously the codes should be each in a terminal one by one

 It is possible to write all nodes inside a XML based file called launch files and using 

a command called roslaunch

 automatically starts ROS Master and the parameter server

 Create a .launch file in launch folder of the package with the following content:

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Creating launch files

 Using the following command the launch file could be run 

$ roslaunch package_name luanchfile_name.launch

$ rosnode list
$ rqt_console

 The list of nodes and the logs could be reached by the following commands:

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Debugging
ROSOUT

 ROS provides mechanisms in all languages for specifying dfferent levels of human readable 

log messages 

 The five levels are:

 Fatal

 Error

 Info

 Debug

 Coressponding logging commands in C++:

 ROS_FATAL(…)

 ROS_WARN(…)

 ROS_INFO(…)

 ROS_DEBUG(…)

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Debugging
RXCONSOL

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Debugging
RXCOSOL

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Debugging
RXCOSOL

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



Debugging
RXCOSOL

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
RXplot

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls



ROS GUI TOOls
rqt

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rviz - 3d visualization

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rviz - 3d visualization

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rviz - 3d visualization

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rviz - 3d visualization

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rviz - 3d visualization



ROS GUI TOOls
Rviz - 3d visualization

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rqt_graph

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
Rqt_dep

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS GUI TOOls
roswtf

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017



ROS Cheatsheet

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

https://github.com/ros/cheatsheet/releases


ROS Cheatsheet

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

https://github.com/ros/cheatsheet/releases


ROS Cheatsheet

Amirreza Kabiri & Fatemeh Pahlevan @ Autumn 2017

https://github.com/ros/cheatsheet/releases

