# Autonome Mobile Robots (5082AuMRGY, Herfst 2012) Tentame: Hoofdstuk 1 t/m 4 

Week $44 \mathrm{t} / \mathrm{m} 46$ (Donderdag 22 november, 15:00-17:00)

## Anthony van Inge/Arnoud Visser

December 4, 2012

## Vraag 1

Consider an eight-legged walking robot. Consider gaits in the terms of lift/release events as in chapter 2.
(a) How many possible events exist for this eight-legged machine?
(b) Specify two different staticly stable walking gaits using the notation of figure 2.8.

## Antwoord 1

(a) $k=8 \Rightarrow N=(2 k-1)!=(2 * 8-1)!=15!=1307674368000$ possible events exist.
(b) See figure 1.

## Vraag 2

Consider a wheeled robot which moves over a flat surface. Each wheel has an y-axis. When a rolling motion occurs, all y-axis overlap at a point; the instantaneous Center of Curvature. Consider the case that the Instantaneous Center of Curvature is outside the robot, and the robot moves from point $(0,0)$ to $(x, y)$ (see figure 2 ).


Figure 1: Two staticly stable walking gaits

A natural way to represent the movement as an circular movement with a radius $R$ an the sector angle $\phi .(x, y)$ is a point on the circle, which means

$$
\left\{\begin{array} { l } 
{ x = R \operatorname { s i n } \phi } \\
{ y = R ( 1 - \operatorname { c o s } \phi ) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
R=\frac{x^{2}+y^{2}}{2 y} \\
\phi=\operatorname{atan}\left(\frac{2 x y}{x^{2}-y^{2}}\right)
\end{array}\right.\right.
$$

This representation has disadvantage that for small $y$ (straight ahead!), a small change in $(x, y)$ may cause a big change in parameter $R$. You can verify this with by computing the Jacobian; you should get:

$$
\binom{d R}{d \phi}=\left(\begin{array}{cc}
\frac{x}{y} & \frac{y^{2}-x^{2}}{2 y^{2}} \\
\frac{-2 y}{x^{2}+y^{2}} & \frac{2 x}{x^{2}+y^{2}}
\end{array}\right)\binom{d x}{d y}
$$

For this reason it is much better to characterize the path by the curvature $\kappa \equiv 1 / R$, which changes smoothly around the forward direction.
Now, compute the Jacobian for the $(\kappa, \phi)$ representation and show that it changes more smoothly.


Figure 2: Turning to point $(x, y)$

## Answer 2

The curvature is defined as $\kappa \equiv 1 / R$, which means

$$
\begin{equation*}
\kappa=\frac{1}{R}=\frac{1}{\frac{x^{2}+y^{2}}{2 y}}=\frac{2 y}{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

The Jacobian with respect to $\kappa$ and $\phi$ is defined as

$$
J(\kappa, \phi)=\left(\begin{array}{ll}
\frac{\partial \kappa}{\partial x} & \frac{\partial \kappa}{\partial y}  \tag{2}\\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y}
\end{array}\right)\binom{d x}{d y}
$$

The partial derivatives of $\phi$ are already given, so only $\partial \kappa / \partial x$ and $\partial \kappa / \partial y$ have to be calculated with the quotient rule:

$$
\begin{gather*}
\frac{\partial \kappa}{\partial x}=-4 y x \frac{1}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-4 y x}{\left(x^{2}+y^{2}\right)^{2}}  \tag{3}\\
\frac{\partial \kappa}{\partial y}=\frac{2\left(x^{2}+y^{2}\right)-2 y 2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \tag{4}
\end{gather*}
$$

Those two partial derivates can be written filled in the Jacobian matrix:

$$
\binom{d \kappa}{d \phi}=\left(\begin{array}{cc}
\frac{-4 y x}{\left(x^{2}+y^{2}\right)^{2}} & \frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}  \tag{5}\\
\frac{-2 y}{x^{2}+y^{2}} & \frac{2 x}{x^{2}+y^{2}}
\end{array}\right)\binom{d x}{d y}
$$

The remaining question is too prove that the Jacobian $J(\kappa, \phi)$ behaves more smoothly for small $y$ than $J(R, \phi)$. The second column of both Jacobian with the partial derivates of $\phi$ are equivalent, so
only the behavior of $\partial \kappa / \partial x$ has to be compared with the behavior of $\partial R / \partial x$ (for the limit $y \rightarrow 0$ ) and equivallently $\partial \kappa / \partial y$ versus $\partial R / \partial y$.

$$
\begin{gather*}
\lim _{y \rightarrow 0} \frac{\partial \kappa}{\partial x}=\frac{-4 y x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{0}{x^{4}}=0  \tag{6}\\
\lim _{y \rightarrow 0} \frac{\partial R}{\partial x}=\frac{x}{y}=\frac{x}{0}=\infty  \tag{7}\\
\lim _{y \rightarrow 0} \frac{\partial \kappa}{\partial y}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x^{2}}{x^{4}}=\frac{2}{x^{2}}  \tag{8}\\
\lim _{y \rightarrow 0} \frac{\partial R}{\partial y}=\frac{y^{2}-x^{2}}{2 y}=\frac{-x^{2}}{0}=\infty \tag{9}
\end{gather*}
$$

Both partial derivates of radius $R$ go to infinity, while the partial derivates of curvature $\kappa$ go respectively to zero and $2 / x^{2}$.

## Vraag 3

In the appendix there are three digital CMOS-based camera data sheets given. Select one of the product specifications, collect and compute the following values: (Show your derivations)
(a) Dynamic range
(b) Resolution (of a single pixel)
(c) Bandwith

## Antwoord 3

|  | pixel depth | bandwidth | Dynamic range |
| :--- | :---: | :---: | :---: |
| NEO | $30.000 e^{-}$ | $560.200 \mathrm{MHz}, 100 \mathrm{fps}$ |  |
| MT9V | 10 bit | $26.6 \mathrm{MHz}, 60 \mathrm{fps}$ | $>55 \mathrm{~dB},>80-100 \mathrm{~dB}$ |
| MT9M | 10 bit | $48 \mathrm{MPs}, 30 \mathrm{fps}$ | 68.2 dB |

Table 1: Selected camera data
The NEO camera falls outside the scope. So, the other two are chosen. From the table all answers are already there.
(a) Dynamic Range: MT9V, MT9M $=>55 \mathrm{~dB}, 68.2 \mathrm{~dB}$
(b) Resolution MT9V, MT9M =

$$
\begin{equation*}
\frac{1}{2^{10}-1}=\frac{1}{2047}=0.4 * 10^{-3} \tag{10}
\end{equation*}
$$

(c) Bandwidth: MT9V, MT9M = 26.6 MPS/MHz, 48 MPS/MHz

## Vraag 4

Determine the degrees of mobility, steerability, and maneuverability for each of the following:
(a) Bicycle
(b) Dynamically balanced robot with a single spherical wheel
(c) Automobile

## Antwoord 4

|  | mobility $\delta m$ | steerability $\delta s$ | maneuverability $\delta M$ |
| ---: | :---: | :---: | :---: |
| Bicycle | 1 | 1 | 2 |
| DBR | 3 | 0 | 3 |
| Auto | 1 | 1 | 2 |

Table 2: Kinematics (see page $711^{\text {st }}$ edition)

|  | Bicycle | DBR | Auto |
| ---: | :---: | :---: | :---: |
| mobility $\delta m$ | 1 | 3 | 1 |
| steerability $\delta s$ | 1 | 0 | 1 |
| maneuverability $\delta M$ | 2 | 3 | 2 |

Table 3: Kinematics (see page $711^{\text {st }}$ edition)

