Project

Design and Organization of Autonomous Systems :
Intelligent Traffic Light Control

Emil Nijhuis, 9917527
Stefan Peelen, 0010065
Roelant Schouten, 0010774
Merlijn Steingrover, 0043826

Supervisor: Bram Bakker

3rd February 2005

Abstract

Because of the increasing density of the traffic
flow in urban areas there is a need for optimal
performance of traffic lights. In this paper we
will describe an existing approach of reinforce-
ment learning applied to the optimization of traf-
fic light configurations, and introduce a new ap-
proach. Our approach uses implicit cooperation
between traffic lights, letting cars take into ac-
count the traffic situation of the road ahead. We
will show that this approach outperforms the ex-
isting algorithm, using experiments performed
with a traffic simulator.

1 Introduction

In our current world traffic has become an increasingly
substantial part of society. With people becoming ever
more mobile, traffic jams are becoming a more and more
common sight, especially in large urban areas. This, of
course, leads to all kinds of unwanted side effects like
people arriving too late at their destination, economical
damage and environmental pollution.

Traffic in urban areas is mainly regularized by means of
traffic lights, which can make for unnecessary long wait-
ing times for cars when not efficiently configured. This
inefficient configuration is unfortunately still the case in
a lot of urban areas; most of the traffic lights are based
on a ’fixed cycle’ protocol, which basically means that

the lights will be turned on green for a fixed amount
of time and consecutively on red for a fixed amount of
time.

This, of course, is not optimal, since such a policy does
not take into account the current traffic situation at a
particular traffic light, meaning that situations can oc-
cur in which a long queue of waiting cars is being held
up by a shorter queue (or in the worst case, by no queue
at all) because of the traffic light’s policy. What you
would want to happen in such a situation is that the
policy decides to let longer queues have an ’advantage’
over the shorter ones in order to increase the total traffic
flow. This of course should not lead to situation where
cars at a quieter part of a junction will never be able to
continue their journey.

The question that arises is how to exactly define this
policy that does take into account different traffic situa-
tions at traffic light junctions. It is likely that trying to
hard-code all the possible situations concerning a traffic
junction, and the traffic light configurations according
to those situations, in some fashion will require an un-
reasonable amount of time and effort, and possibly such
an approach could lead to incomplete representations.

A more feasible approach would be to make use of tech-
niques existing in the field of Artificial Intelligence. Such
methods often have the ability to cope with large rep-
resentations such as those appearing in our traffic light
problem by in some way automatically learning the cor-
rect policy. Different A.I. based techniques have already

been tried in attempt to solve the traffic light problem;
examples are genetic algorithms, fuzzy logic and rein-
forcement learning.

It is on this last mentioned technique that the emphasis
of this report lays. We use reinforcement learning to
learn for each traffic light junction in a city the optimal
configuration of the lights.

How this works exactly will be shown in the following
sections, starting with an introduction to reinforcement
learning as well as a description of the traffic simulator
we used for our experiments in section two. In section
three we will introduce our approach to reinforcement
learning, followed by experiments performed with this
approach in section 4. The paper will be rounded up by
the conclusions and discussion in section 5.

2 Reinforcement Learning, GLD,
MAS Learning

There are two common approaches of modelling traffic:
macroscopic and microscopic models. In our paper we
focus on traffic in the city environment, hence we will
only consider only microscopic models. The provided
traffic simulator Green Light District Simulator models
traffic as Multi-Agent System [1], where the agents are
the traffic lights in the infrastructure.

There are several methods for learning a policy for these
agents, such as genetic algorithms and reinforcement
learning. As stated above, the technique we are using
in order to learn an optimal traffic light configuration is
reinforcement learning. This method has already been
used in different domains with considerable success. Ar-
guably the most impressive result so far is in backgam-
mon [6], where a program based on this method is able
to play at human expert level.

In this section we will first give an overview of this tech-
nique, to give the reader a general background of how
it works; successively we will show how reinforcement
learning and Q-learning is used in the traffic environ-
ment.

In the last subsection we give a description of the traffic
simulator we used to test the theory.

2.1 Reinforcement Learning

Reinforcement learning is a learning technique for learn-
ing control strategies for autonomous agents from trial
and error, [3], [4], [5]. The agents interact with the envi-
ronment by trying out actions and use resulting feedback

(reward, and the consecutive state) to reinforce the be-
havior that leads to a desired outcome (see figure 1 for
illustration).

Environment

Figure 1: An agent and his world

Considering our environment that means we want to
optimize the total waiting times of all the cars in the in-
frastructure. That means our algorithm should reinforce
traffic light behavior that will minimize the waiting time
of all the present and future cars in our infrastructure.

For this we first need a formal structure of the model.
The traffic optimization problem can be modelled as a
Markov Decision Process (MDP) which makes reinforce-
ment learning a suitable approach for our task. This
consists of a finite set of states S = s, s9,..., a finite
set of actions A = aq,as9,... an agent can perform, the
probabilities P(s,a,s’) which are the probabilities that
an agent in state s will arrive in state s’ after perform-
ing the action a and finally a real valued reward function
R:S x A — R defines a reward which an agent will re-
ceive when arriving in state s after executing a. The task
of our agents is then to determine a policy 7 : S — A,
which selects an action a; for a state s; at time ¢ that
optimizes the future discounted reward:

VT (st) =14+ YTeg1 + Vred2 +9Tgs + o = 2, Y e

where 7 is the discount factor and r; are the rewards
at time t. The most common way to do this algorithmi-
cally is using Q-learning. We define an evaluation func-
tion Q(s,a) : S x A — R where the value represents the
maximum discounted future reward. Our optimal pol-
icy for our agents will then be: 7*(s) = argmaz,Q(s,a).
An algorithm to obtain the right Q-values is given in [3].

2.2 RL in Traffic Light Controllers

Now that we have established a basic notion of reinforce-
ment learning, it’s time to show how exactly this can be

applied to our earlier described traffic problem.

First we will introduce the main entities with which we
will reason in the algorithms: the cars driving through
the city and the traffic light junctions controlling the
individual traffic lights and thus the traffic flow through
the city. Furthermore there are the roads on which the
cars drive, which consist of different driving lanes going
to different directions at a junction.

The goal of traffic light control in a city is to minimize
waiting times in front of traffic lights and to minimize
the total travel time. The obvious way to solve this
problem would be to optimize the configurations of the
traffic light. In addition to this approach we also might
want to change the behavior of the car driver by telling
him how he should travel to his/her destination (this
is called co-learning). Co-learning has already been ex-
plored in [1] and showed good results in an urban like
infrastructure.

In our project we focused mainly on the traffic light con-
troller without manipulating the available driving poli-
cies of the cars. From here, two different views can
be employed on how a reinforcement learning algorithm
could be applied to the domain.

e Oneis a traffic light-based approach, which takes
the traffic light junctions to be the learning agents.
Such an approach would require each traffic light
junction to learn a value function that maps the
waiting times of all the cars at each of it’s drive
lanes to a traffic light configuration. This ap-
proach would lead to a potentially huge state-space,
because of all the different possible configurations
of cars on the driving lanes [7].

e The other is a car-based approach, which takes
each individual car to be an agent. This is more
of a multi-agent based approach; the idea is that
each car predicts it’s waiting time in the case of
a green and of a red sign, now all these predic-
tions/estimates can be combined to make a de-
cision for the traffic light. Note how cars don’t
really have to represent the Q-values themselves;
the representation is simply car based

To avoid a large state space with the traffic light-based
approach, the software we worked with uses the car-
based approach.

The state of a car is described as a quadruple s =
[, p,d,nr] of its current position in terms of the next
junction (node) n it approaches, the position in the cur-
rent driving lane p, its final destination d and its position
in the queue in front of the consecutive traffic light nr.
We consider then two actions of the consecutive traf-
fic light a = red,green. Hence we need to calculate
all the Q-values Q(s,a). After that we can derive the
optimal traffic light configuration AJ” " for a particular
traffic light as follows:

A;{pt = maz 4, ZieAj > sctocatcars @(s,med)—Q(s, green)

Reaching the next state a reward will be given and the
Q-values will be updated with:

Q(s,a) = . [P(s,a,s') * R(s,a,s") + vV (s)]

this time the V function will be computed as follows:

V(s) = 2, Plals) * Q(s, a)

Further is the reward 1 if the car has to wait or can-
not move and is 0 otherwise. The result is that the
algorithm will try to optimize the total waiting times of
all the present and future cars.

2.3 GLD

We used a traffic simulator called ” Green Light District”
(GLD). This is a JAVA based application built by the
group of Marco Wiering at the Universiteit van Utrecht.
GLD allows to create custom ’cities’ or traffic networks
using a straightforward point-and-click interface. It is
possible to connect junctions (or nodes) with roads, which
themselves have a certain number of driving lanes, rep-
resented as discrete cellular automata. If more than two
roads are connected to a junction it will automatically
become a traffic light junction, which itself follows some
simple rules to make sure it will not cause any accidents
by putting too many lights on green.

At the edge of the network there are nodes which let
cars enter the network; these so called ’edge nodes’ have
a certain spawning rate which defines how fast it will let
new cars enter the network; the edge nodes are at the
same time, the destination nodes for the cars.

The cars are the main agents in this framework; they
are spawn at the edge nodes and get another edge node
assigned to be their destination. This destination is part
of their state-space. Cars have a very limited set of ac-
tions and a limited state space; the actions they can per-
form are driving at a certain speed, waiting in a traffic
queue or crossing an intersection.

It also is worth mentioning that each car has a path-
planning module available, which calculates the path
from their current position to their destination node so
they know at each junction which way they have to go.

The simulator is capable of keeping track of several statis-
tics over time, both at node level and at global level.
At the node level it keeps track of the total number of
cars that crossed the junction, and also the average time
that a car has to wait before that particular junction is
recorded. On the global level the system can keep track
of the average junction waiting time, the total amount of
cars that are generated but cannot enter the city and,
most importantly, the average trip waiting time of all
cars.

The GLD simulator already incorporates several traf-
fic light controllers; there are options to run the simu-
lator using both learning and non-learning controllers.
Learning controllers include reinforcement learning, evo-
lutionary learning or neural network-based algorithms.
Non-learning controllers include simpler algorithms that
will, for example, set the traffic light with the longest
waiting queue to green.

3 Our Implementation

As said above, the simulator already has a reinforcement
learning algorithm implemented, which turned out to
work very well. Our assignment now was to try and im-
prove the current algorithm in some manner by making
a novel variation on the existing implementation.

To accomplish this we had to figure out what the weak-
nesses of the current implementation were, or where
there was room for improvement. We found that the
main shortcoming was the lack of cooperation between
the traffic light junctions. Although each junction was
able to come to an optimal configuration for itself, this

configuration could easily turn out to be only locally
optimal because the cars, although they can traverse
through the current junction, will be getting stuck again
at the next one. If some level of cooperation would ex-
ist between the traffic junctions, they could take into
account the congestion at other junctions and come to
a more globally optimal configuration.

The question now was how to incorporate this idea in
the current framework. A few options can be thought of,
like trying to build a 'meta-controller’ which would, in
some fashion, learn the optimal global traffic light con-
figuration; we also thought about trying a more game
theoretic approach, trying to maybe establish a Nash
equilibrium between the individual junctions. However
straightforward algorithms for these approaches are not
known, hence they were not viable options for our 1
month project.

We chose a more implicit approach; we let the individ-
ual cars take into account the traffic situation not only
at their current traffic light, but also at the next traffic
light they will visit.

We found that an elegant way to implement this was by
incorporating the traffic situation of the next traffic light
a car will visit into it’s state space. What happens here
is that each car will have it’s state space extended with
an extra dimension which represents the traffic situation
at the next traffic light. Remember from section 2 that
a car’s state space is defined by the current node, the
direction, the queue position and the destination; this
will now be expanded with another element, congestion,
which represents whether or not the next traffic node is
congested.

This congestion is represented as a binary, a next node
is either congested, or it is not. Congestion is calcu-
lated as the ratio between the number of cars on a drive
lane and the total capacity of that lane. If that ratio
passes some fixed threshold, the lane is congested and
a car with that lane as it’s next target will ’know’ this.
This knowledge will now be taken into account when
the Q values for the next step are calculated, because
it is represented in the state. We named this algorithm
TC-CBG which stands for ”congestion be gone”

Another, somewhat more simple, approach to this same
idea is to make use of a heuristic which takes into ac-
count the traffic situation ahead. Instead of explicitly
representing future congestion in the state space, we can
also let the congestion be a factor in the calculation of

the traffic light’s decision.

This calculation again looks ahead to the next driving
lane the car will visit, and checks whether it is congested
or not; only now this congestion rate is not mapped to
a binary value, but kept a real value. This decimal is
now used in the estimation calculation by multiplying
the current estimate with 1 minus the congestion rate.
The congestion rate is subtracted from 1 to make sure
that the calculated gain will be taken fully into account
when the next lane is empty (it is then multiplied by 1),
or will not be taken into account at all if the next lane
is fully congested (it is then multiplied by 0). This can
be formalized as follows:

A;pt = Mara; ZieAj Zsel[(l—c(s))(Q(s,red)—Q(&green))L

where [sums over all local cars at this traffic light and
¢(s) is the appropriate congestion factor for each car.
We have named this approach HEC, which stands for
Heuristic Enhanced Controller.

4 Experiments and Results

We tested our algorithms using the GLD simulator, we
used the same traffic network used in the experiments of
the original algorithm in [1]. We compared our test re-
sults to the results of the original implemented reinforce-
ment learning algorithm (TC-1). We did not use the test
results as described in the paper, but ran all tests our-
selves, to make sure both approaches were tested under
the same circumstances.

Furthermore we ran some tests of our own, incorporat-
ing different spawning rates throughout time. We did
this because we thought this would make for a more re-
alistic traffic simulation in a city; it is quite unrealistic
to think that traffic keeps on coming into a city at the
same rate all day long. In reality there are situations
like rush-hours or night hours, due to which the incom-
ing traffic flow fluctuates.

We implemented a dynamic spawning rate option, which
can change the spawning rate of a particular edge node
over time. Results of the experiments performed are
given below.

Figure 2:0ur test city, with 12 edge nodes, 15 traffic
signs and 1 junction that doesn’t have a traffic light.

4.1 Simulation 1

This simulation mimics an experiment performed by
Wiering in (experiment 1, a large infrastructure). In
this simulation all edge nodes have a spawn rate of 0.4,
this has been shown to be the maximum possible rate
for the original algorithm to still perform [1], if it’s set
higher, the roads will not be able to cope with the high
amount of cars that enter the city. We let the different
algorithms run for 50.000 cycles and averaged the result
of 5 such simulations.

Each algorithm was run twice, once in it’s normal

form, and once with the co-learning (CL) feature turned
on. This co-learning is a feature implemented in the
original software. The idea behind it is that cars can
have their path-planning module being influenced by in-
formation gained from other cars about the traffic situ-
tation on the roads ahead. Using this information a car
can choose not to take that road but consult it’s path
planning module for a different path to it’s destination,
avoiding busy roads. In previous experiments [1] usually
co-learning had a beneficial effect on the results.
From these results it can be seen that our HEC algo-
rithm always outperforms the other two, both with co-
learning and without. Interesting to note is that co-
learning doesn’t seem the have much of an impact on
the performance of the CBG-algorithm.

10

o

Fa96k
0Zesy
9469
CE9SY
=g
ey
09y
9520
Z168E
B35/E
i
0BaYE
9ESEE
Z6LEE
B0
F0S6T
0318z
91892
TLVST
BT
¥BL2E
g
96002
25481
Bovsl
Fanal
U#i)
94EEL
centl
88901
TG
noog
9599
TIES
2968
¥Za

oszl
53940

TC-CEG CL |

TC-1 CL —TC-HEC CL

| —TC-1 — TC-HEC —TC-CBG

Figure 3: Comparison of several implemented algorithms vs. the existing ones

9:46
056
el
0366
2348
gl¥a
]
48
009
8EEL
9304
o]
4]
orzd
8965
9655
i
2515
088y
204r
SEEY
ooy
CBLE
0Z5E
8FZE
LT
yoie
ZEFT
s
8881
9181
TrEL
i1}
0og

ars

952

14

12 4

58|340

TC-CEG CL|

TC-1 CL —TC-HEC CL

| —TC-1 — TC-HEC — TC-CBG

Figure 4: Comparison of several implemented algorithms vs. the existing ones in handling rush-hour

4.2 Simulation 2

This second experiment incorporates the dynamic spawn-
ing rate mentioned above. Note that this simulation is
not run over 50.000, but over 10.000 cycles. The results
are still an average over 5 test runs.

The dynamic spawning rate affected two edge nodes. All
edge nodes were initialized at a spawning rate of 0.4, but
at cycle 5000, rush hour started and the spawning rates
of the two affected nodes rose to 0.7; at cycle 5500 the
rate was changed to 0.2 for a ’cool down’ period, and at
cycle 8000 it was changed again to the original 0.4 and
finished the run to the final 10.000 cycles.

The graph shows that in the situation with dynamic
spawning rate our algorithms outperform the original
ones, even if co-learning is used with TC-1 and not with
TC-HEC and TC-CBG. Also notable is the fact that
co-learning seems to have a bigger influence on the TC-
1 controller than it has on the other two controllers;
actually, co-learning seems to have a negative influence
on the TC-CBG controller during rush hour.

5 Conclusion, Discussion and Fu-
ture Work

From our experiments it can be concluded that the addi-
tion of implicit traffic light cooperation through letting
cars take into account the traffic situation at the next
traffic light has a positive influence on the reinforcement
learning algorithm. The algorithms using this new ap-
proach seem to always perform better than the original
implementation. Also remarkable is the fact that the
simpler algorithm, TC-HEC seems to perform at least
equally good, but in some cases better, than the more
complicated state space expanding TC-CBG. Both are
based on the same principle, but TC-CBG is more of a
new method, whereas TC-HEC is an added heuristic.

Possible future work is investigating the possibilities of
even more global cooperation between traffic light junc-
tions. This can be accomplished by letting a car take
into account not only the next traffic light they are vis-
iting, but also the ones that lay further ahead on it’s
path. An enhancement like this applied to TC-CBG
would require the state space to become very large in
case of large traffic networks, this might lead to compu-
tational problems. TC-HEC on the other hand should
be more suitable for dealing with this extra information,

since the next traffic lights are incorporated by just mul-
tiplying the congestion with the Q values. It might be
a good idea to let traffic lights that are further away on
it’s path have their congestion value discounted by some
factor, much like the future V-values are discounted in
the reinforcement learning theory.

Whether all this theory can be used in real life situa-
tions remains to be seen. As it is now, cars are not yet
ready to meet the requirements asked for by this theory;
but with the rapid progress in GPS-like technology, it is
very well imaginable that in the near future cars will be
equipped with technology that is capable of performing
the required communication.

Another hurdle in that has to be taken into account is
that there are of course many more factors in everyday
traffic then just cars and traffic lights. Accidents can
happen, getting roads blocked, people can be crossing
the street while the light is red, traffic lights can get
broken; but at least this theory provides a start towards
a new and more sensible traffic light system in big cities.

References

[1] ”Intelligent Traffic Light Control”,
Marco Wiering, Jelle van Veenen, Jilles Vreeken, Arne
Koopman, Article, Jul 2004

[2] ”Green Light District Simulator”, Marco Wiering,
http://www.cs.uu.nl/marco, 2003

[3] Tom M. Mitchell, "Machine Learning”, McGraw-
Hill, chapter 13, pp. 367-390, 1997

[4] R.S. Sutton and A.G. Barto, Reinforcement Learnin-
ing: An Introduction, The MIT press, Cambridge
MA, A Bradford Book, 1998

[5] L.P. Kaelbling, M.L. Littman, and A.W. Moore, ”
Reinforcement learning: A survey”, Journal of Arti-
ficial Intelligence Research, vol. 4 pp. 237-285, 1996

[6] G.J. Tesauro, ”Temporal difference learning and
TD-Gammon”, Communications of the ACM, vol. 38,
pp. 58-68, 1995

[7] T.L. Thorpe and C. Andersson, " Traffic light control
using sarsa with three state representations”, Tech.
Rep., IBM Cooperation, 1996

