Design and Organization of Autonomous Systems

Introduction

Objectives DOAS

- Know the concepts that are important in the design of Intelligent Autonomous Systems.
- Understand the problems that are to be solved.
- Identify the solutions found.
- Build a framework to organize future developments.

Organization DOAS

- **Course** consists of lectures and projects on system architecture and design
- **Lectures** in first two weeks.
- **Project** assignments for 5-6 students.

• Examination

The grade for this course will be based on the results of the **Project**. All registered students will be assigned to a project.

DOAS

Topics lectures:

- Architectures used in autonomous systems (general aspects, distributed and embedded systems).
- Case studies: AIBO and Intelligent vehicles

Project:

- Case study in integration
- Applies the material of the lectures
- Clear assignment of tasks to the members of the team
- Team writes an article about their project and review the articles of the others
- Final mini conference with external invites

Projects 2005

- 1. Robot Companion for elderly care
- 2. Intelligent Sensor Network
- 3. Java Camera

Frans Groen Peter van Lith Peter van Lith

- 4. Probabilistic Resource Allocation in Distributed Fusion Systems Gregor Pavlin and Jan Nunnink
- 5. Interactive response system for crisis management

Marinus Maris

- 6. Intelligent Traffic Light Control Bram Bakker and Leon Kester
- 7. AIBO Field Localisation

Arnoud Visser

Schedule week 2

day	room	lecturer	subject	remarks
Monday 10th, 10:00-13:00	P.019	All	Kick-off meeting Projects	
Tuesday 11th, 10:00-12:00	P.018	Arnoud Visser	Architectures of Autonomous Systems	Chapter <u>3-4</u> of syllabus
Wednesday 12th, 10:00- 12:00	P.018	Arnoud Visser	Case studies of Autonomous Systems	Marie Architecture and <u>Aibo</u> Architecture
Thursday 13th, 10:00-12:00	P.019	Marinus Maris	Distributed Systems	Hand-out
Friday 14th, 10:00-12:00	P.018	Peter van Lith	Embedded Systems	Hand-out

Schedule week 3

day	room	lecturer	subject	remarks
Monday 17th, 10:00- 12:00	A.102	Dariu Gavrila	Looking at people	
Tuesday 18th, 10:00-12:00	A.102	Dariu Gavrila	Intelligent Vehicles That See	
Thursday 20th, 10:00-13:00	P.019	All	Progress meeting Projects	

Schedule project

Project

All registered students will be assigned to a project. Three times plenair meetings will be scheduled.

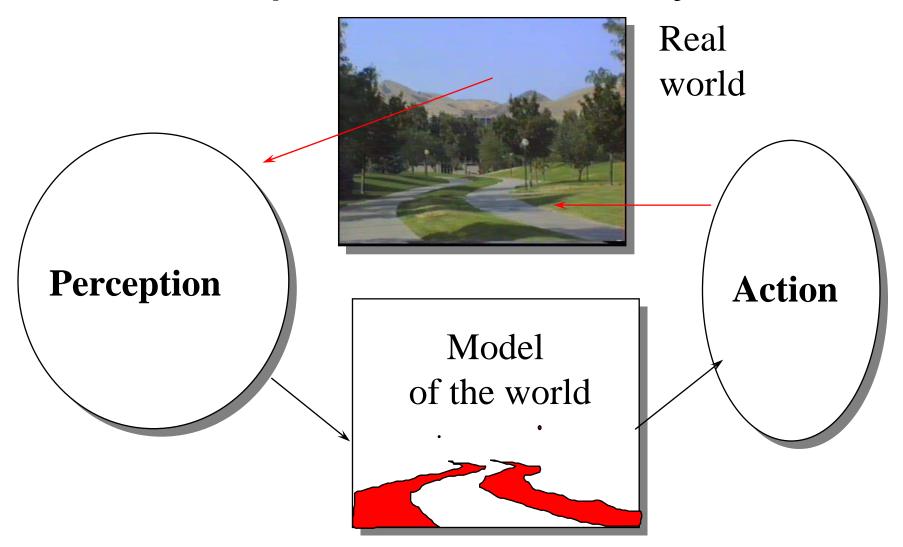
week 2: kick-off meeting (Monday 10th, P.019, 10:00-13:00)

week 3: progress meeting (Thursday 20th, P.019, 10:00-13:00) 20 minutes presentations

week 5: deadline draft article (Tuesday 1th, 16:00, pdf on website)

- week 5: deadline review article (Wednesday 2nd, 16:00, see form) Exchange of draft final report
- week 5: deadline final article (Thursday 3rd, 16:00, pdf on website) Hand in final report
- week 5: mini-conference (Friday 4th,Kruislaan 403, F0.13, 9:30-13:00) 20 minutes presentations

Program for today


10.00-10.10	Frans Groen	Introduction of the course DOAS	
10.15-10.20	Frans Groen	Robot Companion for elderly care	
10.25-10.30	Peter van Lith	Intelligent Sensor Network	
10.35-10.40	Peter van Lith	Java Camera	
10.40-11.00	Coffee break		
11.00-11.10	Jan Nunnink	Probabilistic Resource Allocation in Distributed Fusion Systems	
11.10-11.20	Marinus Maris	Interactive response system for crisis management	
11.20-11.30	Bram Bakker	Intelligent Traffic Light Control	
11.30-11.40	Arnoud Visser	AIBO Field Localisation	
11.40-12.00	Assignment of students to projects		
12 00 12 00	Detailed discuss	ion of projectles dore with studentteem	

12.00-13.00 **Detailed discussion** of projectleaders with studentteam

Project assignments

- Consists of literature study of the assigned topic
- Proposal of architecture and design of an Autonomous System
- Realization of a critical part of the selected approach
- Evaluation of the selected approach against other initiatives
- Mini-conference Article and Presentation.

Perception - Action Cycle

Components

• Perception

- computer vision
- sound interpretation
- touch (also on a distance)

• Model

- -representation
- -modeling
- -data fusion

Action

- adaptive behavior
- planning
- exploration, navigation

Global aspects

- Architecture
- Learning and adaptation because the robot can perceive the results of its action
- Simulation

Application Area's (1)

• Service

cleaning devices, goods (food, mail) distribution, robot guide dog

• Space

planetary rovers, robot arms in space

• Surveillance and Safety

watching over public places, fire and pollution detection/ inspection after disasters

• Transport

driver assistance, intelligent vehicles, automated highway, container transport

Application Area's (2)

• Agriculture

harvesting, spraying

• Defense

mine detection, bomb dismantling, unmanned vehicles, robot soldier

• Entertainment

microsoccer, intelligent adaptive games, robots in film industry

• Mining

unmanned excavation

Trends

- From structured static environments to unstructured dynamic environments
- From *robots* to *embedded autonomy* in existing systems
- Form single robots to **multi-robot** systems
- To semi-autonomous systems interacting with humans

Needs

- Real robustness
- Reactive to human gestures (motion) and speech (sound)
- Human understandable communication between systems.
- Autonomy well integrated with teleoperation