
Reinforcement Learning of Traffic Light Controllers

Adapting to Accidents
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Abstract

Traffic has become an important part of modern society. Research on efficient
traffic light control has become a new and interesting subject within the AI field.
Traffic models and different machine learning methods have been developed, but
so far, no attention has been given to dealing with accidents. In this project, new
reinforcement learning methods are suggested and compared to existing methods,
on a novel traffic model that does include accident simulation. Results indicate that
careful consideration should be given to the accident model, as well as to the basic
traffic model we extended upon.

1 Introduction

The increase of population along with the significant increase in the number of vehicles
on the road has resulted in some of the main problems of our modern society, namely
traffic-jams and traffic accidents. These problems are largely present in and around
urban areas and have a major impact on both the economy and the environment. In
such areas, traffic lights form an important traffic control mechanism.

One of the goals of traffic light control is to produce fair waiting times for all vehicles
at junctions (where traffic lights are placed) and of their overall trip. In most cases,
this is done using some fixed protocol, meaning, the light is red for some time interval
and green for some subsequent time interval. The intervals usually change during peak
hours, but are still static. Such an approach leads to a fixed behavior, that does not
reflect dynamic changes of the traffic environment. A solution could be to apply Machine
Learning (ML) methods.

Unfortunately the policies such methods learn are not alway optimal. Still, even
a learned suboptimal policy might be more suitable and can outperform a fixed one.
Several ML methods have already been applied to this problem including fuzzy logic [2],
genetic algorithms [3], and reinforcement learning (RL) [5, 6, 7].
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Our goal in this paper is to focus on dealing with accidents efficiently using a RL
based traffic light control mechanism. Existing and new RL algorithms for traffic light
control are evaluated on their ability to prevent congestions in traffic environments that
include accidents.

Note that our aim is not to design a system that prevents accidents. Instead, our
system should be capable of controlling the traffic flow efficiently, even in such complex
situations where accidents do occur.

2 Background on Traffic Light Control

The project extends previous research on existing RL techniques used for traffic light
control. Traffic simulators, such as the open source project Green Light District (GLD)1

[6], which is a Java based application, enable the comparison of different methods under
varying circumstances. Furthermore it allows to easily create extensions for the basic
framework.

Within this simulator a RL approach is taken to optimize a traffic light controller
(TLC). The task of a TLC is to create an optimal traffic flow throughout a given traffic
network of lanes and junctions. A flow is optimal in the sense that, on average, a car
driving through the network can reach its destination as fast as possible. In other words,
the TLC should prevent unnecessary waiting times for traffic lights, and traffic-jams
should not emerge.

Reinforcement learning has proved to be a useful ML approach to automatically
configure traffic lights [4, 5] . However, until now simulations did not include any model
of accidents, nor were traffic light controllers designed with such situations in mind.

The investigation described in this paper continues in the line of research of [4].
Their version of the GLD simulator was taken as a base and extended upon on in several
directions to support accident modeling.

3 Simulation of Traffic and Accidents

Further development of the simulator, and the addition of new features, was an important
part of the project. Therefore, this section will give an overview of the simulator’s
features and its implementation.

3.1 Simulator Framework

The GLD simulator is capable of modeling traffic networks such as the one shown in
figure 1. On the left side of figure 1, a ‘Manhattan style’ traffic network is shown. This
network is the one used in all of the reported simulations.

Traffic networks consist of roads connected by junctions. Roads consist of several
parallel lanes over which cars can move. Traffic lights are placed at junctions that

1http://stoplicht.sourceforge.net
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Figure 1: Screenshots of the Green Light District simulator. The shown network is the
one used for the simulations described in this report. On the left a general overview (a),
on the right a close-up (b).

connect more than two roads, such that each lane has one traffic light that can be
turned to red or green. Cars enter and exit the network at so called edge nodes. When
a car enters the network at such an edge node, it is assigned another edge node as its
destination.

The shortest route to this destination determines the path the car will take through
the traffic network. Since there is only a finite number of edge nodes, shortest paths to
each edge node from every junction can be precalculated.

Lanes that are disabled, due to a simulated accident, are colored yellow in figure 1.
The figure on the right is an enlarged portion from the bottom-left corner of the figure
on the left. Here we get a better view of edge nodes, roads, junctions, cars and accidents.
The simulator uses discrete time steps (cycles). Each cycle, the selected TLC is used
to determine which lights to turn red or green, and cars are moved simultaneously with
one step.

3.2 Extending the Model with Accidents

This section describes in more detail how the basic simulator has been extended with
accidents. Also, several correlated issues are addressed that needed to be solved in order
to make the extended simulator work.

3.2.1 Accident Modeling

In every cycle of the simulation an accident can occur with a preset probability. Lanes
with more cars are more likely to be selected as an accident spot. Once an accident
happens, all traffic going through this street will become impossible. This is done by
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rerouting all lanes leading to the accident spot to other directions.

Special care is given to the fact that there must always remain at least one way to
get from every junction to every other junction. This is necessary to ensure that the
network does not get separated into disjunct parts. All cars on a lane with an accident
are allowed to keep driving as if nothing happened. The only effect of the simulated
accident is that no other car can enter the accident area.

3.2.2 Rerouting Cars around Accident Areas

Once lanes have been disabled due to an accident, the precalculated shortest paths
information is not valid anymore. Several cars may have planned their routes through
affected lanes. This situation may lead to cars waiting at a junction in order to enter
a disabled lane. Of course, these cars will not be able to enter it until the accident has
been resolved (which happens at random). As an effect, the roads around an accident
area will be filled by cars that are unable to continue on their route, and that portion
of the network will get congested.

In order to handle this situation, rerouting has been added to the simulation. If
rerouting is switched on in the simulator settings, the shortest path information is re-
computed when an accident occurs. Cars are assigned a new route if necessary, thus
the traffic planned to pass through the accident area will instead be rerouted around it.
Note that rerouting reflects the actual behaviour of road users in the real world.

3.3 Extending the Model with Stuck Car Removal

Sometimes, a car will get stuck during simulation - it will never be able to move again.
This situation can arise when a real traffic-jam occurs: Multiple cars are in a deadlock
situation, preventing each other to move.

As a result, affected cars will not reach their final destination. In the original simula-
tor framework, the performance measures were only updated when cars did reach their
destinations (since only then a car’s trip waiting time will be known). Stuck cars that
never exit the network are therefore never taken into account by these measures.

Another problem for an adaptive learner would be, that its weak performance in the
beginning might immediately lead to the deadlock situations, the city gets congested
and the learner does not, in fact, get a chance to learn. As a solution to this problem
stuck car removal was added. With this feature turned on, cars that have not moved
during λ consecutive cycles are removed from the simulation. In each of the λ previous
cycles, such a car would have received some negative reward. However, an additional
penalty of p can be set, which will be applied when a stuck car is actually removed. The
controller should learn not to depend on removing stuck cars. In the simulations that
made use of stuck car removal, λ was set to 20 cycles.
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4 Reinforcement Learning and Traffic Light Control

The GLD package has several TLC algorithms already implemented. One of the available
controllers is TC-1 Optimized, an improved version of TC-1 [5, 6, 7], which uses a RL
technique to optimize its policy. The TC-SBC controller, which is derived from the
basic TC-1, is included as well and will be described in section 4.2. The RL approach
TC-1 takes is a bit different from how RL is used normally in the literature. It will be
assumed here that the reader has some basic understanding of RL, if not, [1] provides a
good introduction.

4.1 The TC-1 Controller

TC-1 uses a multi-agent approach to RL. Every car in the simulation corresponds to an
agent. Hence it is called a car-based model. This approach is based on the following
insight: Modeling all possible traffic configurations around a junction would very quickly
lead to a very large state space. Instead the contributions of each individual car at the
junction are summed. No intelligence is required from the car, as the controller is the
one responsible.

The state of a car is modeled as a tuple s = [n, i, p, d], with n the number of the
next junction, i the lane of the car towards the junction, p the position of the car in the
queue in front of the light, and d the destination of the car. The state space S consists
of all values for s.

A value function Q : S×{red, green} → R is learned to expres the expected waiting
time for a car, specified by s ∈ S, to have traffic light i of the junction turned red or green.
The gain of turning the light green for the car is then expressed by Q(s, green)−Q(s, red).
However, turning a traffic light to green affects the whole queue Li of cars waiting in
front traffic light i.

The optimal traffic light configuration at junction n, of the set of possible configura-
tions An, can therefore be computed as

Aopt
n = argmaxAn

∑

i

∑

s∈Li

(Q(s, green) −Q(s, red)) (1)

The Q-values are learned by performing an update after each cycle for all occupied
states:

Q(s, a)←
∑

s′

P (s, a, s′)(R(s, a, s′) + γV (s′)) (2)

Here P (s, a, s′) is the state transition probability of s to s′, when action a is pre-
formed. R(s, a, s′) is the reward function for the state transition, γ the future discount
parameter and V (s) =

∑

a P (a|s)Q(s, a). The model P (s, a, s′) is estimated during sim-
ulation by dividing the number of transitions, given a, from s to s′ by the total number
of transitions from s. The reward function R simply gives only a negative reward in case
the car didn’t move:
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R(s, a, s′) =

{

−1 if s = s′

0 otherwise
(3)

The parameter γ was set to 0.9 during all simulations.

4.2 The TC-SBC Controller

The TC-SBC algorithm is an extension of TC-1 and has shown to be capable of outper-
forming it [4]. TC-SBC stands for Traffic Controller - State Bit for Congestion.

TC-SBC takes explicit information of the congestion of lanes around a junction into
account. The car state representation is extended by one bit c, to keep the state space
small, representing the congestion on the next lane. The bit is set to true if the fraction
of the destination lane filled by cars is above a threshold θ:

s = [n, i, p, d, c] where c =

{

1 if (wd/Nd) > θ
0 otherwise

(4)

where wd is the current number of cars on destination lane d, and Nd the maximum
number of cars that fits on the lane. A value for the threshold θ that has been reported
to work well is 0.8 [4]. This project used this value for θ.

4.3 New Controller Algorithms

In addition to TC-1 and TC-SBC, two new TLC algorithms are proposed, aimed specif-
ically to handle accident situations: TC-SBA (Traffic Controller - State Bit for Acci-
dents) and TC-SBAC (Traffic Controller - State Bits for Accidents and Congestion).
Both algorithms are straightforward extensions of TC-1.

4.3.1 The TC-SBA Controller

TC-SBA extends the TC-1 car-based state space with an extra accident bit, similar to
what TC-SBC does for congestion. A state is now given by the tuple s = [n, i, p, d, a],
where the a bit is set to true if the destination lane d leads to a junction j which is part
of an accident area. This is the case when the junction j, that is reached after following
the destination lane d, has an outgoing lane that is disabled by an accident. This can
be expressed by following equation:

a =

{

1 if D ∩Oj 6= ∅
0 otherwise

(5)

where D is the set of disabled lanes due to accidents, and Oj the set of all lanes
leaving from junction j.
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4.3.2 The TC-SBAC Controller

The TC-SBAC controller extends TC-1 with both a congestion bit (eq. 4), as TC-SBC
does, and with an accident bit (eq. 5), as TC-SBA. This enables TC-SBAC to learn Q-
values depending on both a possible congestion on the destination lane, and on possibly
passing an accident area.

A clear disadvantage is that the two additional bits result in a state space four times
the size of that of TC-1. Training the controller during the simulation can suffer from
this. In parts of network that are not affected by an accident, Q-value are learned for
the [n, i, p, d, 0] sub state space. This experience is however disregarded as soon as the
occurrence of an accident does affect the area. The TLC will now learn values for the
[n, i, p, d, 1] state subspace for which it has had no experience yet.

5 Results and Evaluation

5.1 Experiment Setup

Tests were performed with varying option settings. The different parameters that were
considered are listed in table 1. All tests consisted of 10 runs, each lasting 50,000 cycles.
For the best possible comparisons, each situation was tested for each algorithm under
the same conditions. For all tests, the traffic network depicted in figure 1 was used.

Parameter Options

Accidents Enabled, Disabled

Car Rerouting Enabled, Disabled

Stuck Car Removal Enabled (no penalty)
Enabled (with penalty)

Disabled

Table 1: Different parameters and their values that were varied over experiments.

As the tests were performed, several performance measures were recorded for each
algorithm. However, some are of particular interest to us as they prove to be good
indicators for the congestion inside the network.

Average Trip Waiting Time: The most obvious measure, used in previous articles,
shows the average number of cycles that a car has to wait on its whole journey
through the city. This is the value minimized by the RL algorithms. For the
purpose of this article, this measure proved to be insufficient. Once there are cars
in a deadlock, they do not arrive to their destination edge node and they cannot be
incorporated in the statistics. The average trip waiting time remains low, although
there are cars waiting for a very long time. The following two measures do not
have this feature and are used in the rest of the paper.

Average junction waiting time: The average time a roaduser has to wait at any
given traffic light. This measure is a good indication of the congestion level within
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the traffic network. The more cars (stuck) in the network, the higher the average
junction waiting time.

Note that, if the stuck car removal option is set, cars will not be able to wait in
front of a junction for too much time. The average junction waiting time will, in
this case, be low.

Total waiting queue length: If the lanes leading from an edge node are fully con-
gested, new cars entering the network at that edge node will be put in a waiting
queue. This measure is the sum over the waiting queue lengths at all edge nodes.

An increasing total waiting queue length indicates that the network cannot handle
the load of new cars trying to enter. If the measure decreases congestions are being
resolved, as there finally becomes room available for the queued cars.

5.2 Accidents and Car Rerouting

As accidents have been added to the model, it seems obvious that cars should be allowed
to re-plan their routes around the accident area. To investigate the validity of this
claim, three test cases were designed to evaluate TC-SBC, TC-SBA and TC-SBAC using
accidents. Per test case, the performance of one algorithm is measured using accidents
without car rerouting, and using accidents with car rerouting.

5.2.1 TC-SBC

The TC-SBC algorithm was not designed with accidents in mind. As figure 2a clearly
demonstrates, not enabling car rerouting leads to enormous junction waiting times very
quickly. But if there is rerouting, this algorithm works well.

5.2.2 TC-SBA

Next, the TC-SBA algorithm is tested. Its use of an explicit representation of accidents
might make one believe it should outperform TC-SBC on these test cases. However,
comparing figure 2b to figure 2a shows that this is clearly not the case. Rerouting does,
on the other hand, prove to be very useful for this algorithm as well.

Rerouting cars around an accident area may lead to new traffic bottlenecks, as other
the traffic load will be redistributed over the other (so far unaffected) lanes. TC-SBA is
not equipped to identify such spontaneous congestions. TC-SBC is, which can explain
why it outperforms TC-SBA.

5.2.3 TC-SBAC

TC-SBAC can learn Q-values using both congestion and accident information. It is
expected that it performs better than both TC-SBC and TC-SBA. Figure 2c shows that
again that rerouting improves performance. Also, TC-SBAC is indeed outperforming
TC-SBC and TC-SBA, according to expectations.
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Figure 2: From left to right the average junction waiting time for: TC-SBC (a), TC-SBA
(b) and TC-SBAC (c). Tests were performed with accidents enabled, but no stuck car
removal and with using rerouting (continuous line) and without (dashed line).

The three test cases have shown that the RL based controllers benefit greatly from
rerouting cars in the accident enabled simulations. Moreover, rerouting vehicles around
accident areas is an intuitively preferred model. TC-SBA has shown to perform worst
of the three algorithm, while TC-SBAC performs best.

5.3 Stuck Car Removal

As was previously mentioned, stuck cars can be removed. When a car is removed it is
given a penalty p. This parameter can be varied and its value determines the impact on
the RL algorithm.

Empirical evidence showed that a penalty of zero provided the best results. A higher
penalty did not made the RL algorithm perform any better. In fact, the penalty is out
of proportion with the learned Q-values. As a consequence, performance decreases. The
results imply that cars waiting for a long time accumulate sufficient negative reward and
there is no need for an extra penalty.

Hence, in the following sections we will describe the difference between not removing
and removing cars without extra penalty.

5.3.1 TC-SBC

In figure 3 the results are shown for the Total Waiting Queue Length with and without
removing of stuck cars. As can be seen in figure 3a, when both accidents and rerout-
ing enabled, but even better in figure 3b, when accidents are enabled but rerouting is
disabled, TC-SBC needs stuck cars to be removed in order to continue the simulation.
Without it, the traffic network gets congested. This happens around cycle 40,000 for
at least one simulation in figure 3a and around cycle 5000 in figure 3b. As soon as the
traffic network is congested, cars will not arrive on their final destinations and no further
learning is possible.
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Figure 3: Total waiting queue length results for TC-SBC. On the left (a) both acci-
dents and rerouting are enabled, on the right (b) accidents are enabled but rerouting is
disabled.
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Figure 4: Total waiting queue length results for TC-SBAC. On the left (a) both acci-
dents and rerouting are enabled, on the right (b) accidents are enabled but rerouting is
disabled.

5.3.2 TC-SBAC

On the contrary, as long as both accidents and car rerouting are enabled, TC-SBAC is
able to cope with the traffic even when no cars are removed (Figure 4a). Nevertheless
this situation will not hold when car rerouting is disabled, see Figure 4b.

5.4 Comparison

The tests over the TC-SBC, TC-SBA, and TC-SBAC algorithms provided several useful
comparisons. However, it is also important to compare these traffic controllers to the
TC-1 Optimized, and a hand-coded one: TC-Most Cars.

TC-Most Cars is a simple TC algorithm that selects per junction the traffic light
configuration that allows most cars to move. Obviously, no machine learning technique
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is used and behavior is not adaptive. In a preliminary investigation, this controller
appeared to work well in several cases.

Tables 2 and 3 present an overview of the five algorithms for respectively total waiting
queue length, and average junction waiting time. The numbers are taken by averaging
each measure over the last 10% of the cycles, as at that time, the controllers should have
had sufficient time to learn.

Three configurations of the traffic model were used. The first one has no accidents
(thus no rerouting either) and no stuck car removal, the second does use accidents, in-
cluding rerouting, and no stuck car removal, while the third configuration has accidents,
rerouting and stuck car removal (with no additional penalty). The bold numbers indi-
cate which of the four RL based controllers works best per configuration.

Total Waiting Queue Length
acc: no, rerout: no acc: yes, rerout: yes acc: yes, rerout: yes
stuck removal: no stuck removal: no stuck removal: yes

TC-SBC 4001.93 (5165.97) 1000.84 (3164.09) 0.109091 (0.0659942)
TC-SBA 7005.36 (4834.03) 2000.96 (4218.23) 0.118182 (0.057902)

TC-SBAC 4001.93 (5165.97) 0.136364 (0.0842211) 0.0844156 (0.0214275)
TC-1 Optimized 8005.13 (4219) 0.120779 (0.0419936) 0.119481 (0.0907647)

TC-Most Cars 7372.88 (4355.75) 6003.53 (5166.52) 0.288312 (0.475119)

Table 2: Averaged total waiting queue length (including variance over 10 runs) over
cycles 45000 - 50000.

Average Junction Waiting Time
acc: no, rerout: no acc: yes, rerout: yes acc: yes, rerout: yes
stuck removal: no stuck removal: no stuck removal: yes

TC-SBC 8.29086 (11.8978) 4.11925 (10.3684) 0.75311 (0.0886949)
TC-SBA 17.5943 (24.5797) 10.0754 (19.6350) 0.753426 (0.0622103)

TC-SBAC 8.29086 (11.8978) 0.757305 (0.0647718) 0.740379 (0.0573645)
TC-1 Optimized 13.9696 (13.1718) 0.749236 (0.0613753) 0.743713 (0.0780901)

TC-Most Cars 7.80976 (2.99729) 48.7703 (44.2321) 1.21792 (0.111205)

Table 3: Averaged average junction waiting time (including variance over 10 runs) over
cycles 45000 - 50000.

In the case of no accidents TC-SBAC will always access only half of its state space,
corresponding to the state space of TC-SBC. It is therefore no surprise that these two
algorithms perform exactly the same in the first configuration.

Besides, the other two RL controllers perform much worse. The high total waiting
queue lengths indicate that those TC’s lead to large congestions throughout the network.
This is supported by the average junction waiting time results.

In the second configuration where there are accidents, TC-SBC and TC-SBA are
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unable to learn a good policy. TC-1 Optimized outperforms all other algorithms. Still,
TC-SBAC does not do that much worse.

For the third configuration, stuck car removal leads to almost equal average junction
waiting times for all four RL controllers. This result was expected, as explained in
section 5.1, and is part of the motivation to use the total waiting queue length measure.
The latter shows that the algorithms perform quite similar as well, but the differences
are a bit more pronounced, in favor of TC-SBAC.

Interestingly enough, the average junction waiting time seems to suggest that the
hand-coded controller performs extremely well in the first model configuration. But
inspection of the total waiting queue length indicates, on the contrary, that the network is
not congestion free. Congestions appear mostly at the edge nodes, while other junctions
have good traffic flow. Furthermore, handling the dynamics accidents introduce to the
simulation is beyond TC-Most Cars’ capability.

6 Conclusion and Discussion

We have shown RL based traffic controllers can deal with accidents. Using accident
knowledge to the advantage of the controller, such as the accident bit, is useful. Still,
simply extending TC-1 with such a bit is insufficient. The case of TC-SBA shows, that
as soon as the accidents are dealt with, it must also be dealt with congestions (chapter
5.2.2).

Tables 2 and 3 show a significant impact of introducing accidents and related im-
provements on the increased performance of all algorithms. It must be noted, that there
are more new changes introduced to the simulation with accidents. The most significant
ones seem to be rerouting and redirecting. Even if the rerouting is disabled, the lanes
are, due to an accident, redirected in order to stop incoming traffic to the accident spot
(chapter 3.2.1). All the cars are forced to take a new route.

As it was mentioned in chapter 3.2.1, the probability of an accident is proportional
to the number of cars present on the lane. Accidents are, like in the real world envi-
ronment, more likely to appear in congested areas. A consequence of an accident in the
congested area and the forced redirection of lanes is, that cars, so far waiting to enter
the problematic congested road, are forced to take another path to their destination.
This redirection then stops the propagation of the congestion, because these cars are no
longer waiting to enter the next road.

This might be intensified even more by the chosen level of accidents and their aver-
age duration. For the purposes of the simulation the probability of an accident is set
in such a way, that there is on average one accident in the city all the time. However,
the average duration of an accident is relatively short in the simulation compared to the
real world. We believe, that this rapidly changing environment, where accidents appear
and disappear continuously, suits TC-1 Optimized very well. It has a very small state
space, and hence it can adapt much faster, than the more advanced algorithms that need
more time to stabilize their behavior. Traffic in a real city might be expected to behave
somewhere in-between the configuration with accidents and the configuration without
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accidents.

The removing stuck cars option, artificially added to help the controllers to learn,
does not correspond to what happens in the real world, and also does not bring any
performance gain. Thus we suggest not to use it in further research.

7 Future Research

Several issues could benefit from future research, or could even be addressed by applying
a few basic modifications to the model.

7.1 Different Accidents Pattern

As it is mentioned above, the amount and duration of accidents might play a crucial
role. The correct setting resembling the real world scenario ought to be found. It might
be expected, that congestion-aware algorithms (TC-SBC, TC-SBAC) will benefit from
the configuration closer to our no-accidents-configuration.

7.2 Time Based Path Planning

As is shown in this paper, rerouting plays a crucial role when dealing with accidents.
When accidents appear, rerouting is necessary. Even an artifact of rerouting - redirecting
lanes - seems to improve the performance of the traffic control.

As it can be observed in the real world, road users avoid congested areas and find a
path, that might be longer in distance, but shorter in travel time. It is straightforward to
use a path planning algorithm, which is time instead of distance based. Such algorithm
would take the current traffic status into account.

Because all the intelligence in our model is incorporated in the traffic lights, such a
change would not require any extra computation from the cars. The traffic information
from the TLC could be used to navigate cars. This would bring traffic control beyond
the limitations of traffic light control.

Intuitively, such adaptation would reduce the traffic overhead in those junctions that
have the most cars passing through them. It could spread the traffic in a more efficient
manner, resulting in less states where some junctions are ‘jammed’ and others that are
completely congestion-free.

7.3 State space Representation

The extension of the state space for dealing with accidents adds only one bit but results
in a state space which is twice as large as the former. This causes a major increase
in the memory requirements and learning time. For example, one way of reducing this
complexity would be by representing the congestion and accident status in one and the
same bit. From a certain point of view, congestions and accidents have the same effect:
the road user cannot pass through.
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The main difference is how this information is propagated throughout the network,
as mentioned in 4.3. Information about accidents is propagated further through the
network than that about congestions. In the used model, road users are aware if their
path goes through an ‘accident area’ two junctions ahead. But the similar information
on congestions is available only one junction ahead. A research topic could be to explore
possible ways of minimizing the state space while maximizing the distance information
is propagated through the network.
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[3] H. Taale, T. Bäck, M. Preuss, A. E. Eiben, J. M. de Graaf, and C. A. Schippers. Op-
timizing traffic light controllers by means of evolutionary algorithms. In Proceedings
of EUFIT’98, 1998.
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