

Objectives DOAS

- Know the concepts that are important in the design of Intelligent Autonomous Systems.
- Understand the problems that are to be solved.
- Identify the solutions found.
- Build a framework to organize future developments.

Organization DOAS

- Course consists of lectures and projects on system architecture and design
- Lectures in first two weeks.
- Project assignments for 5-6 students.
- Examination

The grade for this course will be based on the results of the **Project**. All registered students will be assigned to a project.

DOAS

Topics lectures:

- Architectures used in autonomous systems (general aspects, distributed and embedded systems).
- Case studies: AIBO and Intelligent vehicles

Project:

- Case study in integration
- Applies the material of the lectures
- Clear assignment of tasks to the members of the team
- Team writes an article about their project and review the articles of the others
- Final mini conference with external invites

Projects 2006

• LifeForm Peter van Lith

• Simple voice recognition system Peter van Lith

• Cycle Detection in Distributed Perception Networks Gregor Pavlin

Reinforcement Learning of Traffic Light Controllers Adapting to Accidents

Bram Bakker

• Joint actions for an Aibo team Arnoud Visser

• Identifying People Marinus Maris

• Mobile landmark recognition Frans Groen

Schedule week 2

day	room	lecturer	subject	remarks
Monday 9th, 10:00-13:00	P.016	All	Kick-off meeting Projects	
Tuesday 10th, 10:00-12:00	P.016	Arnoud Visser	Architectures of Autonomous Systems	
Wednesday 11th, 10:00-12:00	P.016	Arnoud Visser	Case studies of Autonomous Systems	Aibo Architecture
Thursday 12th, 10:00-12:00	P.016	Marinus Maris	Distributed Systems	Hand-out
Friday 13th, 14:00-16:00		Peter van Lith	Embedded Systems	Hand-out

Schedule week 3

day	room	lecturer	subject	remarks
Monday 16th, 15:00- 17:00	P.016	Dariu Gavrila	Looking at people	
Tuesday 17th, 15:00- 17:00	P.018	Dariu Gavrila	Intelligent Vehicles	
Wednesday 18th, 10:00-13:00	I.301	All	Progress meeting Projects	

Schedule project

Project

All registered students will be assigned to a project. Three times plenair meetings will be scheduled.

week 2: kick-off meeting (Monday 9th, P.016, 10:00-13:00)

week 3: progress meeting (Wednesday 18th, I.301, 10:00-13:00)

Half hour presentations

week 5: deadline draft article (Tuesday 31th, 16:00, pdf on website)

week 5: deadline review article (Wednesday 1th, 16:00, see form)

week 5: deadline final article (Thursday 2nd, 16:00, pdf on website)

week 5: mini-conference (Friday 3th, F0.13, 9:30-13:00)
Half hour presentations,

Program for today

10.00-10.20 Frans Groen: Introduction of the course DOAS and

the project assignment

• 10.25-10.30 **Peter van Lith:** LifeForm

10.35-10.40 Peter van Lith: Simple voice recognition system

10.40-11.00 Coffee break

• 11.00-11.10 **Gregor Pavlin:** Cycle Detection in Distributed

Perception Networks

• 11.10-11.20 **Marinus Maris**: Person identification system

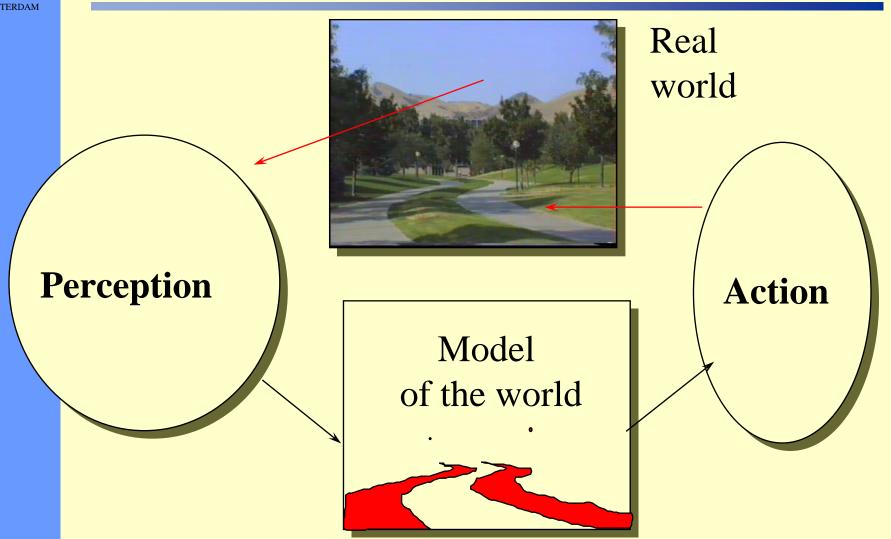
• 11.20-11.30 **Bram Bakker:** Reinforcement Learning of Traffic Light

Controllers Adapting to Accidents

• 11.30-11.40 **Arnoud Visser**: Joint actions for an Aibo team

• 11.40-12.00 Assignment of students to projects

 12.00-13.00 Detailed discussion of projectleaders with their studentteam


Project assignments

- Consists of literature study of the assigned topic
- Proposal of architecture and design of an Autonomous System
- Realization of a critical part of the selected approach
- Evaluation of the selected approach against other initiatives
- Mini-conference Article and Presentation.

Perception - Action Cycle

Components

Perception

- computer vision
- sound interpretation
- touch (also on a distance)

Model

- -representation
- -modeling
- -data fusion

Action

- adaptive behavior
- planning
- exploration, navigation

Global aspects

- Architecture
- Learning and adaptation because the robot can perceive the results of its action
- Simulation
- Dynamic intelligent sensor networks

Application Area's (1)

Service

cleaning devices, goods (food, mail) distribution, robot guide dog

Space

planetary rovers, robot arms in space

Surveillance and Safety

watching over public places, fire and pollution detection/ inspection after disasters, elderly care

Transport

driver assistance, intelligent vehicles, automated highway, container transport

Application Area's (2)

Agriculture harvesting, spraying

Defense
 mine detection, bomb dismantling, unmanned vehicles, robot soldier

Entertainment
microsoccer, intelligent adaptive games, robots in
film industry

 Mining unmanned excavation

Trends

- From structured static environments to unstructured dynamic environments
- From robots to embedded autonomy in existing systems
- Form single robots to multi-robot systems
- To semi-autonomous systems interacting with humans

- Real robustness
- Reactive to human gestures (motion) and speech (sound)
- Human understandable communication between systems.
- Autonomy well integrated with teleoperation

Project: Mobile Landmark Recognition

- Special case: Project proposed by students
- Make as tourist a picture of a landmark or point of interest.
- Your phone tells you what it is, when it is opened etc.

Mobile Landmark recognition

- Use computing power of you mobile phone
- Needs robust feature extraction under different views and lighting conditions
- Needs learning and a (dynamic) database of objects.

