
Computer System for AI-programmers
baiCOSY06, Fall 2011

Lab Assignment : Defusing a Binary Bomb
Assigned: Sep. 19, Due: Sep. 23, 23:59

Arnoud Visser (A.Visser@uva.nl) is the lead person for this assignment. Carsten van Weelden
and/or Maarten van der Velden will be the teaching assistants.

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our machines. A binary bomb is a
program that consists of a sequence of phases. Each phase expects you to type a particular string
on stdin. If you type the correct string, then the phase is defused and the bomb proceeds to the next
phase. Otherwise, the bomb explodes by printing "BOOM!!!" and then terminating. The bomb
is defused when every phase has been defused.

There are too many bombs for us to deal with, so we are giving each group a bomb to defuse.
Your mission, which you have no choice but to accept, is to defuse your bomb before the due date.
Good luck, and welcome to the bomb squad!

Step 1: Get Your Bomb

Each group of students will attempt to defuse their own personalized bomb. Each bomb is a Linux
binary executable file that has been compiled from a C program. To obtain your group’s bomb, one
(and only one) of the group members should point your Web browser to the bomb request daemon
at

http://deze.science.uva.nl:15213/

Fill out the HTML form with the email addresses and names of your team members, and then
submit the form by clicking the “Submit” button. The request daemon will build your bomb and

1

http://deze.science.uva.nl:15213/


return it immediately to your browser in a tar file called bombk.tar, where k is the unique
number of your bomb.

Save the bombk.tar file to a (protected) directory in which you plan to do your work. Then give
the command: tar xvf bombk.tar. This will create a directory called ./bombk with the
following files:

• README: Identifies the bomb and its owners, and givessome hints

• bomb: The executable binary bomb.

• bomb.c: Source file with the bomb’s main routine.

Copy README to a file labbook.txt, to be sure that the bomb-id and your team-information
are conserved. Remove the example given, and use the space to describe your own quest.

If you change groups, simply request another bomb and we’ll sort out the duplicate assignments
later on when we grade the lab.

Also, if you make any kind of mistake requesting a bomb (such as neglecting to save it or typing
the wrong group members), simply request another bomb.

Step 2: Defuse Your Bomb

Your job is to defuse the bomb.

You can use many tools to help you with this; please look at the hints section for some tips and
ideas. The best way is to use your favorite debugger to step through the disassembled binary.

Each phase is worth 10 points, for a total of 60 points. The remaining 40 points are based on your
labjournal

http://www.science.uva.nl/˜arnoud/education/ZSB/labjournaal.html

where you document your attempts to defuse the bomb.

If from this document it is clear that you had nearly defused the next phase, a few extra points can
be gained.

The phases get progressively harder to defuse, but the expertise you gain as you move from phase
to phase should offset this difficulty. However, the last phase will challenge even the best students,
so know when to stop.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for
example,

linux> ./bomb solution.txt

2

http://www.science.uva.nl/~arnoud/education/ZSB/labjournaal.html


then it will read the input lines from solution.txt until it reaches EOF (end of file), and then
switch over to stdin. In a moment of weakness, Dr. Evil added this feature so you don’t have to
keep retyping the solutions to phases you have already defused.

To avoid accidently detonating the bomb, you will need to learn how to single-step through the
assembly code and how to set breakpoints. You will also need to learn how to inspect both the
registers and the memory states. One of the nice side-effects of doing the lab is that you will get
very good at using a debugger. This is a crucial skill that will pay big dividends the rest of your
career. In the README an example of the types of debug-commands you could use.

Logistics

As usual, you may work in a group of up to 2 people.

Any clarifications and revisions to the assignment will be mailed to you.

Hand-In

When you have completed the lab, you will hand in one file, teamname-v1-bomb.tgz, that
contains your solution. This tar-file should contain two files:

• ./bombk/solution.txt

• ./bombk/labbook.txt

The character ’k’ stands here for the number of your bomb.

• The solution.txt is the file you used as argument for the bomb ./bomb solution.txt.

• Make sure that your labbook.txt starts with the bomb-id and your team information, as
provided in the README. Unknown bombs cannot be graded.

The body of the labbook should be to the point. 40 lines should be enough to explain your
attempts to defuse a phase. In case of doubt, summerize your quest for the first phases, and
elaborate on the last phase you were working on. The last is the place where you make your
mark.

• Copy the package to the handin directory by typing
cp teamname-v1-bomb.tgz /home/cs_ai/bomblab/handin2011/

3



• After the handin, if you discover another phase and want to submit a revised copy,
increment the version number, and type
cp teamname-v2-bomb.tgz /home/cs_ai/bomblab/handin2011/
Keep incrementing the version number with each submission.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever
running the program, and figure out exactly what it does. This is a useful technique, but it not
always easy to do. You can also run it under a debugger, watch what it does step by step, and use
this information to defuse it. This is probably the fastest way of defusing it.

We do make one request, please do not use brute force! You could write a program that will try
every possible key to find the right one. But this is no good for several reasons:

• We haven’t told you how long the strings are, nor have we told you what characters are in
them. Even if you made the (wrong) assumptions that they all are less than 80 characters
long and only contain letters, then you will have 2680 guesses for each phase. This will take
a very long time to run, and you will not get the answer before the assignment is due.

There are many tools which are designed to help you figure out both how programs work, and
what is wrong when they don’t work. Here is a list of some of the tools you may find useful in
analyzing your bomb, and hints on how to use them.

• gdb

The GNU debugger, this is a command line debugger tool available on virtually every plat-
form. You can trace through a program line by line, examine memory and registers, look at
both the source code and assembly code (we are not giving you the source code for most of
your bomb), set breakpoints, set memory watch points, and write scripts. Here are some tips
for using gdb.

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want
to learn how to set breakpoints.

– Page 289 of CS:APP book contains a short list of gdb commands.

– The CS:APP Student Site at http://csapp.cs.cmu.edu/public/students.
html has little longer single-page gdb summary.

– For other documentation, type “help” at the gdb command prompt, or type “man
gdb”, or “info gdb” at a Unix prompt. Some people also like to run gdb under
gdb-mode in emacs.

4

http://csapp.cs.cmu.edu/public/students.html
http://csapp.cs.cmu.edu/public/students.html


• objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all
functions and global variables in the bomb, the names of all the functions the bomb calls,
and their addresses. You may learn something by looking at the function names!

• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual
functions. Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story.
Calls to system-level functions are displayed in a cryptic form. For example, a call to
sscanf might appear as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was to sscanf, you would need to disassemble within gdb.

• objdump -s

Use to see the contents of all sections of the executable. For instance, the .rodata section
contains the read-only data of the program.

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos
and man are your friends. In particular, man ascii might come in useful. Also, the web may
also be a treasure trove of information. If you get stumped, remember that your assistant is not evil
and feel free to ask for help.

5


	Introduction

