
An Extendible Simulator for Sensor Network Simulations
Maarten Corzilius

Michiel Kamermans
Tijn Schmits
Mark Smids

Universiteit van Amsterdam, 2005

Abstract

This article concerns the implementation of
a simulator for sensor networks operating in
crisis situations. The simulator runs based
on scenario scripts defined in XML and is
designed to interface with script-defined
virtual sensors as well as distributed
perception networks to generate scenario
analyses when acting as web service.
In its current implementation, this simulator
runs as an independent program under a
java environment, modelling the world
relevant to a crisis scenario and giving
visual feedback on what is happening during
the processing of a crisis script. We outline
the design of this simulator, exemplify its
function by illustrating what scripts are used,
and how the components of the simulator
interface, as well as suggest how this system
can be extended.

1. Introduction

One of the most important aspects in
large scale crisis situations is situation
awareness. The availability of
information can be vital to rescue
workers and people on the scene, where
a lack of information can result in
uncoordinated actions that may lead to
unnecessary loss of life or damages.
Situations such as where the fire brigade
enters a building to rescue people
trapped inside while an on scene report
to the police contains the fact that the
building is in fact vacant, leads to
unnecessary steps being taken to resolve
the crisis. This problem can be avoided
by proper information management.

The current decentralised method of
information management involves
supervising coordinators between the
various parties involved, who are highly
dependant on low level and often scene
localised information. It is their task to
make sense of the many reports coming
in during the hectic period of the crisis
and to convey their analysis of the crisis
and recommended actions to all parties
involved.
One way to augment this process is to
employ sensor networks for information
gathering. Sensor networks play an
important role in the process of
gathering information regarding crisis
situations, as they can supply
information without human supervision
or operation. Current common sensor
networks are for instance CCTV systems
in high risk areas such as light industrial
sites, or sensor grids for monitoring
emissions and temperatures at chemical
plants. Another example is the
increasing number of CCTV in city
centres in the Netherlands, used by
emergency services.
With the popularity and effectiveness of
these networks increasing, the road has
been paved for integrating autonomous
intelligent components into these
networks, to fulfil the role of monitor
and crisis analyser. Networks that
contain such components are known as
Intelligent Sensor Networks, of which
the ideal form can be thought of as a
decision making system that is tapped
into all sensors present on the scene of a
crisis. This decision making system
would be able to poll all available
resources for information required to

come up with an accurate analysis of the
crisis situation, and recommend courses
of action for the various emergency
services on the scene. This collective
system of sensor networks and decision
mechanism is currently being researched
by the University of Amsterdam, in
association with various organisations,
as “the Combined Project.”
Of course, before intelligent sensor
networks can be used in real life, they
need to be thoroughly tested to make
sure they perform as well as, or even out
perform, human operators. The most
effective way to do this is to run
simulations of crises and see whether the
decision making mechanism comes up
with analyses appropriate for the
simulated crisis it’s been assigned to
operate in. The simulator used for this
essentially simulates all sensor readings
during a crisis, and the decision making
mechanism is given this sensor data to
analyse the crisis while the simulation
runs.
This article focuses on the simulator
aspect of the intelligent sensor network,
its construction, and its extendibility to
operate as an off site remote service
using web service technology [1], as
well as intelligent agent architectures
currently available.

2. Project background

The task of creating a functional
simulator with graphical user interface,
operating on a simulation script was
assigned to four master students of
artificial intelligence at the University of
Amsterdam as part of the course “Design
and Organisation of Autonomous
Systems” coordinated by drs. Arnoud

Visser. Additionally, the task was
allotted a one month timeframe to be
completed in, with Peter Lith being
assigned as project supervisor.
Given the time constraints, certain
functionality aspects of the simulator
were prioritised, such as proper scenario
processing and visualisation using the
platform independent JAVA language,
while other tasks were given low priority,
such as the implementation of the
simulator as web service and embedding
it in current autonomous agent
architectures.

3. Simulator design

A functional simulator can be divided
into three principal components. First
and foremost, there is the simulated
reality, housing everything from
simulation maps to simulated actors.
This part we have labelled “the world”
in our simulator design. Secondly, this
world needs to be visualised in some
way, which in our implementation of
this simulator is done through a
straightforward graphical user interface.
The third component that can be
identified to run concurrent with the
world itself is the processing of the
simulation script. This process, while not
a principal component in terms of the
simulation, is essential for setting up the
world and everything in it, as well as
providing the script for how the world
changes over time.
Because the simulation scripts are in
XML [5] format we were able to
implement commonly used systems for
processing XML documents, providing
the simulator with the freedom to
simulate any given scenario involving

sensor networks at any location. Given
the fact that the scripts were written in a
highly flexible mark-up language, a wide
range of possible simulations is possible,
provided the information describing the

scene follows the form chosen to
represent scenarios. We start by
describing this format, as it in part
functions as a template for how to
construct and model the world.

3.1. XML scripts

Simulation scripts are divided into two
main blocks. The first of these blocks
define the attributes of the world to be
simulated, and contains information sets
for actors, sensors, and maps relevant to
the simulation. While under the current
format only sensors and maps are used
in simulation scripts, the extension for
actors (such as people on the scene or
simulation relevant moving objects like
vehicles) can be easily added because of

<definitions>
 <sensor_definitions>
 <templates>
 <sensor_template type="sensorsuite">
 <subsensor type="camera"/>
 <subsensor type="microphone"/>
 <subsensor type="GPS locator"/>
 <subsensor type="gas sensor"/>
 <sensor_templates>
 <sensor_template type="camera">
 <unit name="frame">
 <preset xdim="640"/>
 <preset ydim="480"/>
 <preset framerate="25"/>
 <preset resolution="24"/>
 </unit >
 </sensor_template>
 <...more templates...>
 </templates>
 <scene_sensors>
 <sensor id="ss.001" type="sensorsuite" location="N 132 42 3 E 67 20 0"/>
 <sensor id="ss.002" type="sensorsuite" location="N 132 42 10 E 67 20 4"/>
 <... more sensors ...>
 </scene_sensors>
 </sensor_defintions>
 <map_definitions>
 <map id="map.001" file="map-001.jpg" topleft="N 132 42 0" E 67 19 0"
topright="N 132 42 0" E 67 21 0" bottomleft="N 132 43 0" E 67 19 0" bottomright="N
132 43 0" E 67 21 0"/>
 </map_definitions>
</definitions>

Figure 1 – XML definitions block

The object relations within the simulator

the format chosen. An example of this
block has been given in figure 1.
As can be seen in the figure, the sensor
definition block is separated into two
subsections, one for sensor template
definitions and one for actual scene
sensors. This separation means that it’s
quite easy to add new types of sensors
when required, as well as adding new
sensors on the scene of existing types,
without having to completely specify
scene sensors in terms of subsensors and
their measure units and presets.
Also apparent from the figure, both
maps and scene sensors carry GPS
location values. For sensors, this value
denotes the location of the sensor in the
world, where for maps the locations
stand for the corner points of the map,
which is used to align all the sensors
visually.
The second block in the script contains
all the dynamic information, represented
as scenes. Each scene describes, at a
certain moment in time, both the current
situation, as well as the changes that
occur in the world at that moment, in
terms of actor movement, sensor readout
and map updates when required.

As can be seen in figure 2, each scene
has a title and a natural English
description, as well as optional action
and event blocks. The action blocks
allow the simulator to be triggered for
input, while the event blocks specify
events occurring in the world, such as
sensor readings changing, or location
changes warranting the loading of a
different map in the simulator.
Before the information in this script can
be used by the world, it first needs to be
turned into program objects. This is done
by parsing the XML using a SAX parser,
and feeding the information obtained to
an interface that converts the plain text
into program objects. The SAX parser is
characterised by running through an
XML document without retaining any
history, so intelligent parsing of
incoming elements is important to
ensure that the world gets proper objects
to work with. This is done using an
interface that turns generic element
representation into real objects, based on
their type and content, which stores all
these objects until the world is built.

<scene time=”timestamp”>
 <title>Scene title</title>
 <description>Scene description</description>
 <actions>
 <action>Trigger an action</action>
 <... more actions ...>
 <action>
 <events>
 <event type=”script/sensor”>
 <description>event description</description>
 <s_event sensor="sensor name">
 <measure unit="unit" value="measured value"/>
 </s_event>
 <command>register value</command>
 </event>
 <... more event ...>
 </events>

Figure 2 – XML scene block

3.2. Creation of the world

When the world is created, it requests all
sensor templates from the interface, as
well as all the scene sensors, using the
templates to create instances of the
sensor types for each scene sensor it gets
from the interface. It also requests all
maps from the interface, after which the
world sets itself to initialised and ready
to start running the scenario.
Processing of the scenario is based on
timestamps. The world has an external
clock running and pre-fetches scenes
from the interface, letting the external
clock run until the timestamp of the
clock matches the timestamp of the next
queued scene. When the two clock
match up, the scene is processed, and the
world modifies any sensors, maps and
actors that may be indicated as having
changed by the event.

3.3. GUI interfacing

Whenever the world modifies any of its
internal settings based on processed
scenes, this change needs to be
visualised to the user. This is done by
calls to the GUI.
The GUI initially starts up as a blank
system, waiting for the world to finish
setting up all the initial scene sensors
and available maps. When the world has
finished doing this, it sets a flag that lets
the GUI know that it is ready to start
processing scenes. The GUI then loads
the initial map as indicated by the first
scene in the script, and visually places
all the sensors on this map at their
designated GPS locations.
The GUI also has a set of control options
to load scripts, start, pause/resume and
stop playback of scripts, as well as

controls to speed up or slow down the
simulation.

3.4. The sensors

In this system, virtual sensors are created
based on their definition in the XML
script. Given the modular nature of the
way sensors have been implemented in
the current Simulator, adding new types
of sensors is a relatively easy task, where
all that needs to be done is to define a
custom sensor type extending the basic
sensor frame, with XML definitions for
the units and presents for these units in
the simulation script. A sensor template
class can then be written that generates
the sensor based on this definition. This
has as advantage that even real sensors
can be described in terms of their units
and presets in the script, which the world
can then theoretically work with.
Each sensor also has the ability to
generate popups that can be sent to the
GUI to visualise the sensor’s current
readings as well as reading history in the
form of text and graphs, depending on
what makes most sense visually for the
user.
However, external real world sensors
require the additional presence of a

The GUI interface with a sensor popup

The simulator GUI in action

communication system, so that they can
interface with the world. For this the
concept of the web service is best suited.

4. Web services

In broad terms, a web service is a
program which makes itself available
over the internet and uses an XML based
messaging system to send and receive
information from other online sources.
The information exchange is typically
done using messages formatted
according to a known message structure.
Currently, most web services use the
Web Service Description Language
(WSDL, [3]) to define their message
systems, which allows other programs to
interpret and communicate with any web
service that utilises WSDL, regardless of
the operating system or programming
language the program was written in.
The use of WSDL, an XML based
system, allows web services to tie into
each other autonomously, opening up the
possibilities of web-based autonomous
agents, and it is in this context that the

 real power of the simulator, and the
sensor network it is meant to test, can be
found.
The power lies in the fact that through
the use of web services, there is no
longer a need for a centralised system. If
real sensors instead of virtual sensors are
used then these can, by implementing
web service front ends, interface with
the simulator from any given distance, as
long as there is a web connection
between the sensors and the simulator.
Likewise, a decision mechanism can be
located anywhere and still fulfil its role
as analyst as long as it can connect, as
agent, to the simulator.

4.1. The DPN

A currently interesting decision
mechanism that is being considered for
use in the intelligent sensor networks
discussed is the Distributed Perception
Networks (DPN), which is based on the
concept of a Bayesian reasoning network
operating on values derived from agents
(sensors), in which resource allocation of

<wsdl:message name=”sensorName”>
 part name=”Sensor” type=”xsd:string”></wsdl:message>
<wsdl:message name=”sensorReading”>
 <part name=”Reading” type=”xsd:string”></wsdl:message>

<portType name=”sensorPort”>
 <operation name=”poll”>
 <input message=”tns:sensorName”>
 <output message=”tns:sensorReading”>
 </operation>
</portType>

<binding port=”sensorPort”>
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http”>
 <operation name=”getReading”>
 <soap:operation soapAction="http://the_combined_project/getReading"/>
 <input ... />
 <output ... />
 </operation>
</binding>

Figure 3 – a WSDL specification for World

which agent is reserved for which part of
the network is dynamically determined.
This DPN requests information from
sensors, polling them for their values to
be used in the perception network to
come up with hypotheses and situation
analyses, or even issue commands to
sensors to request more detailed
 information from them while the DPN
updates its analyses.
The requesting of information and
issuing of commands is performed
through web service interfaces, and can
be done either directly between the DPN
and sensors, or tunnelled through for
instance a simulator that is processing
the sensors of interest to the DPN.

4.2. Extending the simulator

In order to set up the simulator as a web
service for remote use, a web service
front end plug-in must be written for the
World element of the simulator. The
World should function as a service for
the DPN, providing the DPN with sensor
readings and other data which the DPN
should require. The DPN should be able
to invoke a series of public World
functions through proxy, defined by the
Simple Object Access Protocol (SOAP,
[2]), which is a lightweight protocol for
exchange of information in a
decentralised, distributed environment
standardised by the W3C. To give an
idea of how the World might function as
web service we propose a WSDL
specification as listed in figure 3 on the
previous page.
In this specification functions and
arguments are defined which will be
used during the communication between
the World and the DPN.

Note that we, keeping with the nature of
XML, have defined all arguments to be
strings, bearing in mind that many
different sensors can have many
different return types, all of which can
be represented by a string. The precise
format of the strings is not set, thus any
desired format containing type
specification of sensor readings can be
set, to provide an indication for the client
to further process the data.
Future developments might include a
request-response operation pattern,
which will provide two-way
communication, thus providing the DPN
with the means to not only request
information from sensors, but also to
issue action commands to the sensors.
Keeping in mind that changes in the
world are event based, the web service
plug-in should also be designed to relay
these action commands as events.

5. Optional Further Extensions

Currently certain features associated
with simulation are not implemented,
such as moving single actors and groups
of actors, visual feedback for risk
assessment (grid colouring), user
interaction for sensor manipulation and
interfacing with real sensors. Also
because in its current implementation the
Simulator is only capable of processing
the script it is unable to simulate certain
crisis elements itself. One might think of
the world creating sensor events which
relate to the dispersion of gas after the
simulator (either as random factor or as
user input) has triggered a gas leak
somewhere. This type of crisis prototype
event can be used to add versatility to a
crisis simulation.

5.1. Actors

Actors have been partially implemented,
with sensors being specific extensions
on the actors concept, but no direct
instances of actors have yet been created.
Like sensors, actors can move around in
the world, but unlike sensors they cannot
be polled. Their movement can be used
by the DPN for scene analysis, but no
communication is possible between the
DPN and actors, unless actors carry a
sensor like a mobile phone. Adding
actors into the simulation can also clarify
the nature of the crisis to the user, as
certain people or vehicles typically play
a key role in a crisis situation. For
example, the display of a leaking tanker
in the Rotterdam harbour will make a
crisis simulation clearer to users (and
spectators at demonstrations) than if this
were omitted.

5.2. DPN hypothesis overlay

Currently, maps are built up as multiple
adjacent map patches, which can be used
for visualising local information. One of
the most obvious instances of local
information is local risk assessment.
During a simulation run the hypotheses
about the risk in certain areas generated
by the DPN can be visualised for
instance by grid colouring of the patches
using the common red-green concept to
stand for unsafe and safe areas
respectively.

5.3. User Interaction

The current implementation is also
limited in the sense that sensors
displayed in the crisis scene can only be
manipulated by events described in the

XML script. For interactive use it would
be functional if certain properties of
sensors could be changed by the user in
real-time, such as camera orientation,
sensor suite location or sensor sample
rate. A second form of functional user
interaction that can be added is runtime
control where the user can skip to a
certain time in the simulation run, rather
than having to wait for the simulator to
arrive at the desired point in time.
Implementing user interaction will
require a link back from the GUI to the
world, something which in the current
implementation does not exist yet.

5.4. Real sensor interfacing

A final extension is the use of real
sensors instead of virtual sensors for
demonstration purposes. In order for this
to work, the real sensor will need to be
hooked up to its own web interface,
allowing it to directly communicate with
the world in a language the world
understands. Events sent by this sensor
need to be placed in the proper spot in
the event queue, which is not real-time
in the current implementation, given that
it operates on a predefined script.
Adding real sensors will require
modifying the way the world stores and
processes events.

6. Concluding remarks

This project had to be extendible from
the outset, with this in mind we have
created an easily extendible and where
required easily revisable code base.
Since this project will be continued in
the coming years it is important that this
system is transparent and easy to use.
We believe we have succeeded in this

task and have taken future technology
into account while laying the
foundations for the simulator aspect of
the combined Intelligent Sensor Network
project.

Technological references and
whitepapers

[1] “Web Services Essentials”, Chapter
6: WSDL Essentials, O’Reilly,
http://www.oreilly.com/catalog/webserv
ess/chapter/ch06.html
[2] “SOAP version 1.2 specification”,
W3C recommendation,
http://www.w3.org/TR/2003/REC-
soap12-part0-20030624/
[3] “Web Services description language”,
W3C recommendation,
http://www.w3.org/TR/wsdl
[4] “Sensor Network Simulator Project
Page” (this article can be found here in
digital form),
http://student.science.uva.nl/~msmids/D
OAS/
[5] “Extensible Markup Language 1.0”,
W3C recommendation,
http://www.w3c.org/TR/2004/REC-xml-
20040204/

