
Computer Systems
baiCOSY06, Fall 2013

Cache Lab: Understanding Cache Memories
Assigned: Sep. 30, Due: Wed., Oct. 09 08:59

Arnoud Visser (A.Visser@uva.nl) is the lead person for this assignment. Stijn de Gooijer andAuke
Wiggers will be the teaching assistants.

1 Overview

This lab will help you understand the impact that cache memories can have on the performance of your
C programs. Your task is to optimize a small matrix transposefunction, with the goal of minimizing the
number of cache misses.

2 Downloading the assignment

You can find the the filecachelab-handout.tar at the location/opt/prac/cs_ai/cachelab
on the machineacheron.fnwi.uva.nl or on locationhttp://staff.science.uva.nl/ ˜ arnoud/
education/CS/perf/cachelab-handout.tar .

Start by copyingcachelab-handout.tar to a protected Linux directory in which you plan to do your
work. Then give the command

linux> tar xvf cachelab-handout.tar

This will create a directory calledcachelab-handout that contains a number of files. You will be
modifying the filetrans.c . To compile these files, type:

linux> make clean
linux> make

1

3 valgrind

This lab measures the performance of your code with the package valgrind; a tool suite for profiling Linux
which is not (yet) standard installed on acheron. You could add this package to your environment in the
following way:

• Open your /.bashrc

• Add the following lines:

User s p e c i f i c a l i a s e s and f u n c t i o n s

PACKAGEPATH=/ op t / p rac / c sa i / pkg : / us r /l o c a l / pkg ; exp ort PACKAGEPATH

i f [−x / us r / l o c a l / b in / s o f t p k g] ; then
e v a l ‘ / u s r / l o c a l / b in / s o f t p k g −b ‘

e l s e
i f [−x / op t / p rac / c s a i / packages / s o f t pkg2 . 4 / b in / s o f t p k g] ;then

e v a l ‘ / op t / p rac / c s a i / packages / s o f t pkg2 . 4 / b in / s o f t p k g−b ‘
f i

f i

• Alternatively, overwrite your.bashrc with the version of this course by the command

cp / op t / p rac / c sa i / e t c / ba s h r c ˜ / . ba s h r c

.

In addition, you should add the packagevalgrind-3.8.1 to your .pkgrc -file. Alternatively,
overwrite your.pkgrc by the command

cp / op t / p rac / c sa i / e t c / pkgrc ˜ / . pkgrc

.

Test your installation by typingsource .bashrc followed bywhich valgrind .

4 Description

The lab has two parts. Part A is about the implemention of a cache simulator. You can skip that part. In Part
B you will write a matrix transpose function that is optimized for cache performance.

4.1 Part B: Optimizing Matrix Transpose

In Part B you will write a transpose function intrans.c that causes as few cache misses as possible.

2

Let A denote a matrix, andAij denote the component on the ith row and jth column. Thetranspose of A,
denotedAT , is a matrix such thatAij = AT

ji.

To help you get started, we have given you an example transpose function intrans.c that computes the
transpose ofN × M matrix A and stores the results inM × N matrixB:

char trans_desc[] = "Simple row-wise scan transpose";
void trans(int M, int N, int A[N][M], int B[M][N])

The example transpose function is correct, but it is inefficient because the access pattern results in relatively
many cache misses.

Your job in Part B is to write a similar function, calledtranspose_submit , that minimizes the number
of cache misses across different sized matrices:

char transpose_submit_desc[] = "Transpose submission";
void transpose_submit(int M, int N, int A[N][M], int B[M][N]);

Do not change the description string (“Transpose submission ”) for your transpose_submit
function. The autograder searches for this string to determine which transpose function to evaluate for
credit.

Programming Rules for Part B

• Include your name and loginID in the header comment fortrans.c .

• Your code intrans.c must compile without warnings to receive credit.

• You are allowed to define at most 12 local variables of typeint per transpose function.1

• You are not allowed to side-step the previous rule by using any variables of typelong or by using
any bit tricks to store more than one value to a single variable.

• Your transpose function may not use recursion.

• If you choose to use helper functions, you may not have more than 12 local variables on the stack
at a time between your helper functions and your top level transpose function. For example, if your
transpose declares 8 variables, and then you call a functionwhich uses 4 variables, which calls another
function which uses 2, you will have 14 variables on the stack, and you will be in violation of the rule.

• Your transpose function may not modify array A. You may, however, do whatever you want with the
contents of array B.

• You are NOT allowed to define any arrays in your code or to use any variant ofmalloc .

1The reason for this restriction is that our testing code is not able to count references to the stack. We want you to limit your
references to the stack and focus on the access patterns of the source and destination arrays.

3

4.2 Evaluation for Part B

For Part B, we will evaluate the correctness and performanceof your transpose_submit function on
three different-sized output matrices:

• 32 × 32 (M = 32, N = 32)

• 64 × 64 (M = 64, N = 64)

• 61 × 67 (M = 61, N = 67)

4.2.1 Performance

For each matrix size, the performance of yourtranspose_submit function is evaluated by using
valgrind to extract the address trace for your function, and then using the reference simulator to replay
this trace on a cache with parameters (s = 5, E = 1, b = 5).

Your performance score for each matrix size scales linearlywith the number of misses,m, up to some
threshold:

• 32 × 32: 8 points ifm < 300, 0 points ifm > 600

• 64 × 64: 8 points ifm < 1, 300, 0 points ifm > 2, 000

• 61 × 67: 10 points ifm < 2, 000, 0 points ifm > 3, 000

Your code must be correct to receive any performance points for a particular size. Your code only needs to
be correct for these three cases and you can optimize it specifically for these three cases. In particular, it is
perfectly OK for your function to explicitly check for the input sizes and implement separate code optimized
for each case.

4.3 Labbook

The labbook should make the improvement of the performance of the transpose-function traceable. The
Labbook will be evaluated on content, structure, wording and completeness.

The course staff will inspect your code in Part B for illegal arrays and excessive local variables.

5 Working on the Lab

5.1 Working on Part B

We have provided you with an autograding program, calledtest-trans.c , that tests the correctness and
performance of each of the transpose functions that you haveregistered with the autograder.

You can register up to 100 versions of the transpose functionin your trans.c file. Each transpose version
has the following form:

4

/ * Header comment * /
char trans_simple_desc[] = "A simple transpose";
void trans_simple(int M, int N, int A[N][M], int B[M][N])
{

/ * your transpose code here * /
}

Register a particular transpose function with the autograder by making a call of the form:

registerTransFunction(trans_simple, trans_simple_des c);

in the registerFunctions routine in trans.c . At runtime, the autograder will evaluate each reg-
istered transpose function and print the results. Of course, one of the registered functions must be the
transpose_submit function that you are submitting for credit:

registerTransFunction(transpose_submit, transpose_su bmit_desc);

See the defaulttrans.c function for an example of how this works.

The autograder takes the matrix size as input. It usesvalgrind to generate a trace of each registered trans-
pose function. It then evaluates each trace by running the reference simulator on a cache with parameters
(s = 5, E = 1, b = 5).

For example, to test your registered transpose functions ona 32 × 32 matrix, rebuildtest-trans , and
then run it with the appropriate values forM andN :

linux> make
linux> ./test-trans -M 32 -N 32
Step 1: Evaluating registered transpose funcs for correctn ess:
func 0 (Transpose submission): correctness: 1
func 1 (Simple row-wise scan transpose): correctness: 1
func 2 (column-wise scan transpose): correctness: 1
func 3 (using a zig-zag access pattern): correctness: 1

Step 2: Generating memory traces for registered transpose f uncs.

Step 3: Evaluating performance of registered transpose fun cs (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1766, misses:287, evi ctions:255
func 1 (Simple row-wise scan transpose): hits:870, misses: 1183, evictions:1151
func 2 (column-wise scan transpose): hits:870, misses:118 3, evictions:1151
func 3 (using a zig-zag access pattern): hits:1076, misses: 977, evictions:945

Summary for official submission (func 0): correctness=1 mi sses=287

In this example, we have registered four different transpose functions intrans.c . The test-trans
program tests each of the registered functions, displays the results for each, and extracts the results for the
official submission.

Here are some hints and suggestions for working on Part B.

5

• The test-trans program saves the trace for functioni in file trace.f i.2 These trace files are
invaluable debugging tools that can help you understand exactly where the hits and misses for each
transpose function are coming from. To debug a particular function, simply run its trace through the
reference simulator with the verbose option:

linux> ./csim-ref -v -s 5 -E 1 -b 5 -t trace.f0
S 68312c,1 miss
L 683140,8 miss
L 683124,4 hit
L 683120,4 hit
L 603124,4 miss eviction
S 6431a0,4 miss
...

• Since your transpose function is being evaluated on a direct-mapped cache, conflict misses are a
potential problem. Think about the potential for conflict misses in your code, especially along the
diagonal. Try to think of access patterns that will decreasethe number of these conflict misses.

• Blocking is a useful technique for reducing cache misses. See

http://csapp.cs.cmu.edu/public/waside/waside-blocki ng.pdf

for more information.

5.2 Putting it all Together

We have provided you with adriver program, called./driver.py , that performs a complete evaluation
of your simulator and transpose code. This is the same program your instructor uses to evaluate your
handins. The driver usestest-csim to evaluate your simulator, and it usestest-trans to evaluate
your submitted transpose function on the three matrix sizes. Then it prints a summary of your results and
the points you have earned.

To run the driver, type:

linux> ./driver.py

6 Handing in Your Work

Each time you typemake handin TEAM=teamname in thecachelab-handout directory, the Make-
file creates a tarball, calleduserid-handin.tar , that contains your currenttrans.c file and copies
that file with the commandcp userid-handin.tar /opt/prac/cs_ai/cachelab/handin2 013/ .

If you have a better implementation, feel free to increase the version number and do another submission.

2Becausevalgrind introduces many stack accesses that have nothing to do with your code, we have filtered out all stack
accesses from the trace. This is why we have banned local arrays and placed limits on the number of local variables.

6

