JavaCam Project 2005

Design and Organization of Autonomous Systems
University of Amsterdam

Jun Wu, 0310190, jwu@science.uva.nl
David Persons, 0100722, dpersons@science.uva.nl
Michael Metternich, 0012645, mjmetter@science.uva.nl
Daan van Schuppen, 0008524, dschuppe@science.uva.nl
Derk Crezee, 0138606, dcrezee@science.uva.nl

Supervisor: Peter van Lith peter@lithp.nl

Abstract

With the increasing demand for surveillance
of public and private areas, the number of
cameras has grown substantially and
monitoring all of them has become a
difficult task. A solution lies in the use of
‘intelligent’ cameras. These are cameras that
can assist people in surveillance with use of
certain inbuild intelligent functions. In this
paper we will introduce and discuss some of
these intelligent functions. We will focus on
two tasks; people counting, object tracking
and general movement extraction.

1 Introduction

Nowadays you could not think of a society
without cameras. Cameras are used for
several tasks of which security and
surveillance are the most important. As
cities grow larger, the task of conserving
general security becomes a tedious task for
humans. There is a great need for
surveillance systems which could
autonomously perform certain tasks or
which could assist humans in conserving
security. Examples are detecting people who
are committing obscure actions like leaving
an unknown packet at the airport, detecting
pickpockets in public areas or detecting
burglars or terrorists around industrial areas.
In this paper we describe the techniques
used to tackle two tasks. In the first task

moving objects or people have to be
detected from a particular distance called the
General Movement Extraction and Object
Tracking. This task could be used for
example in industrial areas where it is useful
to know if a disaster happens in which way
groups are moving. The second task consists
of counting the number of people entering or
leaving a room called the People Counting
task. This again has to do with security. In
this case it is useful to know how much
people are in a room or building in order to
an efficient evacuation in case of an
emergency.

These two tasks are implemented in a Java
environment in combination with a simple
web camera. Java is not the most common
programming language to develop image
processing techniques because it is relatively
slow. The reason that it is implemented in
Java is that a great part of the software can
be implemented in a hardware camera which
works on Java byte code; this will speed up
processing.

To begin we describe the Graphical User
Interface of the wused test program in
paragraph 2.1. After that we discuss colour
models and some standard image processing
operations which must assist in solving the
more intelligent tasks, in paragraph 3 and 4.
Finally in the rest of the paper, we will
introduce some solutions for the two tasks
described above and discuss the outcome.

2.1 Graphical User Interface

For testing purposes a test program has been
created in an earlier point in the project.
Based on the original interface, a more
natural feeling user interface was created to
improve the usability of the java-based
software. The original layout was rather
unclear since too much information is given
to the user at once. A lot of the functions
would never be used, and the data-fields
with port information or additional
parameter information were obsolete as
well. Therefore, these were simply removed.
The play and stop functions were replaced
from the functions at the right window since
their more direct impact on the screen is
better shown this way.

Furthermore, each function at the right
window automatically calls the start and
stop function. The user will not notice the
stream of pictures was ever interrupted, but
this makes it easier to switch between
functions. The new interface is shown in
figure 1.

[1-Reset (=] [p1-mation

2-Stream n2-Optical Flow

3-stop l03-Peonie Court
roun:

play stop =

Figure 1: new interface
2.2 Dynamic Sensors

For some functions sensors need to be
placed on the screen. How these sensors
work exactly will be shown later in this
paper, but we will now be talking about
placing these sensors. Traditionally their
position was hard-coded, but to create a
usable, user-friendly program obviously this
had to change. Since their position is
specified by the user in the interface, but the
location is needed in the hardware part, this

problem turned out to be a lot harder then
we initially anticipated. When a function
that uses sensors is called, the sensors can be
placed on the screen by dragging the mouse.
When the play button is pushed these
locations are stored in the user interface.

3. Colour and colour-models

In realistic circumstances image conditions
are not static. Different colour models could
be used to create a view that is indifferent to
shadows, viewing direction, surface
orientation, and occlusion or cluttering of
the object. In the Java Camera project,
initially all functions used the RGB colour
model. In order to improve the robustness of
this system, we intended to use different
colour models. Before we go further in
image processing techniques we discuss
different colour models.

3.1 The RGB colour-model

This system consisting of Red, Green and
Blue components is a commonly used well-
known model. This model comes from the
principle of how the human beings perceive
colours. The human retina contains three
types of cones which are respectively
sensitive to 620nm, 520nm and 450nm light
spectrum (Red, Green and Blue). The
wavelengths of perceived light are mapped
to RGB values using the following
equations:

R= j E(A)U p(A)dA
G= j E(A)U ;(A)dA

B= j E(A)U ;(A)dA

Where A are the wavelengths, E(A) are
spectral energy distribution and (U | X €
{R,G,B} are colour component matching
functions.

3.2 Intensity Invariant Colour-models

The HSI colour model represents all visible
colours by their Hue, Saturation, and
Intensity. Hue is referred to as the dominant
wavelength of a colour. Saturation is defined
as the amount of white mixed with the
perceived colour. Intensity is the amount of
light that is perceived. The HSI values of an
image can be calculated from the image’s

RGB values as follows:
J3(G-B)
(2R-G-B)
min(R,G,B)
R+G+B
IRGB)=R+G+B

H(R,G,B) = arctan(

S(R,G,B)=1—

Another intensity invariant colour-space is
the normalized RGB colour model (rgb).
The rgb colour model is defined, with
respect to the RGB space, as follows:

r(R,G,B):L
R+G+B

G
R G, B)y=——
8() R+G+B
b(R,G,B):L
R+G+B

The clc2c3 colour model Gevers [3] defines
the clc2c3 colour model. This colour-model
is defined as follows:

C, =arctan(———
: (max (G,B) /

C, =arctan(———
? (max (R,B) /

C, =arctan(———
’ (max (R,G) /

Gevers also defines the 111213 colour-model
[3]. This colour-model is defined as follows:

~ (R-G)’
" (R-G)*+(R-B)*+(G-B)’
(R-B)’
> (R=G)’ +(R-B)’ +(G - B)’
(G-B)’

3

T (R=G)’ +(R-B)* +(G - B)?

Some examples of the different colour
models are shown in figure 2.

.

o o o

=

o "M o
[B in e e[t e e S] 80 o s [T
RGB Normalized
%
o
I e
oo oo
s]
femdaroina el Bad@d el FTSTSRE TR
111213 c1c2c3

Figure 2: examples of different colour models

4 Background Subtraction

For the detection of moving objects we will
make use of a method that is called
Background Subtraction [9,10]. The first
frame seen by the camera is saved, the
background. This first frame is subtracted
from all the next frames. When the value of
a pixel is near to zero after the subtraction
the pixel did not change, there is a match
and the pixel is coloured black. When it
does not match, it is coloured white.

There were some problems with our first
implemented version of the Background
Subtraction. When an object enters the
screen for example, the focus of the camera
goes to that object. Therefore the intensity of
the background can change. Because of that
it is better to do the Background Subtraction
in an illuminant free colour-space. Therefore
our standard Background Subtraction uses
the normalized RGB colour-space. It is also
possible that there are already some objects
moving in the first frame. To neglect this
problem, we take the average of the first few
frames as the background (10 for example).

4.1 Morphological Operators

Figure 3 shows the Background Subtraction
when a person is in the image. The
Background Subtraction detects the object
quite good but there is some noise at the left
of the image and the object itself still
contains groups of Dblack pixels.
Morphological operators [1] could help us
improve the results.

Figure 3: background subtraction in normalized
RGB

The different white groups of pixels can be
seen as sets. Structural morphological
operators are set operators that use
structuring elements. Structuring elements
are small sets that are used in the operator
and correspond with the shapes we are
looking for in the original set. The dilation
and erosion are well known operators in
mathematical morphology.

The dilation of two sets A and B can be

interpreted as the vector addition of the two
sets:

A®B={c|c=a+b,ac Abc B}

where A represents the image being
operated on and B is the structuring element.

00 0O 01 10
010
01 10 1 1 11
A®B= @elr 1 1|=
1 1 11 1 1 11
000
00 0O 0000

If we have a set operator that enlarges sets it
might be handy to have an operator that
shrinks sets as well. This is the erosion
operator:

A®B={c|B, c 4}

with again A as the image being operated on
and B as the structuring element.

0000 0000
010
0110 0000
A®B = ®1 1 1=
1 1 1 1 01 10
000
0000 0000

We implemented the erosion and dilation
and combined it with the Background
Subtraction. For our erosions and dilations
we can use different sizes of structuring
elements, depending on the scenery settings.

Figure 4.1: erosion of figure 2 with element size 5

Tk
i

L]

Py
L s e, %

IV g
T
Figure 4.2: dilation of figure 2 with element size 15

From the images 4.1 and 4.2 can be seen
that the erosion removes the noise and the
dilation makes the object better visible. The
result we get from first doing erosion and
then doing dilation is called an opening and
is a well known image operation. It’s exactly
what we need to improve our Background
Subtraction.

Figure 5: background subtraction in normalized
RGB with opening

We can see that morphological operators
can improve our results of the background
subtraction.

5 Sensors

To tackle the problem of counting the
number of people leaving or entering the
room and more generally to detect
movements of objects or people in a
sequence of images virtual sensors are used.
The implemented sensors are an abstracted
and simplified version of a human nerve cell
called a neuron. In most cases a neuron
reacts on the signals of the dendrites and
sends out an output signal along the axon of
the nerve cell. The general behaviour of
theses sensors is to react upon a certain
number of input signals in the form of an
output signal. As in neurons the output
signal will be activated if a certain threshold
is exceeded. After this activation the neuron
cell will be inactive for a certain period.
This means that it is not sensitive to input
signals.

To be more specific to the field of image
processing a sensor operates on an area of
pixels in an image. The pixels represent the
input signals to a sensor. An input signal
simply is a Boolean value representing the
activeness of that pixel. There is a wide
range of definitions of the activeness of a
pixel, which could be defined by the sensing
function. You could define the sensing
function for example to become active on
motions in the image or to become active if
an object appears as the foreground of an
image through background subtraction. If a
particular percentage of these pixels become
active the threshold of the sensor is
exceeded and the sensor will output a signal.
After exceeding the threshold the sensor is
not able to sense for a certain defined
period. In the Javacam application the
timeline is represented as the different
frames of the output stream of the camera.

A characteristic of both the neuron and
sensor is that they could be connected to
each other; in this way a hierarchy could be
build which provide a certain functionality.
To speed up the sensor is it possible to not

sense every pixel but to skip a number of
pixels in an area. If a sensor is defined for a
certain location with width w and height h it
is not necessary to sense every pixel of the
area w*h to still cover the whole area.

OUTPUT

ACwZmwn

Figure 6: sensor with as input the pixels of the
frame

6 Object Tracking and General
Motion Extraction

The first task we’ve had to solve was the
task of Object Tracking and General Motion
Extraction. The point was to extract
information about global movement in a
picture. This information could then be used
for several higher level intelligent tasks, one
of which is detection of panic (people
running in one particular direction). For the
extraction of global movement we’ve
devised several solutions, which will be
discussed in the next paragraphs.

6.1 Sensor Grid

The first solution tries to extract global
motion with the use of sensors. Different
sensors will be placed in a grid across the
whole picture. By detecting motion in
certain areas within successive frames we
can try to derive motion in a particular
direction. In the course of this project we’ve
only tried to derive horizontal and vertical
motion, but other directions could possibly
also be extracted in this manner.

Broad shaped sensors were placed to detect
vertical motion, and long shaped sensors to
detect horizontal motion (see fig. 7.1 and
7.2).

7.1 Vertical sensors for horizontal movement
detection

T -
WY (W

Fauy

7.2 Horizontal sensors for vertical movement
detection

Detection of movement was done by
keeping track of the sensors ‘triggered’ at
each frame. For all sensors we keep track of
the frame number at which the sensor was
‘triggered’ last. From this information we
can derive motion at a global scale. The
way we extract motion from this
information is by looking for ascending or
descending traces within this triggered-
sensor array. For instance if the frame
numbers for sensors show a trace of
{1,2,3,4} we could say that an object is
moving in a certain direction, given the fact
an object has moved through different
sensors at different frames.

6.2 Image Segmentation and Matching

A second solution for the task is by making
use of image segmentation. After the
background subtraction discussed earlier we
are left with a bitmap which tells us what is
background and what is foreground. These
bitmaps could be filtered of noise by the use
of opening and closing. At this point we
have a picture like the one in figure 5. The
picture consists of a black background, and
white (moving) regions that represent the
foreground. Image segmentation could be
used to extract the white regions in the
image, where after these regions could be
matched in successive frames, to extract
motion. The motion of all regions could in
the end be combined to give an indication of
global motion.

Many image segmentation algorithms have
been proposed [4,5,6,7,8]. In this task we
will use a simplification of the seeded region
growing algorithm introduced by Adams
and Bischof [4]. The algorithm uses
similarity and dissimilarity = between
neighbouring pixels to grow regions with
respect to a number of starting points,
known as seeds. We start with number of
seeds grouped together in n groups:
Ay,...,A,. Groups can consist of any number
of pixels as long as the group is not empty.
At each step a pixel is added to one of the
groups. Let T be the set of unallocated
pixels which border at least one of the
regions. This means that T is the set of
pixels that form the total boundary of all
regions formed up to now.

T= xeLnJAi |N(x)ﬂLnJAi 0
i=1 i=1

N(x) is the set of neighbouring pixels of x.
In our case we will usually look at the 8-
connectivity of a pixel, but other
connectivity masks can also be used to
speed up computation.

At each step the algorithm takes a pixel x
from T, and adds it to one of its
neighbouring regions. Then we look at N(x),
the neighbours of x, and put them in T in
ascending order, according to some distance
measure, with respect to their neighbouring
regions. The distance is simply the measure
of dissimilarity with the neighbouring
regions mean (intensity).

o(x)=|g(x)- fyvggf(tg[g(y)]‘

This keeps T sorted with respect to the
distance, so that less distant pixels are
considered first for adding them to a region.
If a pixel is on the boundary of more than
one region, we have to decide to what region
we should add it. We can simply calculate
the distances of this pixel to each
neighbouring region, and add the pixel to
that region, for which the distance is the
smallest.

A pseudo code of the algorithm is given
below. In the code a simple sorted list (SSL)
is used to store elements of T.

Initialization:
Label seed points according to their initial grouping.
Put neighbours of seed points (the initial T) in the SSL.

Region Growing:
While SSL is not empty do

Remove first pixel y from the SSL.
Test the neighbours of this pixel:

if all neighbours of y which are already labelled (other than

boundary label) have the same label
then
Set y to this label.
Update running mean of corresponding region.

Add neighbours of y which are neither already set nor
already in the SSL to the SSL according to their value

of delta
else
Flag y with the boundary label.

The algorithm we used is a simplification of
the algorithm described above. Because we
are only working with bitmaps, we don’t
have to keep track of any mean, or have to
make checks for distance. We can just check
whether pixels on the boundary are white
and, if they are, add them to the region.
Furthermore we should discuss the way we
select seeds. What we do is loop through all
pixels in the bitmap image and take the first
white pixel we come along as a seed. Then
we start growing the seed until it stops and a
region is formed. Now we subtract this
region from the bitmap, and continue the
loop through the pixels looking for new
seeds.

6.3 Movement detection using regions

Now that we can distinguish the different
regions in a frame we should be able to
detect the movement of these regions
(representing moving objects or people) in
time and to quantify the speed of the
motions.

Difficulties arise in the detection of motions
in the successive frames. In each frame the
regions are known, nevertheless the
mapping of the regions of the previous
frame to the regions in the current frame is
not known. It is never guaranteed that the
region in one frame representing an object is
the same region in the other frame
representing the same object.

Another problem is that one object is not
always represented as one region, because
the background subtraction is not an object
segmentation algorithm. An object could be
in one frame consisting of a large region and
in another frame consisting of multiple small
regions.

As objects are moving through the screen of
the camera it is also possible that certain
regions will appear or disappear, so there
will always exist regions that could not
directly mapped to a region in the previous
frame.

An approach to motion detection of objects
is the Nearest Neighbour method [11]. This
method assigns a region in the current frame

to a region in the previous frame, which is
closest to the region in the current frame
with respect to certain properties of a region.
The use of the Nearest Neighbour algorithm
is based on the assumption that when an
object moves through the camera the
location of this object in one frame will only
differ relatively small from the location in
the next frame. Also size constancy is
assumed; the size of an object will only
smoothly change from one frame to another
frame. The Nearest Neighbour method
compares the regions of two successive
frames with respect to the distance from
region to region and the difference in size of
the regions.

If the previous frame does not contain any
regions (there are no objects in front of the
camera) and there are regions in the current
frame then they will be considered as new
objects appearing in the screen. Because
these new regions could not be mapped to
the previous frame they will not have any
begin speed. If regions can be mapped to
previous regions they build up an average
speed, which is the movement in pixels from
region to region. If the current frame does
not contain any regions and the previous
does contain regions, it means that the
objects have moved out of the screen, so no
mapping is needed.

If both frames contain regions a mapping is
needed. This mapping is done by calculating
for each region in the current frame the
difference in distance and size compared to
the regions in the previous frame. For both
the difference in location and the difference
in size a ranking is built. The region in the
current frame will be mapped with the
region in the previous frame which has a
lowest total ranking of the difference in
location and the difference in size. The
region in the current frame will take over the
average speed of the mapped region of the
previous frame; also the average speed will
be updated.

The mapping of regions with respect to the
least distance between the regions is not
always a good measure. If for example there
is only one region in two successive frames,

these regions will always be mapped
together even if the distance between them
is large. A solution to this problem is to
restrict the distance between the regions to a
maximum distance. This maximum distance
is difficult to define because there it is not
one predefined distance; it depends on the
speed and size of an object. Objects moving
at high speed should be tolerated to a higher
maximum than objects moving at low speed.
To get rid off the possible noise of the
background subtraction algorithm only
regions of a particular size will be
considered.

Figure 8 the people in the frame are detected as a
moving region at low speed

A consequence of the assumption that
locations of an object in one frame and the
next frame will differ relatively small is that
one object or region could melt together
with another object. For example if there is
one object that is not moving in the frame
and another object is moving to this object,
the moving object will melt together with
the non moving object.

7 People Counting

One aspect of counting the number of
people entering or leaving a room is the
detection of motion in a certain area of the
frame. A second important aspect is the
detection of the direction of the motion.

Both aspects could be solved by using
sensors and sensor grids.

« Camera

Figure 9a

NN = EEE

« Camera
Figure 9b

Two horizontal grid sensor placed at the left
en the right of the doorway (figure 9a). One
vertical grid sensor placed at the floor of the
doorway while the camera is at the ceiling
(figure 9b). We implemented two methods
for the task of counting people.

The first one places two horizontal grid
sensors at the doorway (see figure 9a sl and
s2), which are able to detect horizontal
motion. The camera is placed at the right or
the left from the doorway.

The second one places one vertical sensor
which is able to detect vertical motion. (see
figure 9b s1) The camera is placed in front
of the doorway at the ceiling looking down
to the ground.

8 Discussion and future work

In the task of object tracking and general
motion extraction by using sensor grids we
ran into a number of problems. First of all
the speed of a moving object was a problem.
Object moving at high speed could pass
sensors In successive frames, without
triggering them. The reason for this is that
for a sensor to register motion, the object
should be within the sensors region for at
least one frame. If this isn't the case, then
there won't be any detection of motion. An
object moving at high speed could thus lead
to an erroneous triggered-sensors array,
what would seriously affect the extraction of
global motion. A second problem is the
scale used to detect motion. With the scale I
mean the size of the objects moving in the
picture. The problem with scale is that it is
directly related to the sensitivity of the
sensors. For large object this should be
small, but for small object, or objects seen
from a distance, we should use very
sensitive sensors. The problem with
sensitive sensors is that they are prone to
noise. The more sensitive a sensor is, the
more interference there will be from noise.
Noisy sensors will lead to an erroneous
triggered-sensors array, thus affecting global
motion extraction. Results of the use of
sensor grids showed that sensor grids are too
global and sensitive to noise to detect
motion from a long distance. It is hard to
locate the real movement in the frame.

The task of object tracking and general
motion extraction by using regions heavily
relied on the performance of the background
subtraction. If the background subtraction
does not perform well, the noise of it will be
propagated trough the object tracking and
general motion extraction. This was
noticeable when multiple regions showed up
in the image when there were no moving
objects in the image. The noise was clearly
visible in the background subtraction. Under
static lighting conditions the RGB colour
model performed well for the background
subtraction and thus for the object tracking

and general motion extraction. When people
or objects showed up in the screen they were
clearly visible by a bounding box around
them. Also the speed arrow performed well.
Under variable lighting conditions the RGB
model showed much noise. For the variable
lighting conditions we tried to test the
normalized RGB. In general it showed out
that there was less noise. One disadvantage
of the normalized RGB model is that it
becomes less accurate for low intensity
values (especially when using a simple
webcam). We have tried to combine other
colour models with background subtraction
without explicit results.

As mentioned in the section 6.3 the
threshold at which a region is matched with
another region or should be considered as a
new object, should not be a fixed value but
should be a dynamical threshold depending
on the speed and size of a region. To
discriminate between moving and non
moving objects the Nearest Neighbour
method should also consider the difference
in speed of the regions. To be more general
regions could be compared by building
histograms of them with respect to certain
properties of the region (size, speed, RGB
values). Multiple small regions which are
close together and have more or less the
same speed should be considered as one big
region.

When testing the people counting task we
concluded that the performance of the two
counting methods (horizontal or vertical
sensor grids) is strongly depending on the
size of the sensors, the threshold of the
sensors (depend of the size), the time that
the sensors are inactive and the number of
sensors placed.

It showed out that the best setting was the
use of a grid sensor consisting of about 6 to
9 small but wide sensors. If too less sensors
are used fast walking people were not
counted, because all the sensor were active
in the same frame. Therefore to still detect
the direction of movement more sensors
must be used. Also a small threshold and an
inactive time of about 10 frames did work
well.

Improvements could be made by defining a
better sensing function for the sensors. In the
implemented methods a motion detection
function was used as sensing function. Most
of the time this works well, but in some
lightning conditions it could not detect
motion.

Overall we can conclude that the software
developed still needs some improvements to
make it generally applicable. However we
do think intelligent cameras can be made
and would be an invaluable asset to certain
applications.

References

1. Reader of the course Machine Vision,
University of Amsterdam. Rein van den
Boomgaard and Leo Dorst

2. Tijmen Majoor “Face Detection using
Color Based Region of Interest Selection”,
Master’s Thesis, 2000, University of
Amsterdam, Faculty of Science.

3. Theo Gevers and Arnold W.M.
Smeulders, “Color Based Object
Recognition”, 1999, University of
Amsterdam, Faculty of Science.

4. R. Adams, L. Bischof: Seeded region
growing. IEEE Transactions on PAMI 16,
No. 6 (1994) 641 -647

5. J. Freixenet, X. Munoz, D. Raba, J.
Marti, X. Cufi: Yet Another Survey on
Image Segmentation: Region and Boundary
Information Integration. University of
Girona

6. R. Haralick, L. Shapiro: Image
Segmentation Techniques. Computervision,
Graphics and Image Processing 29 (1985)
100-132

7. K. Fu, J. Mu: A survey on image
segmentation. Pattern Recognition 13 (1981)
3-16

8. N. Pal, S. Pal: A review on image
segmentation techniques. Pattern
Recognition 26 (1993) 1277-1294

9. S. Cheung, C. Kamath: Robust
Techniques for background subtraction in
urban traffic video. Center for Applied
Scientific Computing Lawrence Livermore
National Laboratory

10. S. Jabri, Z. Duric, H. Wechsler, A.
Rosenfeld: Detection and Location of
People in Video Images Using Adaptive
Fusion of Color and Edge Information.
Department of Computer Science, George
Mason University and Center for
Automation Research, University of
Maryland

11. Tom M. Mitchell: Machine Learning.
McGraw-Hill 1997

