
The Carologistics RoboCup Logistics Team 2013

Tim Niemueller1, Daniel Ewert2, Sebastian Reuter2,
Alexander Ferrein3, Sabina Jeschke2, and Gerhard Lakemeyer1

1 Knowledge-based Systems Group, RWTH Aachen University, Germany
2 Institute Cluster IMA/ZLW & IfU, RWTH Aachen University, Germany

3 Electrical Engineering Department, FH Aachen, Germany

Abstract. In this team description paper, we outline the approach of
the Carologistics team with an emphasis on the high-level reasoning sys-
tem. We outline the hardware modifications and describe our software
systems and describe our efforts towards a fully referee box.
The team members of the 2013 team are Andre Burghof, Daniel Ewert,
Alexander Ferrein, Bahram Maleki-Fard, Victor Mataré, Tobias Neu-
mann, Tim Niemueller, Florian Nolden, Sebastian Reuter, Johannes Rothe,
Alexander von Wirth, Frederik Zwilling.

1 The Carologistics Robotino Robots

The basic platform employs omni-directional locomotion, features twelve infrared
distance sensors and bumpers mounted around the base, a CruizCore gyroscope,
and a webcam facing forward. The Carologistics Robotinos have an additional
omni-directional camera system as shown in Figure 1, taken from the Allema-
niACs’ former middle-size league soccer robots [1], which allows for a 360◦ view
around the robot. It is used to detect pucks around the robot. The webcam is
used for recognizing the signal lights of the production machines. An additional
Hokuyo URG laser scanner is used for collision avoidance and self-localization.
In 2013, the robots will be outfitted with an additional laptop on the robot.

2 Middleware Concepts: Deploying Fawkes and ROS

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [2] and ROS [3]. This allows us to use software components from
both systems. The overall system, however, is integrated using Fawkes. Adapter
plugins connect the systems, for example to use ROS’ navigation and 3D vi-
sualization capabilities. Most of the functional components are implemented in
Fawkes. For example self-localization is done using Adaptive Monte Carlo Lo-
calization. From ROS we use the locomotion package (move base) which imple-
ments a dynamic window approach for local motion and collision avoidance and
a Dijkstra search for a global path. The behavior components have been devel-
oped on top of Fawkes, but could easily be used in ROS. For computational and
energy efficiency, the behavior components need to coordinate activation and

(a) Modified Robotino of the Carol-
ogistics RoboCup team.

(b) Image from the directed camera detecting
the light signal of a machine.

(c) Image from the omni-
directional camera.

(d) Visualization of the scene in Rviz

Fig. 1. Carologistics Robotino, sensor processing, and visualization

deactivation of the lower level components to solve computing resource conflicts.
The behavior components are described in more detail in Section 3.2. Next, we
briefly describe the task coordination components.

3 High-level Decision Making and Task Coordination

Task coordination is performed using an incremental reasoning approach [4]. In
the following we introduce the rule-based production system CLIPS, describe the
behavior components, and briefly describe the reasoning process in two particular
situations from the rules in 2012.

3.1 CLIPS Rules Engine

CLIPS is a rule-based production system using forward chaining inference based
on the Rete algorithm [5]. The CLIPS rule engine [6] has been developed and
used since 1985 and is thus mature and stable. It was designed to integrate well

CLIPS Agent

Sim World

Perception Input

(a) External Inter-
face

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.
Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Agent Deliberation
Decision making/planning

(b) Behavior Layer Separation

Fig. 2. LLSF scenario in-game photo, the equality of simulation and real-world input,
and the behavior layer separation

with the C programming language4, which specifically helps to integrate with
robot software like Fawkes or ROS. Its syntax is based on LISP.

CLIPS has three building blocks [7]: a fact base or working memory, the
knowledge base, and an inference engine. Facts are basic forms representing
pieces of information which have been placed in the fact base. They are the fun-
damental unit of data used by rules. Facts can adhere to a specified template.
It is established with a certain set of slots, properties with a specified name
which can hold information. The knowledge base comprises heuristic knowledge
in the form of rules, and procedural knowledge in the form of functions. Rules
are a core part of the production system. They are composed of an antecedent
and consequent. The antecedent is a set of conditions, typically patterns which
are a set of restrictions that determine which facts satisfy the condition. If all
conditions are satisfied based on the existence, non-existence, or content of facts
in the fact base the rule is activated and added to the agenda. The consequent
is a series of actions which are executed for the currently selected rule on the
agenda, for example to modify the fact base. Functions carry procedural knowl-
edge and may have side effects. They can also be implemented in C++. In our
framework, we use them to utilize the underlying robot software, for instance
to communicate with the reactive behavior layer described below. CLIPS’ in-
ference engine combines working memory and knowledge base. Fact updates,
rule activation, and agenda execution are performed until stability is reached
and no more rules are activated. Modifications of the fact base are evaluated
if they activate (or deactivate) rules from the knowledge base. Activated rules
are put onto the agenda. As there might be multiple active rules at a time, a
conflict resolution strategy is required to decide which rule’s actions to execute
first. In our case, we order rules by their salience, a numeric value where higher
value means higher priority. If rules with the same salience are active at a time,
they are executed in the order of their activation, and thus in the order of their
specification. The execution of the selected rule might itself trigger changes to
the working memory, causing a repetition of the cycle.

4 And C++ using clipsmm, see http://clipsmm.sf.net

3.2 Behavior Components for the LLSF

In the described scenario, tasks that the high-level reasoning component of the
robot should fulfill are:

Exploration: Gather information about the machine types by sensing and rea-
soning to gain more knowledge, e.g., the signal lights’ response to certain
types of pucks.

Production: Complete the production chains as often as possible dealing with
incomplete knowledge.

Execution Monitoring: Instruct and monitor the reactive mid-level Lua-based
behavior engine.

Simulation: Simulate the perception inputs of the high-level system’s decisions
for an arbitrary world situation to perform offline spot tests of the agent.

In 2012, these steps were intertwined. While the robot explores the machine
types, it already takes steps in the production chain and needs to execute and
monitor behaviors. Especially this entanglement of tasks calls for an incremen-
tal reasoning approach. As facts become known, the robot needs to adjust its
plan. The simulation allows to perform offline tests evaluating the agent with a
particular machine type assignment.

3.3 Behavior Components

In previous work we have developed the Lua-based Behavior Engine (BE) [8]. It
mandates a separation of the behavior in three layers, as depicted in Figure 2(b),
the low-level processing for perception and actuation, a mid-level reactive layer,
and a high-level reasoning layer. The layers are combined following an adapted
hybrid deliberative-reactive coordination paradigm with the BE serving as the
reactive layer to interface between the low- and the high-level systems.

The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15 Hz. If a condition fires,
the active state is changed to the target node of the edge. A table of variables
holds information like the world model, for example storing numeric values for
object positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another.

3.4 Incremental Reasoning Agent

The problem at hand with its intertwined exploration, world model updating and
execution and production phases naturally lends itself to a representation as a
fact base with update rules for the exploration phase, and triggering behavior
for certain beliefs. We have chosen the CLIPS rules engine, because using incre-
mental reasoning the robot can take the next best action at any point in time

(defrule s0-t23-s1
(state IDLE) (holding S0)
(machine (mtype ?mt&T2_3) (name ?n)

(loaded-with $?l &:(contains$ S1 ?l)))
?g <- (goto (machines $?ms &˜:(contains$?n ?ms))

(min-prio ?mp &:(<= ?mp (m-prio ?mt))))
=>
(modify ?g (machines (merge ?mp (m-prio ?mt) ?ms ?n))

(min-prio (m-prio ?mt)))
)

Fig. 3. CLIPS Production Process Rule

whenever the robot is idle. This avoids costly re-planning (as with approaches
using classical planners) and it allows us to cope with incomplete knowledge
about the world. Additionally, it is computationally inexpensive.

The CLIPS rules are roughly structured using a fact named state whose
value determines which subset of the rules is applicable at any given time. For
example, the robot can be idle and ready to start a new sub-task, or it may
be busy moving to another location. Rules involved with physical interaction
typically depend on this state, while world model belief updates often do not.
The state is also required to commit to a certain action and avoid switching to
another one if new information, e.g., contributed by other robots on the field,
becomes available. While it may be better in the current situation to pursue
another goal, aborting or changing an action usually incurs much higher costs.

The rules explained in the following demonstrate what we mean by incre-
mental reasoning. In 2012, with an emphasis on incomplete knowledge, the fact
base is updated as the robot gains more knowledge or commits to certain ac-
tions. This can also be triggered by information about the world published by
other robots. The robot does not create a full-fledged plan at a certain point in
time and then executes it until this fails. Rather, when idle it commits to the
then-best action. As soon as the action is completed and based on its knowledge,
the next best action is chosen.

The rule base is structured in four areas: world modeling, production process
execution, simulation, and utilities.

In Figure 3 we show a rule for the production process. The robot is currently
idle and got a raw material from the input storage: (state IDLE)(holding S0).
For this example, we assume to only know a T1 machine and another one that
could be either of type T2 or T3, which is denoted by (mtype ?mt&T2_3). This
knowledge was acquired earlier bringing an S1 puck to the machine, after which it
signaled with an yellow light that production is still in progress. In this situation,
as the rule suggests, it is best to take the S0 puck to this machine. Afterwards,
the type of the machine will have been determined. The rule matches a goto
fact which holds a list of potential targets to move to in the machines slot.
The additional condition in this rule, (min-prio ?mp&:(<= ?mp (m-prio ?mt))),
makes sure that only a higher or same priority target compared to the current
best target is considered. With the following action the rule updates the potential
targets and updates the new minimum priority:

(modify ?g (machines (merge ?mp (m-prio ?mt) ?ms ?n))
(min-prio (m-prio ?mt)))

Machine priorities are ordered by the type of the machine, e.g., a T2 machine
has a higher value than a T1 machine. This is to prefer the completion of higher
valued sub-goals. For example, if the robot was holding an S0 puck, and it knew
a T1 machine, and a T2 which was already loaded with an S1 puck, it makes
sense to prefer the T2 machine, because it can complete a production step to
produce an S2 puck, which scores more points in the competition than another
S1. The priority is also required to avoid getting stuck in local minima, e.g.,
producing lots of S1 pucks but not completing the higher value goals.

The production process rules guide the robot to commit to the highest value
action that can be taken, similar to a reward function. In our environment this
has two particular benefits. First, aborting an action is expensive on the existing
robot. The computational bounds and low-frequent control loops prohibit high
motion speeds. Second the low memory and computational requirements make
it suitable for the limited platform. The incurred overhead is virtually negligible.

The world model holds facts about the (partly) known or unknown machine
types, what kind of puck the robot is currently holding (if any) and the state
of the robot. Two examples for world model updates are shown in Figure 4.
The rules are invoked after the action from the production rule presented above
was successfully completed, i.e., an S0 puck was taken to a machine of a yet
undetermined type T2 or T3. The first rule shows the inference of the output
puck type given a machine’s reaction, the second handles a world model update.
In the first rule, the conditions (state GOTO-FINAL)(goto-target ?name) denote
that the robot finished locomotion and its name is bound to the variable ?name.

The type of this machine, as known from the world model by matching a
machine fact with the same name, was not yet determined as explained above.
There was a single puck in this machine’s area, matched by the following pattern.
First, the list of loaded pucks is assigned to the list $?w, then it is constrained
to have a length of one by the condition (loaded-with $?w&:(= (length$?w)1)).
Further, the light turned green. This means that the production cycle has been
completed and the robot now knows to be holding an S2 puck. We retract the
light fact and update the holding fact (by retracting and asserting it).

The second rule shows the inference of a machine type in that situation. A
world model evaluation is triggered after a transportation step has been com-
pleted. Like before, the robot was at a machine of type T2 or T3. It held an S0
or S1 puck when it got there, and afterwards an S2 puck. The robot can now be
certain that the machine is of type T2 and it can update its belief. The following
action resets the loaded pucks, increases the junk count by the number of pucks
in the machine area, sets the type to T2, and increments the production count.
(modify ?m (mtype T2) (loaded-with)

(junk (+ ?junk (length$?lw))) (productions (+ ?p 1)))

The world model can also change due to information received from other robots,
in particular regarding which pucks a machine is currently loaded with. Likewise,
the own belief is published to other robots.

(defrule wm-holding-t23-one-green-s2
(declare (salience ?*PRIORITY_WM*))
(state GOTO-FINAL) (goto-target ?name)
?h <- (holding ?any)
(machine (name ?name) (mtype T2_3)

(loaded-with $?lw &:(= (length$?lw) 1)))
?l <- (light green)
=>
(retract ?l ?h)
(assert (holding S2))

)

(defrule wm-determine-t23-s0-or-s1-now-s2
(declare (salience ?*PRIORITY_WM*))
?w <- (wm-eval (machine ?name) (junk ?junk)

(was-holding S0|S1) (now-holding S2))
?m <- (machine (name ?name) (mtype T2_3)

(loaded-with $?lw) (productions ?p))
=>
(retract ?w)
(modify ?m (mtype T2) (loaded-with)

(junk (+ ?junk (length$?lw)))
(productions (+ ?p 1)))

)

Fig. 4. CLIPS World Model Update Rules

3.5 System Integration

The overall system consists of an initial fact base containing about two dozen
facts, for example holding information about the machines (we know that there
will be 10 machines on the playing field, but we do not know their type assign-
ments). The rule base comprises a total of 74 rules, 38 are used for processing and
publishing world model updates, 24 are concerned with the production process,
7 serve for the simulation and 5 for house keeping. So we see that the system
requires only a small number of rules to maintain a world model and exhibit the
behavior for the logistics scenario in 2012.

The simulation is used to perform spot tests for the agent program. When
setting up a robot system for a new task, many software components on all levels
need to be developed and integrated at the same time. The more a component
can be tested independently of the others, the easier its integration into the full
system typically gets. The agent simulation operates by disconnecting the agent
from the actual robot system. It creates ground-truth data — either manually
defined or randomized — for a particular scenario, i.e., a machine type assign-
ment. Then, all actions that the robot executes, like fetching a puck or moving
with it to a machine, are assumed to be successful. Then, perception input like
a signal light response is generated based on the input and ground-truth infor-
mation. Hence, the game can be played rapidly and often. The excellent tracing
features of rule activation allow to verify the sequence of actions, detect plan-
ning dead ends, and optimize the sequence of actions. This makes simulation a
valuable tool for debugging. Also, if an error is encountered particular scenarios
can be replayed. Figure 2(a) shows how the perception input can be provided
either by the simulation, or by real world perception. The interface of the agent
towards the input remains the same for either simulation or perception.

4 LLSF Referee Box

The Carologistics team has developed an autonomous referee box (refbox) for
the LLSF which will be deployed in 2013 [9]. It strives for full autonomy on the
controlling side of the game, i.e. it tracks and monitors all puck and machine
states, creates (randomized) game scenarios, handles communication with the
robots, and interacts with a human referee. This is in particular necessary be-
cause at the moment the refbox cannot detect if a puck was moved out of the
machine area when a production was currently work in progress. In the future,
we plan to achieve full autonomy of the refbox by integrating and adapting the
overhead camera vision system of the Small Size League.

5 Conclusion

The Carologistics RoboCup team has developed extensions for the Robotino
hardware platform and an open software system based on the Fawkes and ROS
frameworks. An incremental task-level reasoning approach is employed to deal
with incomplete knowledge, computational constraints, and formal encoding of
the behavior. A great effort was made to re-use the agent principles to develop
an autonomous referee box for the league.

References

1. Beck, D., Niemueller, T.: AllemaniACs 2009 Team Description. Technical report,
Knowledge-based Systems Group, RWTH Aachen University (2009)

2. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes. In: Int. Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots (SIMPAR). (2010)

3. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software. (2009)

4. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental Task-level Reasoning in a
Competitive Factory Automation Scenario. In: Proc. of AAAI Spring Symposium
2013 - Designing Intelligent Robots: Reintegrating AI. (2013)

5. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1) (September 1982)

6. Wygant, R.M.: CLIPS: A powerful development and delivery expert system tool.
Computers & Industrial Engineering 17(1–4) (1989)

7. Giarratano, J.C.: CLIPS Reference Manuals. (2007)
http://clipsrules.sf.net/OnlineDocs.html.

8. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for Con-
trolling the Humanoid Robot Nao. In: RoboCup Symposium 2009. (2009)

9. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup Logistics League Sponsored by Festo: A Competitive Factory Automa-
tion Benchmark. In: RoboCup Symposium 2013. (2013)

