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Abstract

We introduce a resource allocation algorithm for a multi
agent-based data fusion network. This network is called
a Distributed Perception network in literature. The re-
source allocation algorithm is based on the cumulative
absolute entropy change in the beliefs at the root of the
data fusion network. Our algorithm can be efficiently
computed locally at the agents, based on a matrix en-
coding of a Bayesian network. Only very small matri-
ces have to be sent among the agents. Based on just
these matrices an agent that is faced with a resource
conflict can make an informed decision about which
network to connect to.

1 Introduction

Pavlin et al [Pav04] introduced a multi agent-based ap-
proach to data fusion. They use a collection of agents
called a Distributed Perception Network (DPN), as op-
posed to a centralized approach to data fusion typically
used.

Agents in a DPN in general can provide a service to
other agents upon request. Fusion agents may depend
on the services of other agents since they fuse together
information. Services are beliefs about some concept
variable; the beliefs form a probability distribution over
the variable. The fusion agents are able to reason about
their own beliefs, given the input received from other
agents, by means of an internal Bayesian network.

The internal Bayesian network is constrained to
have only a single root node which corresponds to the
service provided by the agent. Every leaf node of the
Bayesian network should correspond to a service needed.
Apart from these two constraints the form of the Bayesian
network can be arbitrarily complex.

Beliefs from other agents needed by a fusion agent
are received on-demand. Only when a request is made
for the service provided by an agent, it will try to ob-
tain the services it depends on. If it cannot find an
agent willing to provide the service, it will assume an

uniform distribution to represent a complete lack of
knowledge about that service. When the agent receives
an updated belief for one of its dependencies, it will
update its own belief accordingly, see De Oude et al
[Oud05] for a detailed explanation.

Besides fusion agents, there are also sensor agents
which just provide a service, for example by quering a
physical sensor. These readings of the physical sensor
are then turned into a belief which can be provided to
another agent.

The DPN networks currently implemented only sup-
port binary variables, because currently the emphasis
is on beliefs about the existence of a certain concept,
e.g. there is a 90% certainty that there is a fire. DPNs
are more general than the binary case and can be ap-
plied to any variables which take only a finite number
of values.

A DPN is a distributed respresentation of a Bayesian
network; the correspondence is shown in [Oud05, Pav04].

While the agents in a DPN are looking for others
which are able to provide the service they need, it can
come to conflicts when multiple agents try to connect
to the same agent. This might be prevented by care-
ful design of the DPN agents and their roles, but in
general, we would like the DPN to be as flexible and
therefore as powerful as possible. If we have a DPN
with a lot of fusion agents and a limited number of
sensor agents, then we do not want the DPN to break
down if there is a conflict over a sensor agent. If there
is such a resource conflict, then we need to resolve it.
In section 2 we describe situations in which resource
conflicts can occur and how they can be addressed.

In figure 1 an example of a resource conflict occur-
ing between two DPNs is shown. We have two main
concepts that we can test for, Fire and Gas Leak. This
presence of these concepts cause other events to occur,
like that smoke or heat is detected in the case of fire.
Both DPNs end up needing the CO sensor for their
causal model (e.g. Fire causes smoke, which causes
CO to be detectable, which in turn causes the CO sen-
sor to detect that gas). This constitutes a resource
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Figure 1: An example of a resource conflict that can occur between two Distributed Perception Networks. These
networks were implemented as a test case.

conflict introduced before.
Nunnink et al [Nun05] suggest a solution to the re-

source conflict by allocating the resource to the DPN
based on a change in entropy. The goal of this pa-
per is to demonstrate how their solution can work in
the existing DPN framework and to suggest novel ideas
for optimizing this approach to resource allocation. In
section 3 we discuss their approach in more detail. In
section 4 we describe the architecture of our imple-
mentation of this approach and finally in section 5 we
evaluate the computational cost of this approach.

2 Scenarios

To solve a resource allocation problem in a DPN, there
are several possible prototypical scenarios we need to
be aware of. These scenarios describe possible combi-
nations of factors that can influence an algorithm to
optimally allocate the resource in question.

For some types of sensors however, we may not need
sophisticated techniques to allocate it to exactly one
parent as the sensor may not depend on settable pa-
rameters. This would be true for a sensor which senses
only one property of its environment, for example a
simple illumination sensor which only says if there is
light or not. Actually, for this sensor, it would be op-
timal to send its output to multiple connected agents
to maximize efficiency. This kind of behavior will be
termed ‘shareable’ in this article and does not require
any processing at all on the part of resource allocation
techniques.

As a general approach for those sensors that need
resource allocation, we will use a measure of priority

acquired from the requesting agents to find out which
one of them needs the service of this resource the most
at a certain time.

There are several complications to this approach
due to the distributed nature of the DPN. Message
sending and computation of the priority measure will
take different amounts of time. Hence, it will take some
finite time to gather all necessary data to make the de-
cision on allocation. To optimally assign the resource
in question in the least time possible, different algo-
rithms have to be applied according to the nature of
the resource.

Of importance are how fast a resource can change
its parameters (e.g. which gas to sense in a gas sensor,
which temperature threshold in a temperature sensor,
which way to look with a pan-tilt camera, etc) and how
fast the sensor can supply a sensible inference from the
gathered data (e.g. a temperature sensor is fast to
know if the measured temperature is above or below
a set threshold, but a gas sensor might need multiple
measurements to get a stable reading). We investi-
gate four cases highlighting the possible combinations
of these two variables.

2.1 Case A: Temperature Sensor

A temperature sensor is a simple device and we assume
it takes negligible time to measure the current temper-
ature. Also, setting a threshold in the agent software
is fast. In this setting, the resource allocation problem
boils down to a simple question of whether to reassign
the resource to a competing agent or not if the sen-
sor is already connected. Theoretically it makes sense
to use resource allocation with the tempature sensor,
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but in practice the sensor can serve multiple DPNs if
it switches parameters quick enough. This effectively
makes this type of sensor ‘shareable’.

2.2 Case B: Gas Sensor

A gas sensor is also fast when setting parameters, like
a threshold value or the kind of gas to sense, but pre-
sumably slow when sensing. This might be because the
sensor needs to do some filtering, like averaging, before
a stable reading is obtained. In such a setting, it makes
sense to do resource allocation. We need to identify an
algorithm that solves the problem sufficiently and with
proper respect of the time constraints.

Since this kind of sensor needs some finite time to
supply a value, we cannot reassign the sensor while it
is sensing. Therefore, we need to know when the sen-
sor is done sensing in order to delay the reassignment.
However, we can already do some processing (like cal-
culating priority measures) while the sensor is waiting
for the new data to make the decision easier later. This
can be done by the following algorithm:

• If the sensor is not yet connected, connect imme-
diately.

• If the sensor is already connected, enqueue the
incoming request and ask for the priority measure
from all agents in the queue to make sure we have
recent priorities from all of them.

• When a priority measure is returned, reorder the
queue according to the priority.

• Once the sensor is done with a sensing interval,
reassign the sensor to the first agent in the queue.

Using a priority queue to store the requests for this
sensor will effectively guarantee that the sensor will
always send its data to the agent that needs it the
most.

2.3 Case C: Pan-Tilt Camera (with fast
processing)

The Pan-Tilt Camera will be rather slow when setting
its parameters, e.g. changing the direction we want
the camera to point to. On the other hand, due to
only limited, maybe even hardware based, signal pro-
cessing (e.g. for color based fire detection with a ther-
mal camera), data will be availably quickly after the
parameters are set. This results in a different kind of
time contraint than the previous case. Actually, we
can approach this problem in two different ways:

1. A sensor must send at least one output to a con-
nected agent.

2. A sensor may be reassigned before it has sent the
first output to the connected agent, e.g. while it
is still rotating the camera.

In the first approach, the algorithm will be the same
as in Case B. In the second approach, we do not need to
wait for the sensor to finish so we can reassign the sen-
sor immediately after a priority measure is returned, if
needed. Care has to be taken if the second approach is
chosen, since it potentially introduces deadlock situa-
tions.

2.4 Case D: SMS Cellphone Question
Sensor

This sensor receives a question as a parameter and
the user of the cellphone will then answer the ques-
tion (usually a yes/no question) and thus supply the
sensor value. Obviously, answering a question takes a
long time when compared to the temperature sensor in
Case A. Also, setting the parameter takes quite long,
as the person answering the question will have to read
and understand it first. Thus, we are left with the
last and probably most interesting setting of them all:
Both reading the sensor data and setting the parame-
ters take a long time.

This time, unlike in Case C, we do not have a choice
whether or not we can interrupt the sensor while set-
ting the parameters. Once we have connected to an
agent and that one has posed a question, we have to
follow through and answer that question, otherwise,
the person will not be efficient in answering any query.
Since this situation is the same as the first approach
in the previous Case C, we can again solve it with the
algorithm of Case B.

3 Theory

3.1 Impact measure

The main problem is to find a priority measure for the
resource allocation, which can be computed efficiently.
Nunnink [Nun05] proposes the use of Shannon entropy
as a metric and the cumulative absolute change in en-
tropy as a measure for which DPN will benefit the most
from the allocation of the resource. Shannon entropy
is given by:

H(P (X)) = −
∑

xi∈X

P (xi) log P (xi) (1)

From this we can define the absolute change in en-
tropy:

∆H(P (H)) = |H(P (H|E))−H(P (H|E ∪ S))| (2)

Where H is the DPN’s hypothesis variable, E is the set
of all current evidence, S is the new evidence that will
be obtained through allocation of the resource.

The cumulative change in entropy
∑

∆H is then
obtained by summing over all possible instantiations
of the sensor node S. This is necessary because we do
not know beforehand what the input of the sensor will
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be. Depending on the input the hypothesis change on
the root node will differ so we need to account for all
input possibilities.

From (2) we can see that we need to know the con-
ditional probability of the root hypothesis given all the
evidence with and without the sensor input to compute
∆H. This information has to be made available to the
sensor agent in order to be able to decide which DPN
to connect to. Note that the output of the root node
at the root agent is exactly P (H, E). From this we can
compute P (H|E) using Bayes rule as follows:

P (H = hi|E) =
P (H = hi, E)∑m

j=1 P (H = hj , E)
(3)

Where m is the number of hypothesis states, H =
{h1, h2, . . . , hm}.

However, this still leaves the problem how to ob-
tain P (H,S) and how to send it to the sensor agent.
A straight forward way would be to use classical be-
lief propagation methods for Bayesian networks. This
means treating the distributed Bayesian network of the
DPN as single monolithic Bayesian network and using
methods such as λπ propagation or junction tree to
compute P (H,S). However, both methods are NP-
hard [Coo90] and we also would need several propaga-
tion cycles to get the result. For each possible sensor
instantiation we have to do one propagation and this
for every DPN that is requesting the sensor. Since we
want to keep resource allocation as inexpensive as pos-
sible, this might not be a good option.

3.2 Parametric approach

A potentially more efficient approach using matrices is
suggested in [Nun05]. It is based on the observation
that any joint probability in a Bayesian network can
be expressed as a linear function of any model parame-
ter. By treating the input of the sensor agent S as soft
evidence it becomes a model parameter, so in a mono-
lithic DPN we could express P (H, E ∪ S) as function
of S in matrix form as follows:

P (H, E ∪ S) =

 c1,1 · · · c1,k

...
. . .

...
cm,1 · · · cm,k

 · P (S) (4)

Where k is the number of possible sensor states, and
m is the number of hypothesis states of the root node.

However, in a DPN we do not have the entire mono-
lithic Bayesian network available and every agent can
only compute the joint probability given its own local
network. Yet we know that the root node of an agent
is a leaf node of its parent agent. Hence, in a chain of
agents A1 . . . An we can express the joint probability
of the root node Rj of agent Aj as a function of its
predecessor’s root node Rj+1 in the same way. This is

shown in [Nun05]:

P (Rj , E) =

 c1,1 · · · c1,k

...
. . .

...
cm,1 · · · cm,k

 · P (Rj+1)

= Cj
j+1 · P (Rj+1)

(5)

Thus the linear transformation matrix C is essen-
tially an encoding of the local network inside agent Aj

in terms if its root node. For the resource allocation
problem we can now define such a chain of agents from
the root agent all the way down to the sensor agent and
encode each local network in terms of the overlapping
node Rj in such a matrix. Moreover, it was shown in
[Nun05] that all those local matrices can be combined
using simple matrix multiplication as follows:

Cj
n = Cj

j+1 ·E
j+1
j+2 . . .Ej+n−1

j+n = M (6)

Where E can be obtained by dividing each row in
C by its corresponding component of the prior vector
of the root node Rj .

The resulting matrix M hence encodes the complete
mapping from sensor input all the way to the root hy-
pothesis and can thus be used to compute P (H, E ∪S)
and P (H, E)!

3.3 Ways to compute the local matrix

This leaves open the last problem, namely how to com-
pute those local C and E matrices. From its definition
in (5) we can see that for example the first column of
C namely (c11, . . . , cm1) has to be equal to P (Rj , E)
for P (Rj+1) = (1; 0; . . . ; 0)T . Hence, we can obtain
all coefficients by setting P (Rj+1) to convenient values
and acquiring P (Rj , E) through standard propagation
methods (like junction tree etc) [Nun05].

As mentioned before, standard belief propagation
in a Bayesian network can be very expensive, so we
would like to consider possible speedups for these lo-
cal matrix computations. In [Nun05] a speedup is de-
scribed, which is based on the observation that the
coefficients in the C matrix, i.e. the encoding of the
local network, depend on network parameters and the
evidence coming in from the leaf nodes. The only thing
that changes in the network is the evidence while the
network parameters stay constant. So it seems that
we could do some precomputation and only fill in the
evidence of the available nodes when the C matrix is
requested. As described before, when computing the
C matrix we express the joint probability at the root
node (the ”output”) as a function of soft evidence com-
ing in from a single leaf node. If we express the joint
probability as a function of all the leaf nodes, the re-
sulting linear transformation matrix Y now only de-
pends on the network parameters and is thus constant.
When now a request for an encoding of the network as
a function of one specific leaf node comes in we just
have to multiply the evidence from all the remaining
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leaf nodes. This can be more efficient than computing
the C matrix form scratch (using propagation) every
time.

3.4 Precomputing coefficient matrix Y

We can compute Y during the initialization phase of an
agent in a similar way as we can compute C using stan-
dard propagation. If we look at an example network
with one root node R and two leaf nodes A and B with
binary states, meaning a concept can be either true or
false [Nun05], the joint probability P (R = r, E) would
be computed using the coefficients of Y as follows:

P (r, E) =y1P (a)P (b) + y2P (ā)P (b)+
y3P (a)P (b̄) + y4P (ā)P (b̄)

(7)

Where P (a) means the probability of A being true
and P (ā) the probability of A being false. From this we
can see that again we can compute the coefficients by
initializing the (soft) evidence of the leaf nodes to con-
venient values, namely their extreme cases like P (a) =
1 or P (a) = 0. From (7) we can see that if we set
P (a) = 1, P (ā) = 0, P (b) = 1 and P (b̄) = 0 we get
P (r, E) = y1. Again using standard propagation to
obtain P (r, E) and repeating this for all possible com-
binations of extreme evidence input we can compute
all entries of the Y matrix. To conceptualize this we
might say that since we encode the network as a ma-
trix leaving all the evidence as a variable we just have
to take care of the extreme cases of the evidence and
the linear transformation will do the rest. From this
definition of y1 . . . yn we can see that the labeling of y
is arbitrary as it depends on the order of evidence state
combinations we chose. In our example y1 corresponds
to P (a)P (b), but it might have as well been chosen to
correspond to P (ā)P (b). This is important because we
need to later fill in the evidence of the non-variable leaf
nodes and we have to make sure that it gets multiplied
with the correct coefficient in the Y matrix.

3.5 Computing the local matrix using
Y

To continue with our example, if we now were to receive
a request for the C matrix with A being the variable
node, we can fill in the evidence about B as follows:

P (r, E) =[y1P (b) + y3P (b̄)]P (a)+
[y2P (b) + y4P (b̄)]P (ā)

(8)

The sums inside the square brackets represent one
row of the C matrix. We can see again that the cho-
sen ordering of the y’s is important. This equation
will give us one row of the C matrix as each row corre-
sponds to a different state of the root hypothesis R. As
we can see all products that contained P (a) in (7) are
summed to form one column of the C matrix. Likewise
all products that contained P (ā) are summed, forming

the second column of C. However, given just the Y
matrix we have no way of knowing which entry yi ap-
peared in a product with P (a) and which appeared in
a product with P (ā) when we originally computed the
Y matrix. As an implementation trick we can use a
state generator to compute Y, which produces all pos-
sible soft evidence combinations of leaf concepts in a
standard way, as for example using a binary counter.
The set of evidence for our example would then look
like this:

E =


(P (a) = 1, P (ā) = 0) (P (b) = 1, P (b̄) = 0)
(P (a) = 1, P (ā) = 0) (P (b) = 0, P (b̄) = 1)
(P (a) = 0, P (ā) = 1) (P (b) = 1, P (b̄) = 0)
(P (a) = 0, P (ā) = 1) (P (b) = 0, P (b̄) = 1)


(9)

When we later have to compute the C matrix we
use the same generator to produce all state combina-
tions. Then we need to fill in the actual evidence from
the corresponding leaf nodes and multiply them for
each row in (9) (see (8)). This way we generate the
exact same products as when computing Y. Putting
them in a row vector −→ev and multiplying it with the
first row of Y will replicate equation (8). However
those products will still contain P (A) which is now
a free variable and has no instantiated soft evidence.
Moreover, we want only the terms containing one of
the two states, P (a) or P (ā), being summed. As an-
other trick we can first instantiate P (A) as P (a) = 1
and P (ā) = 0. This way all products containing P (ā)
will be zero and effectively only products containing
P (a) will be summed. Thus we can produce the first
column of our C matrix through calculating Y · ev.
The second column can then be obtained by produc-
ing another row vector where we set P (a) = 0 and
P (ā) = 1, in the same way. In the non binary case we
would have to repeat this for each state of A, always
setting the probability for only one state to 1 and the
rest to 0. This way we produce a row vector of multi-
plied soft evidence −→evi for each state of A. For each −→evi

multiplied with Y we get one column of the C matrix.
Hence we can combine all −→evi’s in an Matrix Ev and
obtain C with a single matrix multiplication, namely
C = Y ·Ev.

3.6 Computing the resource impact us-
ing matrix M

Our sensor agent will now eventually end up with an
M matrix for each requesting DPN which encodes the
complete mapping from the sensor input to the root
hypothesis of the corresponding DPN. It now needs to
compute the cumulative absolute entropy change for
each DPN using this M matrix. Note that M matrix
multiplied with the sensor input will give us P (R, E ∪
S). If we set the (soft) evidence of the sensor to the
uniform distribution1, we have the case where there

1In the binary case this means setting them to 0.5.
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is no input from the sensor, which will then give us
P (R, E). Then using Bayes rule we can compute the
corresponding joint probabilities as described earlier
(3). Repeating this for all possible instantiations of
the sensor and using the definition of entropy (1) we
can finally compute

∑
∆H.

4 Architecture

In the current implementation every agent in the DPN
consists of several plug-ins. These plug-ins can com-
municate by exchanging messages through the so-called
blackboard; this blackboard service is provided by Cougaar
[Cougaar]. In the rest of our discussion we will say
that messages are sent from one plug-in to another,
while in fact this is done indirectly through the black-
board. By design the only plug-in allowed to send and
receive inter-agent messages is the communication en-
gine (CE).

All agents initially set up their communication through
the Contract Net Protocol [Smi80], which consists of
initially sending a CallForProposal if an agent wants a
service. One or more agents that are able to provide
the service can respond with a Bid. The requesting
agent will pick one of the agents it has received a bid
from and finally send a FusionContract to signal that
they are committed to each other.

CE RADE

CallForProposal

RIMatrixRequest_SendUpTo

Sensor Agent

RIMatrixReturn_Received

CallForProposal_Received

SendBidTo

RIMatrixRequest

Bid
RIMatrixReturn

Figure 2: Messages sent and received by the sensor
agent are indicated by arrows. Squares indicate plug-
ins, while the entire circle denotes the agent. CE is the
communication engine plug-in, RADE is the resource
allocation decision engine plug-in.

A sensor agent who is going to run into resource
allocation problems is initially waiting for CallForPro-
posal messages (see figure 2). This proposal is for-
warded to another plug-in, the resource allocation deci-
sion engine (RADE), which decides whether the agent
should respond with a bid. If the agent is available
or can be shared by multiple agents, then the RADE
plug-in will send a SendBidTo message to the commu-
nication engine so that it can respond to the proposal
with a Bid message. If the agent is currently in use and
cannot be used by multiple agents at the same time,
then it will want to request a resource impact matrix

(abbreviated as RIMatrix) from the DPN attempting
to connect, so that it can make an informed decision
about which DPN to provide its services to.

The resource impact matrix request will first be
sent from the RADE plug-in to the communication en-
gine as a RIMatrixRequest SendUpTo message, which
in turn will send a RIMatrixRequest to the higher level
agent. The request messages will contain the name of
the sensor agent who initiated the request and a request
number, which together uniquely identify the request
and thus form a key. This key can be associated with
routing information.

Since the RIMatrixRequest message is an inter-agent
message, it is received by the communication engine
(CE) of the higher level fusion agent (see figure 3). The
communication engine adds the name of the lower level
agent where the request came from to the message and
forwards the request to a plug-in called the resource
allocation engine (RAE); this messages is called RIMa-
trixRequest Received. Using the information contained
in the message the resource allocation engine can con-
struct a routing table which can be used to trace the
path back down again later on.

CE RAE RE

RIMatrixRequest

RIMatrixRequest

RIMatrixRequest_SendUp

RIMatrixRequest_Received

Fusion Agent

Figure 3: Messages going up towards the root node
through a fusion agent are indicated by arrows.
Squares indicate plug-ins; CE is the communication
engine, RAE is the resource allocation engine. The
reasoning engine (RE) is not used on the way up.

After the routing information has been stored, the
resource allocation engine forwards the request further
up towards the root of the DPN network by sending
a RIMatrixRequest SendUp to the communication en-
gine, which sends this to its parent as a RIMatrixRe-
quest. At the parent the same process as in figure 3 is
performed, unless it is the root of the DPN network. If
it is the root of the DPN network then this is detected
in the communication engine upon receiving a RIMa-
trixRequest SendUp message, which is then turned into
a RIMatrixReturn message with an empty resource im-
pact matrix. When the communication engine receives
such a message, it forwards it to the resource allocation
engine (see figure 4). This plug-in stores the matrix in
the routing table and requests the matrix encoding of
the local Bayesian network from the reasoning engine
(RE) by issueing a LocalMatrix Request. This message
contains a flag whether this agent is the DPN root2; if

2The agent is the DPN root if the matrix received from the
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it is, then the plug-in will return the C matrix, other-
wise it will return the E matrix.

CE RAE RE

RIMatrixReturn

RIMatrixReturn

RIMatrixReturn_Received

RIMatrixReturn_SendDownTo LocalMatrix_Return

LocalMatrix_Request

Fusion Agent

Figure 4: Messages going down from the root node to
the sensor agent through a fusion agent are indicated
by arrows. Squares indicate plug-ins, the shorthands
are the same as in figure 3.

When the resource allocation engine receives the
matrix encoding of the Bayesian network, it will com-
bine this matrix with the matrix received from the par-
ent, which was stored in the routing table, by multiply-
ing them together. The resulting matrix is sent down to
the lower level agent where the request came from us-
ing the information stored in the routing table. Again,
this is done indirectly by first sending a RIMatrixRe-
turn SendDownTo to the communication engine which
turns this into a RIMatrixReturn message. This pro-
cedure is the same for all fusion agents in the network.

Eventually the RIMatrixReturn message will reach
the sensor agent where the request originated (see fig-
ure 2). The communication engine will forward the
matrix to the resource allocation decision engine, which
then needs to make a decision based on the matrices it
has received. In the next section we will discuss possi-
ble decision policies.

In our description of our architecture we have sim-
plified the names of messages and plug-ins somewhat.
All intra-agent messages have a INM suffix while all
inter-agent messages have a EXM suffix. Existing
plug-ins which needed extension where subclassed and
received a RAE (Resource Allocation Enabled) pre-
fix to their original name. Sensor agent plug-ins are
different from fusion agent plug-ins and receive a SA
prefix. For example, the sensor agent communication
engine was called SACommunicationEngine and our
subclass of this plug-in was called RAESACommuni-
cationEngine.

4.1 Resource allocation decision policies

We implemented three different allocation policies, ‘share-
able’, ‘random’, and ‘resourceimpact’. The policy is a
configurable parameter for the sensor agent.

The ‘shareable’ policy means that we completely
circumvent the resource allocation and answer to any
CallForProposal message we receive with a bid. This
is used for sensors like the temperature sensor in Case
A of section 2.
parent is empty

The ‘random’ policy implements random assign-
ment, meaning the sensor is reassigned with a given
probability. This is the simplest solution to the re-
source allocation problem and can be used to test the
system.

The ‘resourceimpact’ policy uses our archictecture
from the previous sections to request resource impact
matrices and reassigns the sensor agent based on a pri-
ority measure calculated from these matrices.

After surveying all the possible scenarios that may
occur in section 2, it seems clear that we really only
have to implement one algorithm to make the decision
about resource allocation for this policy. This algo-
rithm should use a priority queue to keep track of re-
questing agents and update their priority measure as
frequently as possible. The priority measures are cal-
culated from the resource impact matrices using the
cumulative absolute entropy change, as described in
section 3.

The complete algorithm is as follows:

• If the sensor is not yet connected, connect imme-
diately to the requesting agent.

• If the sensor is already connected to an agent,
enqueue the incoming request and ask all agents
in the queue for their resource impact matrix.

• When a resource impact matrix is returned, com-
pute the cumulative absolute entropy change and
reorder the priority queue accordingly.

• When the sensor finishes a sensing cycle, reassign
if the agent with the highest priority is not the
currently connected agent.

At a later stage, the algorithm should also take an
argument whether or not to wait for the sensor to finish
sensing before reassigning the sensor. This is not yet
implemented due to time constraints. For now, the
sensor always gets to finish its sensing once it starts: it
cannot be interrupted.

5 Complexity

In section 3 two ways to compute the local encoding of
the Bayesian network (the C matrix) were discussed.
Precomputing the coefficients using the Y matrix was
introduced as a possible speedup. Now we will compare
the two methods and check if that is indeed the case.

The computational complexity of using precomputed
coefficients can be determined in a straight forward
manner. Of course we only consider the number of op-
erations (multiplications) at run time and not during
the initialization (precomputation) phase. We count
the number of multiplications only as they are the most
time consuming.

First we need to fill in the evidence for all possi-
ble evidence combinations of the leaf nodes and then
multiply for each combination. Assuming that all leaf

7



nodes have the same number of possible states (s), the
number of state combination is sn where n is the num-
ber of leaf nodes of the local Bayesian network. Then
for each state combination we have to perform n multi-
plications for the probability from each leaf node. This
process has to be repeated for all possible instantiations
of the variable leaf node, which is also s. So the total
number of multiplications is:

s · sn · n = sn+1 · n (10)

Furthermore, we have to do the matrix multipli-
cation of the coefficient matrix Y with the combined
multiplied evidence matrix Ev. If m is the number of
root node hypothesis states, then Y is an m× sn ma-
trix. The dimensions of Ev are sn × s which leads to
h ·sn ·s multiplications for Y ·Ev. So the total number
of multiplications to compute C or E(!) is

sn+1 · n + h · sn · s = sn+1 · (n + h) (11)

This shows that the time complexity of this method
is of O(cn) for the number of leaf nodes n (where c is
a constant).

Calculating the number of multiplications for stan-
dart propagation is less straight forward. Many differ-
ent algorithms exist, but in this paper we shall only
consider the λπ algorithm. First of all we can ob-
serve that the worst case time complexity of λπ is
O(sn) where n is the number variable nodes. However,
the actual number multiplications heavily depends on
the ”shape” of the particular Bayesian network. The
DPN already restricts the Bayesian network to have
only one root node. Moreover, we will consider here
the number of multiplications only for three example
classes/shapes of Bayesian networks (5) to give a gen-
eral comparison. A more detailed comparison is not
possible at this point due to time constraints and has
to be left to further research.

Examples

First we will consider a network as given in figure 5(a).
Each node only has one child node so that they ef-
fectively build a chain. Assuming that each node is a
variable node the number of multiplications to compute
the joint probability at the root node can be shown to
be:

(m− 1) · s2 (12)

Where s is again the number of states for each node
(assuming they are all the same) and m is the number
of (variable) nodes. To compute the C matrix we have
to do s inferences of this type for each state of the vari-
able leaf node. So the total number of multiplications
for this example is:

s · ((m− 1) · s2) = (m− 1) · s3 (13)

For the next example we consider a network with
only one layer of leaf nodes and one root node given in

(a) Chain-like network

(b) Branch-like
network

(c) Net-
work with
a loop

Figure 5: Different Bayesian network topologies.

5(b). In this case the number of multiplications for the
joint probability at the root node is:

b · (s + s2) (14)

Where b is the number of branches of the root node.
In this case this is the same as the number of leaf nodes,
so we can replace b with n. Also we have to repeat this
for the number of states s for the variable leaf node,
which gives a total number of multiplications of:

s · n(s + s2) = n(s2 + s3) (15)

Figure 6: Node with multiple parents.

The last example contains a loop and is depicted in
figure 5(c). This is a rather complex case and can only
be solved using λπ messages with a trick (see [Xia02]).
Basically the loops have to be cut open resulting in sev-
eral graphs, one for each possible state of the branching
node. If k is the number of loops and the number of
states s for each branching node is assumed to be the
same, this will lead to sk graphs. For each graph we
then use the normal λπ algorithm. The total number
of multiplications then depends again on the shape of
the resulting splitted graphs. In the best case this will
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be a chain as in figure 6 with only two nodes. However,
the resulting graph can more complicated as depicted
in figure 6. A node having multiple parents greatly in-
creases the number of multiplications for λπ. It can be
shown to be:

s + s2 + · · ·+ sp + sp+1 (16)

Moreover, we also have to repeat this for the num-
ber of states s for the variable leaf node which leads to
s2 + . . . sp+2 multiplications. So the total number of
multiplications is (17) in the best case, or (18) in the
worst case.

sk · (2− 1) · s3 = sk+3 (17)

sk · (s2 + . . . sp+2) (18)

As a conclusion we can say that there are some
cases where standard propagation is more efficient to
compute the C matrix. Also we have to consider that
other methods of propagation exist that are more effi-
cient than λπ for certain classes of Bayesian networks
and might thus also outperform the precomputation
method. However, the advantage of the precomputa-
tion method is that is applicable to any type of Bayesian
network and its complexity only depends on the num-
ber of leaf nodes. It is insensitive to parameters like
branching factors or the number of loops. Thus, it can
be much faster on Bayesian networks that have a com-
plex internal structure but only a small number of leaf
nodes. One can imagine that we could work out some
kind of heuristic that includes all these factors (num-
ber of leaf nodes, number of levels, branching factor
and loops) in order to determine when which method
is more efficient. If this is done in an efficient way it
could constitute a big speedup for resource allocation
in a DPN. Clearly more research is needed in order to
determine a useful heuristic for this.

6 Conclusion

We have analyzed different scenarios to see when it
makes sense to do resource allocation in a DPN. When
a sensor can be configured quickly and provide sensing
information quickly, then it does not make sense to
do resource allocation because the time it will take to
make an informed decision will be longer than the time
it would take to just get a sensor value. If the sensor
setup time is long or the sensor needs to accumulate
data first before it can provide a sensor value, then it
does make sense to do resource allocation.

We have introduced a decision algorithm based on
a priority measure which can be used for sensors which
cannot be interrupted while sensing. Future extensions
to this algorithms to support sensor interruption are
fairly simple, though it will make sense then to look at
operating system scheduling algorithms, especially the
ones which support pre-emption.

As a priority measure we have investigated the cu-
mulative absolute entropy change at the root of the
DPN network if the resource is assigned. We calcu-
late this measure from the so-called resource impact
matrix. This resource impact matrix is constructed
through matrix multiplication from local matrices in
which the Bayesian network of an agent is encoded.
This local matrix can be efficiently computed if some
precomputation is done. The main advantage of this
approach is that only only small matrices need to be
passed around and most computation can be done lo-
cally. Also, only agents along the path from the sensor
agent to the root agent need to be involved in computa-
tion, as opposed to traditional propagation algorithms
where all agents are involved. Another disadvantage
of traditional propagation algorithms is that calcula-
tions have to be done during the propagation: nothing
can be precomputed. In our approach the agent could
perform precomputations when it is idle.
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