
Mi-Pal Team Description 2013

R. Coleman, V. Estivill-Castro, E. Fernandez, H. Geffner, E. Gilmore,
J. Ferrer, R. Hexel, C. Lusty, and J. Radev

ICT/IIIS, Griffith University, Nathan, QLD, 4111, Australia
DTIC, Universitat Popeu fabra, Barcelona, 08018, Spain

Abstract. The Mi-Pal team is approaching the challenges of RoboCup
from a perspective of Software Engineering because the software for the
robots (a) is large and complex, (b) has to be reliable, robust, and main-
tainable (c) involves significant diverse technologies and integration, and
(d) must be developed by a team. Therefore, we have taken the approach
to describe behaviour using model-driven engineering (MDE) [1]. Thus,
our software development process uses models rather than programs as
their principal outputs. However, while we use finite-state machines to
describe actions, the declarative nature of the challenge is handled by log-
ics. Therefore we use the paradigm of logic-labeled finite-state machines.
We are able to obtain traditional architectures like, feedback-loop con-
trol, open-loop control, and behavior-oriented control. In fact, we have
a hybrid agent architecture where reactive capabilities are modelled by
the state-machines but the reasoning, planning and similar intelligent
capabilities are obtained from inference or planning engines.

1 Introduction

Model-driven engineering is proving to be a widely successful approach for devel-
oping software. Tools and techniques are resulting in faster and simpler (easier to
maintain) products and applications than traditional language parser/compiler
or interpreter approaches. Model-driven engineering ensures traceability, vali-
dation against requirements, and platform independence [2]. Finite state ma-
chines in particular are ubiquitous, for instance those of executable UML [3],
MathWorks R©, StateFlow or StateWorks [4]. There are now several commer-
cial tools and standards to represent and compose behaviours for software that
will execute in embedded systems. Among others, these include SysML [5] and
MathWorksR StateFlow with Symlink. Penetration of these technologies includes
large industrial sectors such as the automotive industry [6, 7]

The MiPal team has now been using logic-labeled sequential finite-state ma-
chines to describe robots behavior for several instances of the competition. How-
ever, we have a new approach as we have modernized:

1. the interpreter that now compiles such machines in a just-in time fashion,
achieving exceptional efficiency on-board of the robot,

2. the inter-module communication platform, which now is a class-oriented
whiteboard, and

3. the CASE tool (MiCASE) to design the logic-labeled finite-state machines
(LLFSMs).

4. We have now developed a method to significantly reduce the verification com-
plexity of inter-dependent state machines, making formal verification feasible
for much larger sets of state machines and thus, more complex behaviour[8].

5. We also have now integrated several planners into our architecture.
6. Finally, we have modernized several aspects of our vision module.

These tools and facilities could be considered alternatives to Aldebaran tools
and infrastructure, In particular, our MiCASE in combination with the LLFSMs
could be a replacement of Coreographe. The advantage here is that our LLFSMs
and their code is compiled C++ that runs much closely to the DCM cycle (as
opposed as previous LLFSMs which were interpreted). We can produce models
that can be formally verified by standard model-checking tools. This is a result
of the very clear semantics of ringlet execution and the very clear relationship
with machines and submachines. We also have a very clear scope for all shared
variables, external variables (whiteboard variables) and internal variables. The
MiCASE tool enables very flexible designs, and provides very clear feedback to
the designer while enabling any C++ construct to be placed as code in the section
of states. The whiteboard communication module is orders of magnitudes faster
than the inter-process communication infrastructure provided by Aldebaran’s
use of soap.

2 Model-Driven Engineering for 2013

We use the semantics and sequential scheduling of logic-based finite-state ma-
chines (LLFSMs) [9, 10]. These LLFSMs consist of a set S of states and a tran-
sition table T : S ×E → S . There is an initial state s0 ∈ S, and for each state,
the transitions leading out of the state are ordered in a sequence. Transitions are
labeled by an expression e ∈ E, and these expressions are evaluated in determin-
istic order (and time) by an expert system. The examples in the literature use
Decisive Plausible Logic (DPL) [9, 10], but the expressions can also be Boolean
expressions of an imperative programming language such as C, C++, or Java (or
any decidable logic, that provides an answer in predictable time). For RoboCup-
2013, transitions are now any C++ expresion, this is because, as we will explain
later, our tools to design, build and execute LLFSMs are compiled with clang.

The point is that execution of a vector of these machines is sequenced de-
terministically by a pre-defined schedule. Each machine in the vector receives a
pre-defined number of ringlets it executes before passing the thread control to
the next machine in the vector. The execution token passes back to the first ma-
chine after the last machine completes its allocated ringlets. A ringlet consist of
evaluating the OnEntry section of the current state (if it is the first time control
arrives to this state from another state in this machine), followed by evaluation
of the expressions in the list of transitions until an expression evaluates to true.
When an expression evaluates to true, its transition fires, the OnExit section is
evaluated and the ringlet concludes. If the list of transitions is exhausted without

any expression becoming true; then the Internal section of the state completes
and the ringlets also conclude. Thus a ringlet is the complete assessment of the
current state.

The shared variables between the different modules (LLFSMs) are called ex-
ternal variables and are managed on a repository architecture named the white-
board [11]. When the execution token arrives at a machine, it makes a local copy
of any external variables it will use in the current state. We refer to this as the
READ footprint on the whiteboard. Before the execution token of an LLFSM
is handed back, the machine copies to the whiteboard any external variables
it has modified locally. We refer to this as the WRITE footprint of the state.
This ensures there is never a race condition between the LLFSMs that are run-
ning concurrently under the predefined schedule (and thus, there is no need for
further mechanisms to protect shared variables or synchronise LLFSMs).

For a LLFSM, the union of all the READ footprints of its states is called the
REQUIRES set of the LLFSM. Similarly, the union of all the WRITE footprints
of its states is called the PROVIDES set. Note that it has been shown that the
REQUIRES set and the PROVIDES set of an LLFSM can be computed from
the static analysis of the LLFSM description [12].

An example of a finite-state machine that implements a reactive controller
for tracking the ball appears in Fig. 1. This machine has an initial state called

Fig. 1: A two-state LLFSM that implements a reactive control to track the ball.

Init. And a transition with the Boolean expresion true out of this state to the
state named Loop. The state Loop collects information from our Kalman filter.
This informaation describes where (in the frame of vision) is the ball by using

our class-oriented whiteboard to obtain a ball message (which is an object). The
UpdateHead state performs the analysis of where to issue a motion command
which is also placed in the whiteboard.

We would like to emphasize that we can place any standard C++ code in the
corresponding sections of the state of a logic-labeled finite state machine. For
example, Fig. 2 shows that we can use compiler directives, and even C functions
like fprintf.

Fig. 2: The section of the state Loop of the logic-labeled finite-state machine of
Fig. 1.

3 The class-oriented whiteboard

The whiteboard is a paradigm of module communication that enables decoupling
as each module just needs to know how to post messages on the whiteboard or
how to get messages from the whiteboard. We also enable modules to subscribe
to the whiteboard and be informed each time a poster releases a new message
of the subscribed message-type into the whiteboard.

The previous whiteboard was extremely flexible because it was completely
untyped. In a sense, any two modules could create/design the message types that
the sender would post and that the receiver would subscribe to messgages. The
receiver can also inpect the whiteboard and retrieve using a get. Such flexibility

came with the price that there was essentially no type checking at compilation
time and also the sender and the receiver had very complicated code to build or
to parse messages that hold several properties or attributes of information.

Therefore, the whiteboard API has been redefined and re-implemented to
allow the definition of classes that stipulate message types.

3.1 Simple posting to the whiteboard

In order to create messages you must define the class of these messages. We
require, but we do not enforce, that the class implements three methods.

1. void from string(const std::string &str) This method should parse
and materialize an object of your class from a string. Typically, these are
the list of attribute values separated by comas.

2. A constructor that takes a std::string as a parameter and typically uses
the from string() method above, along with an (optional) initialiser list to
initialise its content.

3. std::string description() This method should serialize the object in a
way that the earlier method could materialize it; while maintaining a read-
able format for debugging.

These three methods are important to impersonate a module that post these
messages. Therefore, one is able to construct test cases of a module even if the
module that produces the input is not available.

An example of constructing a class is provided in Fig. 3.
For some well known message types, their classes have already been pre-

defined. For the following examples we will use the class of Fig. 3 and also a
predefined message type Print.

Thus, to post a message with Print message-type you will need some pre-
liminaries. These are the corresponding includes.

#include "gugenericwhiteboardobject.h"

#include "guwhiteboardtypelist generated.h"

It is also useful to use the corresponding namespace

using namespace guWhiteboard;

Then, to post a message into the new class-oriented whiteboard, we just need
to create an object (using a known whiteboard type).

Print t print;

That is we append t in order to have access to an instance on the whiteboard.
Now, we can use a setter to actually post a message with content a string.

print.set("We are about to loop for ever");

Using the class from Fig. 3 the following code posts an object of the given
class.

Point2D point(5,3); // here is the object

BallBelief t ball; // the pointer to access the class-based whiteboard

ball.set(point); // you use it, to post your object by using set

#ifndef Point2D_DEFINED
#define Point2D_DEFINED

#include <cstdlib>
#include <sstream>
#include <gu_util.h>

namespace guWhiteboard
{

/** * Class for for demonstrating OO-messages. */
class Point2D
{

PROPERTY(int16_t, x) // x-coordinate
PROPERTY(int16_t, y) // y-coordinate

public:
/** designated constructor */
Point2D(int16_t x = 0, int16_t y = 0):

_x(x), _y(y) { /* better than set_x(x); set_y(y) */ }

/** string constructor */
Point2D(const std::string &names) { from_string(names); }

/** copy constructor */
Point2D(const Point2D &other): _x(other._x), _y(other._y) {}

/** convert to a string */
std::string description()
{ std::ostringstream ss;

ss << x() << "," << y();
return ss.str();

}

/** convert from a string */
void from_string(const std::string &str)
{

std::istringstream iss(str);
std::string token;
if (getline(iss, token, ’,’))
{

set_x(int16_t(atoi(token.c_str())));
set_y(0);
if (getline(iss, token, ’,’))
{ set_y(int16_t(atoi(token.c_str())));
}

}
}

};
}

#endif // Point2D_DEFINED
}

Fig. 3: A simple class to post 2D-points into the whiteboard.

3.2 Subscribing to the whiteboard

The earlier section shows what a module that acts as a poster does. If you are
constructing a module that is to receive each of these postings, you may choose
to subscribe to the messages. For this, you need to create the call-back function
that will be started in a thread every time there is a posting. Your module will
need an instance variable of the type pointer to whiteboard watcher .

whiteboard watcher *watcher;

We show here two call-backs (that have the same class and thus data type). One
to illustrate that we can use the same call-back for more than one message type.
The other one shows dedicated call-backs for a message type.

The subscription is best if it happens in the code of the constructor of the
receiver module. So the module HelloWorld declares in its .h file the instance
variable for the whiteboard watcher.

watcher = new whiteboard watcher();

Once we have this, we can use it in the constructor of HelloWorld.cc to sub-
scribe.

SUBSCRIBE(watcher, Print, HelloWorld, HelloWorld::callback);

SUBSCRIBE(watcher, Say, HelloWorld, HelloWorld::callback);

SUBSCRIBE(watcher, QSay, HelloWorld, HelloWorld::callback2);

Here, we are using the same call-back for two message types: Print and Say.
In the call back itself you can retrieve the message type in the first parameter,
while the content is the second parameter. You can note that in Fig. 4 the second
parameter is properly typed.

void HelloWorld::callback(WBTypes t, string &stringToPrint)
{ // NOTE: we are distinguishing the message types here

if (t == kPrint_v)
cout << "Print Message type " << t << " is ’" << stringToPrint << "’";

else if (t == kSay_v)
cout << "Say Message type " << t << " is ’" << stringToPrint << "’" << endl;

else
cout << "Unknown Message type " << t << " is ’" << stringToPrint << "’" << endl;

cout << endl;
}

void HelloWorld::callback2(WBTypes t, string &stringToPrint)
{ cout << "QSay Message type " << t << " is ’" << stringToPrint << "’" << endl;
}

Fig. 4: The code of the call backs in the class HelloWold.cpp

4 MiCASE

As previously mentioned, MiCASE is a tool developed to visually design logic-
labeled finite state machines. We previously used a freely available tool called
qfsm 1., and created our own version which enabled tracking of the execution
of FSM’s remotely, using our existing Whiteboard infrastructure. The expan-
sion of qfsm to a tool that enabled tracking of the execution of a LLFSM was
illustrated in the classification video (and also in a simulation demonstration
http://youtu.be/y4muLP0jA8U). We have also demonstrated the the value of
simulation [13]. Despite the availability of the source code for qfsm, rather than
continue to modify qfsm, we have decided to create a new tool called MiCASE
which has been developed with our specific LLFSMs usage in mind.

In the past, The language used to describe the actions in each state used to
be a ’C-like’ language we manually specified and parsed using ANTLR (http:
//www.antlr.org). We found some drawbacks of using this parsing system; the
most critical being that we found it difficult to manage how ANTLR allocated
memory and suffered from performance loss on the Naos. The second drawback
was that new language features had to be added manually to the grammar, and
it hindered development when a feature was missing. The MiCASE editor and
the CLFSM interpreter have done away with the ’C-like’ language and now use
standard C++ to describe actions within states. Instead of interpreted actions,
we have binary executables compiled with clang. MiCASE converts states con-
taining fragments of C++ code into header and implementation files that work
with CLFSM and run on the Nao.

MiCASE has been developed from the ground up to aid design of C++ LLF-
SMs’. A distinguishing feature is GUI support for including C++ header files and
defining variables, at the machine and state level. Fig. 5 shows the versatility of
MiCASE ḟor designing LLFSMs and to display the different variables (externa,
lcoal and itnernal).

5 Planning

Our whiteboard architecture allows very flexible constructs; and in particular,
it is easy to create behaviors based on feedback-loop control, open-loop control,
reactive systems, hybrid-reasonings architectures, and behavior-based control.
We have been able to incorporate the large body of knowledge from planning.
In fact, planners have become standard pieces of software that we smoothly
integrate into our LLFSMs.

Because now inputs to a domain-independent planer can be provided in
the Planning Domain Definition Language PDDL [14–16], we integrate different
planers as long as they conform to such standardized planning language. We also
need to integrate the standardized output so that the resulting fully-ordered or
partially-ordered sequence of actions is transmitted to the other elements of the
architecture that execute them.

1 qfsm.sourceforge.net

Fig. 5: A rotated view in MiCASE of the two-state LLFSM of Fig. 1.

5.1 The “plan, execute, re-plan” cycle

The use of a planner in a robot can be organized in a cycle where the robot
control provides a planner with a planning request (usually consisting of the
robot’s current state, and a goal state). Sensing is involved in checking the success
of each action while executing the plan, if the action fails (as perceive by the
sensors), the belief the robot has for its current state is used in a new planning
request (re-planning stage) and the robot moves into execution again. Under
the name of reactive executive monitoring [17] a reactive planning engine [18]
monitors the systems low-level states against a declarative model of the robot’s
functionality, while continuously performing sense-plan-act cycles [19–22]. In the
planing stage, the reactive planner finds a plan (a sequence of robot actions)
under some parameters; which may include a planning horizon. Such a parameter
balances long planning times with a reactive behavior. If a robot is operated with
monitoring, the belief of the robot can be contrasted with operator directives
and enable supervised autonomy [23] and integration of intervention by a human
operator [24].

We now illustrate how our architecture constructs this paradigm. We provide
a module that enables several planners to be integrated with the whiteboard
architecture through the following API.

load planner(a planner) : This enables selecting a planner. In our proto-
type implementation we currently can chose between a regression planner or
the Lama planer [25]. The planning module posts to the whiteboard either
success (a known planner was provided) or failure.

load PDDL(name of problem description) : This enables the planner to
retrieve and load a planning problem in PDDL. If there is no file with that
name or it does not conform to PDDL, an error is posted to the whiteboard;
otherwise, success is reported.

start Planner(depth) : This starts the planner with a certain maximum
depth of actions (a horizon). The depth parameter is optional, and if not
supplied, plans of any finite depth are sought. The planner constructs a
plan. If a plan exists, confirmation is posted to the whiteboard. Failure is
reported when there is no sequence of actions from the source to the goal.

next Action(rank) : This request the rank -th action in the current plan.
Note that the planer responds with also the action numbered (and the ac-
tion parameters). This provides some robustness to lost exchanges when we
distribute the whiteboard over a network using UDP.

re-plan(source, depth) : This planer finds a new plan like start Planner,
but from a new source.

is Obstacle known(position) : This reports to the planner an obstacle at
the supplied position. This may be an obstacle found along the way or an
explanation for why the last action failed. The planner responds weather this
obstacle was detailed in the problem description or if it is an obstacle the
planer was not aware of. In the later case, the planner updates the problem
description to now include the obstacle.

Our API provides other tools to convert formats and description of plans or
planning problems, but for the purposes of this report this shall suffice. Also
this API allows planing in an environment where the original map (or the prob-
lem description) does not have all obstacles (and the robot may discover new
ones during execution). New obstacles may trigger re-planing. Fig. 6 illustrates
the LLFSMs exactly as used in our robots, and in the spirit of Model-Driven
Engineering that is used to execute the “plan, execute, re-plan” cycle for our ex-
amples with two robotic platforms navigating an environment with some known
obstacles but also some unknown obstacles. We omit the few initialization states
and transitions for selecting a planner and loading the problem description for
simplicity of the figure. We note that the LLFSM also interacts with the motion
module by issuing the motion commands and then receiving from the motion
module whether the motion completed or an obstacle was found. We empha-

Request_action

OnEntry{
post("NextAction","i");
}

OnExit{}

Issue_action_parameters

OnEntry{ i++;
post("robotMotion",motionParameters);
}

OnExit{}

Goal

OnEntry{
post("Say","Goal Reached)";
post("exitPlanner","");
}

OnExit{}

WAIT_movement_complete

OnEntry{}

OnExit{}

Is_Obstacle_Known

OnEntry{
post("isObstacleKnown",obstacleParameters);
}

OnExit{}

Replanning

OnEntry{
(x,y)=currentPosition;
i=1 ;
post("re_plann","(x,y)");
}

OnExit{}

robotIsMoving

actionParameters
~actionParameters

obstacleFound

~obstacleKnown

replanningDone

obstacleKnown

~robotIsMoving

Fig. 6: The LLFSMs interpreted (and also compiled) used to run the plan,
execute, re-plan cycle in our experiments.

size that the user develops the behavior graphically and directly as presented in
Fig. 6. Besides the classification video, a video of this integration that also illus-
trates the platform independence of our LLFSMs and the planers is a planning
demonstration using Webots (http://youtu.be/-mvppFPWfMU).

6 Vision

6.1 Vladcal

Vladcal is the tool used to calibrate vision on the NAOs. It creates PART color
classifiers[26, 27]. This tool is used for manually selecting pixels from existing
images; either by selecting rectangular regions or by selecting regions delimited
by a Sobel margins. Vladcal has been modernized in order to use the last version
of the GUI libraries (SWING) and to incorporate new functionalities for new
developments. This tool is built in java in order to be portable to different
platforms. One of the improvements is a window where the user can undersample
a class when the user is working with a highly unbalanced training set. By sliding
the horizontal bars the user can choose to use only a part of the instances of
a certain class. The window than enables this is show in Fig. 7. Another new

Fig. 7: Sliding bars that allow to distribute proportions of classes in training
examples.

functionality is to create specialized classifiers like one-vs-all, or two-vs-all. On
that way we implemented this is to build a classifier that only knows the green
of the field and the white of the labels against all the other colours. t is easy
to build these classifiers as users only have to select the colors that the wish to
classify from a multi-select list against the rest (the unselected). The menu than
enables this is shown in Fig. 8 With the Modern Vladcal it is possible to open
and work with jpeg images, which is a widely more popular format than the
previous ai2 used by NAOs and inherited from the time of the Sony AIBO. By
including jpeg, Modern Vladcal allows working with images that other tools also
use, such as MATLAB. It is also possible to connect to a NAO by introducing
its IP or its Zero-conf address, and to retrieve an image on demand in real time
through streaming in order to get instances of the different colours of the actual
environment.

Fig. 8: The menu to select classes for the decision list classifier, so it can be
tailored even using the same training file.

Some new capabilities have been added to Vladcal for the development of
shape-based classifiers. For that purpose the Modern Vladcal allows to save
subimages with the shapes that the user wants to classify by selecting them man-
ually and to generate randomly picked subimages that are negative instances. It
also allows computing the average size of the positive subimages taken. Fig. 9
shows selection of regions to find Naos as positive shapes.

6.2 Line recognition with RANSAC

In the past we were using OpenCV and the Hugh transform to identify lines in
an image in order to find the lines in the field. Our implementation proved to
be more efficient. Line recognition now runs as part of the the dlc loop in the
soccer pipeline, so all the is required to start it is is to run vision. When lines
are identified they will be posted to the whiteboard. The message content is of
the format startx, starty, endx, endy, length, startx... Because of the complexity
of the RANSAC algorithm it can on some occasions reduce the frame rate bel-
low the desired 30fps. There are two #define statements in guvision dlc.cc that
greatly affect both the speed and accuracy of the lines detected by RANSAC. The
first parameter is MAX TRIALS this determine how many times the RANSAC
algorithm will run for each line and is currently set at 30, which appears to be a
reasonable balance between speed and accuracy. Setting this parameter higher
then this will result in lines that are “centered” slightly better; however the
performance cost is high. The second parameter is called RANSAC SKIP, this
affects how many pixels are used in the RANSAC algorithm. Although the im-
age is already scaled down, it was found that relatively few pixels were need for
the RANSAC algorithm to work effectively, because of this the skip parameter
which is currently set at 10 was introduced. This simply means that for each
pixel classified in the scaled down image only every 10th one is used for line
detection, it may be possible to increase this parameter further and still achieve
accurate results.

6.3 Shape recognition

One of the main aspects of the RoboCup that shall evolve each year is the need
for color coding. For instance, in 2012 goals of the same color were adopted.
However, other color restrictions have not been modified. The field remains green
with white lines on it, the colors of the teams are predefined cyan and magenta
and the ball continues to have no pattern and only orange. It would be inter-

Fig. 9: The possibility to select objects as positive training examples for a recog-
nition of shapes.

esting to remove these restrictions. Once we overcome these restrictions, each
team would be able to wear its own uniform with only small color limitations to
distinguish from the opponents uniform. That would mean that at the beginning
of the game each robot would have to learn which are its opponents colors. As
a consequence, we could have matches where the color of the ball, or even the
goals color is not pre-determined. Assuming that colors of objects are no longer
predetermined means that our previous knowledge of colors is not reliable for
the match. A new parameter is needed for objects recognition; and we propose
to use shapes. However, computer-vision techniques for shape recognition are,
computationally, much more CPU-intensive than color recognition and perhaps
they are unaffordable during the game. For this reason, we are currently de-
veloping a process that consists on identifying RoboCup objects on the basis

of their shape and learning autonomously the colors of the recognized objects.
The chosen shape recognition algorithm is the Histogram of Oriented Gradients;
this method has been proved to be capable to recognize complex objects. Actu-
ally, this algorithm is widely used for pedestrian recognition. The most complex
objects we want to recognize are other NAOs, similar in complexity for their
anthropomorphic shape but less variable than human beings.

At first the process will recognize the field, the lines and the ball colors in
order to learn the environment set of colors. After that the process will recognize
the NAOs and their team shirts to extract the colors of the shirts and to learn
the actual team colors of the actual game. Finally a classifier will be built auto-
matically to be able to recognize the objects by their colors in the environment.
When the NAO has built its color classifier it will play a soccer game in order to
prove that it has learnt the context and is able to play normally. Fig. 10 shows
our implementation of HOG to recognize standing up Naos.

Fig. 10: Standing Nao’s recognized using HOG.

References

1. Sommerville, I.: Software engineering (9th ed.). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2010)

2. Schmidt, D.: Model-driven engineering. IEEE Computer 39(2) (2006)

3. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven archi-
tecture. Addison-Wesley Publishing Co., Reading, MA (2002)

4. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines: A Practical Approach. CRC Press, NY (2006)

5. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The systems
Modeling Language. Morgan Kaufmann Publishers, San Mateo, CA (2009)

6. SLSF, M.A.: Modelling design and style guidelines for the application of Simulink
and Stateflow. The Motor Industry Software Reliability Association, Warwickshire,
UK (2009)

7. GMG, M.A.: Generic modelling design and style guidelines. The Motor Industry
Software Reliability Association, Warwickshire, UK (2009)

8. Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its
application to FMEA in model-driven engineering. In: ENASE 8th International
Conference on Evaluation of Novel Approaches to Software Engineering. (July
2013) to appear.

9. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient modelling of embed-
ded software systems and their formal verification. In Leung, K.R., Muenchaisri,
P., eds.: The 19th Asia-Pacific Software Engineering Conference (APSEC 2012),
Hong Kong, IEEE Computer Soceity, Conference Publishing Services (4th - 5th
December 2012) 428–433

10. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient model checkign and
FMEA analysis with deterministic scheduling of transition-labeled finite-state ma-
chines. In Wang, P., ed.: 2012 3rd World Congress on Software Engineering (WCSE
2012), Wuhan, China (6th-8th November 2012) 65–72

11. Hayes-Roth, B.: A blackboard architecture for control. In Bond, A.H., Gasser, L.,
eds.: Distributed Artificial Intelligence, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc. (1988) 505–540

12. Estivill-Castro, V., Hexel, R.: Module interactions for model-driven engineering
of complex behavior of autonomous robots. In Lavanzza, L., Fernandez-Sanz, L.,
Panchenko, O., Kanstren, T., eds.: The Sixth International Conference on Soft-
ware Engineering Advances. ICSEA 2011, Barcelona, Spain, IARIA (October 23-29
2011) 84–91

13. Coleman, R., Estivill-Castro, V., Hexel, R., Lusty, C.: Visual-trace simualtion of
concurrent finite-state machines for valdiation and model-checking of complex be-
havior. In Ando, N., Brugali, D., Kuffner, J., Noda, I., eds.: SIMPAR 3rd Int.
Conf. on Simulation, Modeling and Programming for Autonomous Robots. Vol-
ume 7628., Tsukuba, Japan, Springer-Verlag Lecture Notes in Computer Science
(November 5th-8th 2012) 52–64

14. McDermott, D.: The 1998 AI planning systems competition. AI Magazine 21(2)
(summer 2000) 35–56

15. Fox, M., Long, D.: PDDL2.1 : An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research 20 (2003) 61–12

16. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research 27 (2006) 235–297

17. Carbone, A., Finzi, A., Orlandi, A., Pirri, F.: Model-based control architecture for
attentive robots in rescue scenarios. Autonomous Robots 24 (2008) 87–120

18. Beetz, M., McDermott, D.V.: Improving robot plans during their execution. In:
Proceedings of artificial intelligence planning systems, Menlo Park, AAAI Press
(1994) 7–12

19. Musliner, D.J., Durfee, E.H., Shin, K.G.: CIRCA: A cooperative intelligent real
time control architecture. IEEE Transactions on Systems, Man, and Cybernetics
23(6) (1993) 1561–1574

20. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive.
In Pollack, M., ed.: Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), San Mateo, CA, Morgan Kaufmann Publishers
(1997) 1178–1185

21. Muscettola, N., Dorais, G.A., Fry, C., Levinson, R., Plaunt, C.: IDEA: planning
at the core of autonomous reactive agents. In: Proceedings of NASA workshop on
planning and scheduling for space. (2002)

22. Finzi, A., Ingrand, F., Muscettola, N.: Model-based executive control through
reactive planning for autonomous rovers. In: IROS. (2004) 879–884

23. Haigh, K.Z., Veloso, M.M.: Interleaving planning and robot execution for asyn-
chronous user requests. Autonomous agents (1998) 79–95

24. Finzi, A., Orlandini, A.: Human-robot interaction through mixed-initiative plan-
ning for rescue and search rovers. In: AIIA. (2005) 483–494

25. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research (JAIR) 39 (2010)
127–177

26. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explorations 11(1) (2009)
10–18

27. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A.,
Scuse, D.: WEKA Manual for Version 3-6-2. The University of Waikato (2010)

