
DOAS 2006 Project Article: Mobile Landmark Recognition

Nikolaj Groeneweg Bastiaan de Groot Arvid Halma Bernardo Quiroga
Maarten Tromp

{njgroene, brgoot, ahalma, bquiroga, mtromp}@science.uva.nl

February 2, 2006

Abstract

In this article we describe the development of an ap-
plication for mobile landmark recognition called ‘Poire’
(Point Of Interest Recognizer). A user should be able
to walk through an unknown environment, make a pic-
ture of a landmark/point of interest, after which our
application returns on topic information. The approach
taken was twofold. On the one hand it was attempted
to find robust, simple and cheap features that might
be used for an initial selection of promising candidates
for further classification. Such features might also be
fruitfully employed in a hierarchical learning scheme.
Several methods that were initially considered interest-
ing have been described, which include several color
based approaches, several shape based techniques and
two new algorithms which attempt to correct for sim-
ilarity and affine transformations. A subset of these
methods was selected for implementation on the mobile
device. The performance of these techniques was eval-
uated within MATLAB on three different databases:
the Zürich Building Database and two different flavors
of a custom database containing images of buildings of
the ‘Roeterseiland complex’ of the University of Ams-
terdam. The obtained performance measures indicate
that the application we propose is indeed feasible al-
though it will require some more work to obtain a com-
mercially viable application.

1 Introduction

In todays society mobile technology plays an important
role. With the widespread use of next generation mo-
bile phones a large percentage of the population carries
a potent processing unit, which nowadays is accompa-
nied by a high resolution camera. This setting has given
rise to a number of interesting applications, but so far
AI techniques have played a limited role in this setting.
In this article we outline an innovative AI application
for mobile phones incorporating techniques from the
field of computer vision and pattern recognition applied
to embedded systems with limited processing capacity.
We will suggest and describe the development of an ap-
plication for landmark recognition on a mobile phone.
The idea behind mobile landmark recognition is that
it enables a user to take a picture of a landmark of
interest and have it automatically recognized by the
application, after which the user is shown some useful
information on the landmark in question. Within the
literature, the study of landmark recognition is focused
on high-level implementations using full fledged com-
puters, with little to no practical work being done on
the implementation on low capacity embedded devices,
as a recent dissertation from the university of Dublin
illustrates [9].

Although many applications of mobile landmark
recognition exist, we focus on recognizing buildings.
As an illustration of the problems faced by our envi-
sioned application, imagine someone (the user) walk-
ing through an unknown city. That user might take

1

a picture, using the camera of his mobile phone, of a
building in which he is interested during any time of
the day, under different weather conditions, from any
type of angle. Therefore the suggested application will
require a learning algorithm that uses robust feature ex-
traction methods that work under different angles and
lighting conditions. If possible, the learning method
should be invariant to similarity transformations and
would ideally also be invariant under affine transfor-
mations. On the one hand we are faced with these
high demands of the application, on the other we are
confronted with practical constraints of the implemen-
tation platform. Developing a computer vision appli-
cation that works in acceptable time on an embedded
device such as a mobile phone requires a careful se-
lection of techniques, as the mobile platform imposes
constraints on both computational power and storage
capacity. These constraints greatly influence the choice
in algorithms and restrict us to a selection of relatively
cheap techniques which require as little storage as pos-
sible. This implies that great care should be taken to
ensure that the representation of buildings in the local
database (on the mobile device) is compact. Ideally,
one would train a learning algorithm offline and pro-
vide the mobile device with a compact representation
of the original database which contains only those im-
age features which are required to correctly classify the
buildings in the database. The mobile device would
subsequently perform features extraction/construction
calculations on the captured image and feed these to
a compactly represented decision rule. We note that
the computational effort can be greatly reduced by the
assumption that we have some information on the ap-
proximate location of the user of the application, which
can be obtained through observing at what ‘cell’ within
a city the roaming mobile device is currently registered.
This assumption is quite reasonable (such information
is available in practice when working on an actual net-
work) and cuts down the number of required compar-
isons for each classification drastically (since only a
small subset of the available database needs to be con-
sidered).

It seems clear that there exists a certain tradeoff

between the computational complexity of our meth-
ods and the performance our application can hope to
achieve. In the hope of finding a solution that meets
both our performance criteria and our practical con-
straints, we have opted to explore two different ap-
proaches simultaneously. The first approach entailed
an attempt to find cheap, robust features that them-
selves might not yield good classification performance,
but might be combined into a good classifier using some
sort of hierarchical decision making process or voting
scheme. The second approach entailed looking for a sin-
gle robust algorithm that could correctly classify build-
ings using more complicated operations over the input
image while still operating within an acceptable time
on the mobile device.

This article is structured in the following manner.
First, we will describe some approaches and techniques
that were initially considered to be of interest. The ad-
vantages and disadvantages of these techniques will be
discussed, with an emphasis on the feasibility of imple-
menting them in on a mobile device. Subsequently we
will discuss which subset of these techniques were actu-
ally selected to be implemented on the mobile phone.
The performance of the selected techniques evaluated
within MATLAB on a standard industrial dataset (the
Zurich Building Database (ZuBuD), see [14]), and two
more difficult custom datasets - the results of which will
be discussed in some detail. Subsequently the hard- and
software used for the implementation of our techniques
on the mobile phone will be discussed, as well as the
time-performance of the implemented methods on the
mobile phone. Finally we propose several possible im-
provements for our algorithms which might be explored
in future research.

2 Methods

Within the computer vision literature some general ap-
proaches for the recognition of landmarks have been de-
scribed. Most of these techniques rely on rather expen-
sive computational techniques however, and are there-
fore not interesting for our current application, but oth-
ers are less computationally expensive and might ap-

2

plied on an embedded system successfully. Here we
give a brief overview of some approaches we initially
felt to be promising, describing both techniques found
within the literature and additions of our own. We will
divide this discussion into two parts: one dealing with
relatively cheap methods of obtaining robust features
to be combined into a classifier and one dealing with
finding a single robust algorithm.

2.1 Robust features for weak classifiers

When focusing on feature extraction on the input im-
age, two basic approaches are widely employed: those
based on color and/or intensity and those based on the
shape of objects within the image. In both approaches,
one is faced with the challenge of extracting only the
information on the objects of interest. There are dif-
ferent ways in which once could attempt to solve this
problem. One could attempt to only extract informa-
tion from objects in which one is interested - i.e. apply
some sort of preprocessing filter to the image. Alterna-
tively, one could apply some sort of weighing operation
(e.g. multivariate gaussian) on the image in order to
assign less importance to regions which are likely to in-
clude noise. Some techniques are more suited for the
first approach, some for the latter. We will discuss the
manner in which we have dealt with this problem as we
come across it.

In the category of color based techniques, we consid-
ered naive histogram based approaches using rgb, hue
and the number of transitions between color-clusters in
the HV C colorspace. In the category of shape based
techniques, we investigated the possibility of using line
clustering techniques to characterize buildings, finding
similarity transformation invariant descriptors of the
skyline of a building as a means of characterization and
a corner detection approach using a likelihood based
comparison method. We will treat these techniques in
more detail below.

2.1.1 Color based approaches

The most straightforward approach of comparing two
images is perhaps that of calculating color histograms

of the images and determining the distance between
these histograms using some sort of metric. We have
considered two such approaches: one using histograms
in the rgb colorspace and one using histograms using
only the hue values from the HSV colorspace. Both are
invariant to viewpoint, object shape and illumination
intensity [2]. Hue has the added advantage of being
invariant to highlights and requiring only a single di-
mension for its histogram representation, which might
be a significant advantage when implementing the tech-
nique on the mobile device.

Having decided on a colorspace in which to calculate
color histograms, one needs to pick a metric to com-
pare them. Several options are available. One could
for instance use the Euclidean distance between the two
histograms, but this is a rather expensive measure. Or
one could use measures which have proved useful in
practice but are not strictly distance metrics, such as
the Bhattacharyya distance[1] or a χ2 metric [12]. The
latter measure has the added benefit of providing in an
easy way of determining an uncertainty measure [12].
Of course the χ2 measure does assume a normal distrib-
ution of the histogram, an assumption which is unlikely
to hold in practice. The measure might however still
prove useful, assuming that it is robust enough to still
allow meaningful comparisons between the histograms.
There is some indication within the literature that this
is indeed the case [12].

As was mentioned before, one should consider if one
want to weigh all regions of an image uniformly when
constructing a histogram. Generally this is not the
case; the borders of an image are likely to contain a
large percentage of noise caused by occlusion or unde-
sirable camera effects, assuming the building is centered
within the image. Therefore one might weigh the im-
age with a Gaussian kernel with µ on the center of the
image, thus assigning less importance to objects nearer
to the image border. This will give the desired effect
of assigning most weight to the building itself. Such a
weighting scheme seems like a useful extension of any
histogram based approach.

Histogram based approaches like the ones described
above have the substantial disadvantages that they

3

throw away all spatial information, even though such
information might be of importance in characterizing a
building. An example of a color based method which
does not suffer from this disadvantage is one taking
into account the color transitions within an image. If
one were to perform some sort of color clustering on an
image, thusly reducing the number of colors, such tech-
niques become feasible in practice. One example of the
use of color clustering can be found in the research of Li
and Shapiro, who introduce a feature in their building
recognition system which is based on clustering in the
HVC color space [5]. The basic idea is to obtain a small
number of clusters, in the order of 20, and to character-
ize each pixel by the cluster to which it belongs. This
way one not only takes color information into account
but also includes some spatial information about which
color clusters occur adjacently. This information can
then be used to characterize a building. The advan-
tage of using the HVC color space is that it provides a
straightforward distance metric between different col-
ors. The HVC colorspace is a mathematical simplified
version of the Munsell colorspace, in which the distance
between two colors is linearly depended on the differ-
ence people experience between the two colors [8](for
the interested reader, more details on the conversion of
RGB to HVC can be found in appendix A). Because of
this property the distance between two different colors
obtains a clear meaning, which is required if one wants
to perform a clusterings algorithm.

2.1.2 Shape based approaches

The additional use of shape based features to charac-
terize a building has some advantages over using only
color features. It it is not unreasonable to assume that
the shape of a building characterizes a building in ways
that color based features cannot. Unfortunately shape
based features are generally more sensitive to similar-
ity and affine transformations, which means special care
has to be taken in selecting appropriate features.

One potentially interesting option for employing
shape would be to cluster lines occuring in the image
based on certain line features. Once could for example
cluster lines that share a certain orientation (i.e.: hor-

izontal, vertical, sharing some angle α − ε, or oriented
towards one of the vanishing points) and use statistical
measures over such clusters to compare buildings. A
particular building might have a certain configuration
of clusters which can help identify that building when
combined with other features. When applying this fea-
ture extraction technique, one should consider how to
extract only features from the object of interest. For
lines of certain orientations this is not such a big issue,
as they are likely to belong to buildings. Lines that
are oriented towards one of the vanishing points for
example, are very likely to belong to man made struc-
tures and as such will often belong to buildings[5]. For
lines of other orientation (a specific angle for example),
one might consider applying some sort of preprocess-
ing before applying lineclustering techniques in order
to extract the building of interest. One of the biggest
problems with such a feature is that it is not invariant to
rotation or affine transformation. Therefore, one might
expect it to fail rather easily.

Another shape based feature that might prove inter-
esting is one which attempts to give a transformation
invariant description of the skyline. In many cases the
skyline gives a good description of a building as it might
include characteristic rooftops and other distinguishing
features. One manner to go about finding such a de-
scription is to view the skyline as a function defined over
the width of an image. This function could be repre-
sented by a fourier series, thusly describing the skyline
in terms of a set of weighted sine and cosine functions.
Such a descriptor would be scale invariant, in the sense
that the a scaling of the image would merely result in a
scaling of the function describing the skyline. It is also
somewhat robust against affine transformations; these
cause the resulting function to be somewhat squashed
and oriented along a rotated x-axis. This means that in
principle it should be possible to correct for such trans-
formations, although it remains to be seen how this can
be done in practice.

Finally, one might consider running a corner detec-
tor to for instance find corners of windows, which occur
very frequently in buildings. Although this might seem
like a very crude feature, one could easily refine it by di-

4

viding the image into different subimages and detecting
corners in certain regions. Subsequently one could com-
pare an image based on the number of corners within
each region and find a nearest neighbor in the data-
base based on this comparison. There are corner de-
tection algorithms, such as that of Zheng & Wang[13],
which are robust under affine transformations, can deal
with reasonable levels of scaling and are also relatively
fast compared to the often used Harris detector devel-
oped by Harris and Plessy [4]. Such corner detection
algorithms are especially well suited for our application
and seem like promising cancidates for extracting shape
based features.

Above we described some features that we consider
interesting for using in a learning algorithm that com-
bines different features that themselves are not partic-
ulary strong classifiers. Some of the proposed features
are more robust than others, but all might serve as a
useful initial screening of potential matches when try-
ing to classify landmarks. In the next section we de-
scribe single algorithms which are more robust and can
hopefully classify a large percentage of the buildings
correctly. These could be used in conjunction with the
techniques described above, to classify those instances
that an initial screening has shown to be most promis-
ing.

2.2 Robust algorithms

We propose two algorithms, based to some extend on
ideas found within the literature, that we hope are ro-
bust enough to distinguish between buildings even un-
der similarity and affine transformations. The first of
these algorithms employs a Radon transform combined
and attempt to correct for transformations by normal-
ization within the transformed space. The second algo-
rithm is based on the concept of local invariant regions.
It attempts to estimate the extrinsic features of a build-
ing based on sublimes of images and find a ‘normalized’
representation of the image in which all transformations
are undone. Both algorithms will be described in more
detail below.

2.2.1 Normalization after Radon transforma-
tion

The main difficulty with the features described earlier
is that strictly speaking, one is only interested in the
intrinsic properties of an object such as aspect ratio,
shape of the windows, whether there are stripes at the
left side of the door, etcetera. Other shape properties
like translation, scale, rotation, perspective, are extrin-
sic properties that are involved in the relation between
the observer and the target. Ideally, one would like to
get rid of these features, since they do not describe the
inherent features of the object in which one is inter-
ested. The algorithm described in this section is based
around the idea that one wishes to correct for the ex-
trinsic variation found in images and compare buildings
only on their intrinsic shape properties. The approach
we suggest is that one could do this by first applying
a Radon transformation on the images in question to
obtain a description of the most important lines within
the image. A Radon transformation transforms any
two dimensional image with lines into a space of pos-
sible domain parameters. Within this new space, each
line occurring within the image will cause a peak value
located at the corresponding line parameters. Parame-
ters that occur more frequently within an image will
cause strong peaks within the Radon space, whereas
lines that occur only once or twice will be negligible
after applying the Radon transform. The Radon trans-
formation is performed by applying parallel projections
of the image over varying angles, as has been illustrated
in figure 1.

After acquiring the Radon transformation of an im-
age, one might attempt to correct for similarity trans-
formations within this space. In order to do this, one
should first notice that the left and right side of a
Radon transformed image represent projections of the
object from opposite sides: under an angle of θ = 0 and
θ = 180 respectively1. Therefore the sides of the Radon
space can be attached to each other to form a Möbius-
ring. It is within this Möbius ring of the Radon space

1Please note that the remainder of the projections (in the
range θ = 180 through θ = 360 are superfluous, as they would
yield the same results as the projections performed earlier.

5

Figure 1: The parallel projections over a varying angle
θ which are at the basis of the Möbius Radon transfor-
mation

that we believe we could correct for extrinsic properties.
In particular, we might begin by shifting the important
lines (the ones with strong peaks within the parameter
space) to θ = 0. If we do this for all buildings, we are
effectively correcting for rotations of the original im-
ages. For other corrections, one needs to apply more
complicated transformations. In order to correct for
translation in the y direction, one will need to trans-
form the Möbius-ring along a sinoid and translate along
this transformed ring. For corrections for translation in
the x direction, one can do the same but with applying
a cosine transformation instead. In order to correct for
scaling effects, one should scale the Möbius-ring along
its y axis. These corrections are summarized in figure
2.

After applying such normalizations to correct for the
transformations in the original image, one might em-
ploy any learning algorithm, such as a nearest neighbor
approach, to compare and classify images within the
parameter space.

2.2.2 Local Invariant Regions

As was touched upon earlier, the main difficulty in clas-
sification of buildings is that one is only interested in

Figure 2: Corrections in the Radon parameter space
(connected to form a Möbius ring)(right) for extrinsic
variation within the original image (left).

the intrinsic properties of an object. In this section
we suggest a method that should be able to use shape
and texture features in a robust manner by applying
corrections for extrinsic variation within an image.

The first step in our approach is that an image can be
represented by a list of (smaller) image slices, regions, of
the original image. Subsequently we can try to estimate
the extrinsic properties for these regions. Once we know
a region is transformed a certain way we can normalize
this local image by undoing this transform. Through
this correction, we can represent an image by storing
a list of normalized images. A new image from the
mobile device’s camera can be stored this way, after
which a distance measure to known objects can be used
to determine the object’s identity.

If we look at the entire image of a building it is very
hard to determine the discussed transformations and
find a canonical representation since different sides of
a building are transformed differently. Local regions,
where the object is planar, can easily be described in a
canonical form, since all points in such a region are sub-
ject to the same linear transformation. In the object

6

recognition literature this property of is exploited in
so called local region based approaches[11][10][6]. Ad-
vantages that are mentioned within the literature are
the robustness of these features to occlusion and clutter
(due to the fact that they are local), their distinctive-
ness, as well as the fact that they are computationally
inexpensive and extensible.

3 Selected techniques and imple-
mentation

In the sections above we have described some tech-
niques that we initially felt to be promising. We have
selected a subset of these techniques to be implemented
on the mobile platform. We will first give a brief
overview of methods that were selected, during which
we will elaborate further on some details concerning
their implementation. Finally we will discuss why the
other techniques were not explored any further.

3.1 Histogram based approaches

We have selected the rgb and HSV based histogram
comparison paired with a χ2 distance measure as a
useful initial screening of potential matches. We have
chosen the χ2 measure over other measures such as
the Bhattacharyya distance because we like the fact
that the χ2 measure also provides us with a relatively
straightforward measure of ambihuity[12]. Given two
images, a test image It and a model image Im, the χ2

distance is defined as:

χ2(It, Im) =
∑

k

(It(k) − Im(k))2

It(k) + Im(k)

Given this distance one can also define a measure of
ambiguity which ranges from 0 (in case the test image is
very easy to classify) to 1 (in which case the test image
is very hard to classify). This ambiguity measure can
be defined as:

Am =
χ2

1
1

n−1(
∑

i χ
2
i)

where i = 2, 3, ..., n and χ2
i is the ith closest dis-

tance of the result. This ambiguity measure might be
fruitfully employed in different settings. For example:
when combining the histogram based approaches with
other classifiers within a decision tree, one might use
the ambiguity measure as a cutoff measure for deciding
in which cases to prefer other classifiers. In hierarchical
approaches one might use it to select the size of the im-
age set to be handed down to more powerful classifiers.

3.2 Color clustering in HV C colorspace

The described HV C color clustering algorithm used
in combination with a nearest neighbor technique over
the cluster transitions was also selected to be imple-
mented on the mobile phone. The reasons for doing so
are twofold. First and foremost, the technique uses a
certain amount of spatial information (the ordering of
the clusters within the image) which is a clear advan-
tage over the histogram based approaches. Secondly, it
can be implemented extremely efficiently on the mobile
phone through the use of a look-up table which maps
every color from RGB to a certain HV C color cluster.

There are different ways in which one might go
about determining the desired color clusters. In their
article describing color clustering within the HV C
colorspace[5], Li and Shapiro cluster the colors within
every picture to detect the different buildings within
one image. We however cluster on the colors in all the
images of a single building in our complete trainingsset
since we need to have the same clusters in the pictures
which are taken on the mobile phone and the ones in
our trainingsset to be able to compare the two.

On the mobile phone we do not only need to de-
termine the colorclusters, which could be implemented
very efficiently using a look-up table as was mentioned
earlier, but we also need to determine the transitions
between the clusters within the query image. As such,
we need to have a computationally efficient way to cal-
culate these transitions. In the original article by Li
and Shapiro, the authors detect the lines of the building
and determine the color transitions across these lines.
Since we expect this step to be too computationally ex-
pensive, we have opted to simply compare every pixel

7

Figure 3: Results of color clustering in HV C space

with the pixel to the east, south east and south of it.
In this manner all cluster transitions can be found in
only three operations for each pixel, yielding a rela-
tively cheap transition calculation. Subsequently we
build a 2 dimensional histogram for every building in
the trainingsset in which we count how many transi-
tions occur between every pair of color clusters. Since
we want a transitions between C1 and C2 to be counted
as the same as a transition between C2 to C1, we al-
ways insert a transition as if it is from min(C1,C2) to
max(C1,C2) in which the minimum and maximum is
defined by the cluster number. This yields an appro-
priate cluster transition histogram, which can subse-
quently be used to compare query images and images
from the database. For this comparison, we have cho-
sen to use a χ2 distance measure, for reasons discussed
earlier.

3.3 Local invariant regions

The local invariant region approach described earlier
was also implemented and tested on the mobile phone.
We choose to implement this method because its abil-
ity to correct for transformations seems promising and
because it could be implemented relatively efficiently
on the mobile device. Some details concerning the im-
plementation of this general approach will be discussed

below.
As was mentioned earlier, the local invariant regions

approach is based on canonical representations of local,
planar regions. Based on this basic approach, we will
present a new efficient method optimized for mobile
building recognition.

Our algorithm does not differ from existing regional
methods in the way that it finds characteristic regions,
represents them in a invariant way and uses a distance
measure in a voting scheme to determine the object’s
identity. The way we represent regions however, is dif-
ferent from what we have seen before.

Using local regions heavily relies on choosing the
same regions independently from each other regardless
of image changes. The regions are chosen around key
points in the image. Local extrema in the intensity are
such stable key points. So under different lighting con-
ditions, viewing angles and scales, dark and light dots
in the image remain more or less the same. Intensity
extrema which also occur in blurred versions of the im-
age are repeated more often in different views of the
object[10]. This makes the selection of key points more
robust and reduces the amount of regions found.

From the detected key points regions which automat-
ically adapt the the view point are constructed by prob-
ing the intensity changes in different directions. The
region boundaries are determined by drastic intensity
changes walking along the directions [11].

We have considered other key points found in the
literature. Extrema in the difference-of-Gaussian scale
space, for example, are much more computationally ex-
pensive. Corner points are also more expensive and
have a more structural problem: when these points
form the centers of a region, we obtain a region which
includes different planes in the real world. All of these
planes will have their own perspective distortion, mak-
ing it very hard to estimate the extrinsic variation of
the region.

The only transformations we consider for local re-
gions are scaling and vertical skew. By this we as-
sume that the picture is hardly rotated and the skewed
rectangle approximates the perspective transformations
well enough. This approach has the added advantage

8

Figure 4: Example of local invariant regions found us-
ing parallelogram shaped regions

Figure 5: Detail of found regions, clearly showing the
intensity extrema used for determining the regions.

of being extremely fast, unlike the approach of using
ellipsoidal regions found within the literature[11]. Our
approach may not be as generally applicable as the ap-
proach using ellipses, but it is very well suited for rep-
resenting features in man-made structures.

The boundary points of the found regions are used
to fit an parallelogram, of which the left and right side
are held vertically. To increase the distinctiveness we
scale the parallelogram to double it’s size.

Unlike others who use ‘Generalized Color Moments’
introduced by Mindru [7] we represent the regions in a
more direct way by transforming each region to a fixed
size square. This representation is, unlike the ‘Gener-
alized Color Moments’, not invariant to rotations and
therefor more descriptive.

We could store all normalized regions directly in a
list. Instead of doing this we first do Principal Com-
ponent Analysis to reduce the amount of information
needed to represent each region. By storing the first 30
components we reduce the space required significantly.

To reduce the number of regions stored and thus
the amount of computation needed, we discard regions
which are not characteristic enough for a certain build-
ing and replace similar regions by one prototype. This
is achieved by clustering the regions found for one build-
ing. Singleton are removed; If a region is characteristic
it should occur in more views of the building. This
novel addition makes our approach especially tractable
for implementation on the mobile phone without loss
of performance.

When a new image is captured it will undergo the
same process of creating a list of normalized regions
from the raw pixel data. Each region found in the query
image votes for building belonging to the nearest known
neighbor in the principal component space. The weight
of the vote equals 1/d, where d is the Euclidean distance
to the nearest neighbor. The query building will be
classified as the building with the highest total vote.

3.4 Considerations for rejecting other ap-
proaches

The other approaches that were discussed have not
been implemented. The reasons for not implementing

9

these techniques vary; they will be elaborated on below.

3.4.1 Shape based approaches

Earlier, we have suggested several potentially interest-
ing shape based features. However, we have decided
not to implement any of these features.

The fourier skyline descriptors were deemed to im-
practical on second thought. Although theoretically
one could correct for transformations of the original im-
age, we believe that in practice this would become too
computationally expensive and cumbersome. As such
we have rejected this technique for the time being, al-
though perhaps it might still be interesting to look into
at a later time.

The most promising of the shape based features, line
clustering based on orientation, was not implemented
due to a lack of proper reference material. We found
an article describing the techniques and algorithms we
required [], but were unable to acquire the article in
time. Since we believed the article in question might
arrive at any time, we focused our initial work on the
other methods instead of constructing our own algo-
rithm. When the article arrived, however, we found we
had too little time left to implement the described tech-
nique. Unfortunately we decided in an early stage that
the line clustering approach was more promising than
the described corner detection approach, so we assigned
the latter lower priority - yielding a net result of having
implemented neither. This is unfortunate, but such is
the fate of science within a two week implementation
window.

3.4.2 Normalization after Radon transforma-
tion

Normalization after applying a Radon transformation,
although very promising, has not been implemented.
Initial experimentation with this technique indicated
that it would be hard to give the procedure the robust-
ness we require. We tried applying the Radon trans-
formation to edge images, but observed that in general
this yields too little information for our normalization
purposes (important lines from the building would not

occur in the edge images consistently enough). Apply-
ing the transformation to the normal images was con-
sidered too expensive to be a realistic alternative for
our application. Therefore it was decided to invest in
implementing the Local Invariant Region approach in-
stead, since this algorithm is inherently robust under
affine transformations and much more straightforward
to implement.

4 Results

The selected set of techniques have initially been im-
plemented in MATLAB, where they were tested on
the ‘Zurich Building Database’ (ZuBuD)[14]. Subse-
quently the methods were ported to the mobile phone
and tested on a real life database of the ‘Roeterseiland
complex’, a set of buildings belonging to the University
of Amsterdam.

Before discussing the results obtained in MATLAB,
we will describe the databases that were used for
our evaluation purposes. Subsequently we will elab-
orate briefly on the hardware specifications of the mo-
bile phone used to test our application and the pro-
gramming language used for the mobile development.
Finally we will discuss our current implementation
progress on the mobile device.

4.1 Evaluation databases

4.1.1 The Zürich Building Database

The ZuBuD consists of pictures of 201 different build-
ings taken in the city of Zürich, Germany. For every
building there are five different views within the data-
base, each of which are 640x480 pixels in size. Dif-
ferences between the views include the angle at which
the picture is taken, relatively small scaling effects and
occlusion. The pictures look as though they are taken
by the same, or at least a very similar, camera. An
occasional picture is of considerable lesser quality than
the others, but the frequency at which this occurs is
negligible. Examples of images from this dataset can
be found in figure 6.

10

Figure 6: Examples of different views of a single build-
ing from the Zürich Building Database.

The ZuBuD comes with a standardized query set,
consisting of 115 images of buildings (also with a size
of 640x480), all of which occur within the database.

4.1.2 Roeterseiland databases

The Roeterseiland database consist of a set of 6 differ-
ent buildings. The images used have a size of 1280x960
and were resized from original images shot with a 3.2
megapixel camera. We used two different flavours of
this database.

The first Roeterseiland database contains three to
five different views of each building (depending on the
amount of possible views in real life). Some of the im-
ages in this set were rotated (some 90 degrees, some
only slightly). Furthermore, we included several im-
ages in which occlusion of the buildings by fences or
trees occur. Examples of images from this dataset can
be found in figure 7.

The second version of this database consists of a set
of six different objects, with a slightly higher average
number of views per building (four to nine depending
on the amount of possible views in real life). The set
contains no rotated images, and includes images taken
under different lighting conditions. We have explicitly
taken care not to include images in which occlusion

Figure 7: Examples of images from the first ‘Roetersei-
land’ database.

occurs. Examples of images from this dataset can be
found in figure 8.

Figure 8: Examples of images from the second ‘Roeter-
seiland’ database.

The main reason for evaluating the performance of
our methods on two wildly differing databases is to
check if our obtained performance is not due to co-
incidental overfitting to our dataset. The datasets we
have constructed are not ideal and could easily be im-
proved to boost the performance (multiple lighting con-
ditions could be included in the dataset seperarely, the
dataset could be constructed using a professional cam-
era, etcetera). The results obtained using the Roeter-
seilandcomplex databases will therefore undoubtedly
yield suboptimal results. If we were to build a data-
base for a commercial application, we would make sure
that our database is constructed more optimally.

4.2 Evaluation in MATLAB

We compared the implemented classifiers on the
datasets described earlier. The obtained results can
be found in figure 8.

It’s interesting to see that there is no classifier that
outperforms all others on all datasets. We obtained a
quite high performance for all classifiers, except color

11

Algorithm Zubud RE1 RE2
rgb histograms 79% 58% 7%
hue histograms 94% 34% 23%

Cluster transitions 49% 74% 44%
Local invariant regions 86% 42% 78%

Figure 9: Evaluation results on the different databases.
Please note that a single result is still pending at the
time of writing of this article.

clustering, on the ZuBuD database. This high perfor-
mance is against our expectations since we’re looking
for a simple classifier which works well for a smaller set
of buildings. If we decrease the number of buildings in
the dataset, to a number which we expect for our target
application, the simple classifiers already have a 100%
score. The problem is that the conditions under which
the ZuBuD queryset and database images were created
are quite similar, something we don’t expect to be the
case in our application. The low score of the color clus-
terings algorithm can be explained by the fact that the
number of buildings in the database is huge and there-
fore the discriminative power of the transitions drops.
For the ZuBuD database we can therefore conclude that
there is no need for our more fancy approaches since hue
already obtained a good score.

In the Roeterseiland databases, buildings are much
more difficult to classify because of the two version
of this database include ‘noisy’ images. As was men-
tioned before, the first flavour of this database contains
some instances of serious occlusion. The second flavour
of this database contains images made under varying
lighting conditions.

The significant drop in performance for the local in-
variant region approach on the first Roeterseiland data-
base can be explained in a straightforward manner.
Since the images in this database contain quite a few
instances of occlusion, this method will have a hard
time finding consistent regions across different images
of the same building. The histogram based methods
suffer less from these circumstances, as can be learned
from studying the performance statistics.

The performance drop for the histogram methods on

the second Roeterseiland database was also to be ex-
pected, since this database includes images with large
variation in the lighting conditions, so much so that in
some cases we are really pushing the limits of what our
method can be expected to handle. The local invariant
regions approach suffers less from this type of noise; the
local regions that are found do not really suffer from the
variation that occurs with the database.

As was mentioned before, the database could and
should be improved upon for any real life practical ap-
plication. The obtained performance on the ZuBuD
database shows that given a sufficiently stable data-
base, our methods can obtain much better accuracy
than they show on the Roeterseiland databases.

It should also be mentioned that before testing the
methods seperately, we tried to find a way to combine
the three histogram based methods to boost their per-
formance but we were unsuccessful. The biggest prob-
lem was that we couldn’t find a good certainty measure
which predicts wether one of the classifiers is correct or
if the right answer will certainly be in it’s top N an-
swers. We have tried to use the following measures:

• the size of the bhattacharaya distance;

• the ratio between the smallest distance and the
average of the N smallest distances, for both the
bhattacharaya and χ2;

There could be two possible solutions to this prob-
lem, either find some similarity measure for histograms
which is a metric and computational inexpensive, or
find some heuristic like the certainty measure we used
for the χ2 but which actually makes a good prediction.

5 Mobile Phone Development

In this section we will elaborate on some issues con-
cerning mobile phone development. We will discusss
the choices one has to make when one decides to de-
velop an application on a mobile phone. We will also
describe the development cycle and offer some insight
into the performance of a mobile phone in general.

12

5.1 Platforms

There are two major platforms currently available for
mobile phone development: Symbian OS[15] and Java 2
Mobile Edition (J2ME)[16]. From a developer’s point
of view the major difference between these platforms
is that Symbian uses C/C++ whereas J2ME uses a
slimmed down version of the Java programming lan-
guage. Intuitively, this would mean that J2ME is the
slower platform as Java compiles to bytecode whereas
C/C++ compiles to machine code which can be directly
executed by the hardware. Fortunately, there are mo-
bile phones that carry embedded processors (such as the
ARM Jazelle[17]) with the capability to execute byte-
code directly in hardware, thereby levelling the field
as far as performance is concerned. Apart from this
technical difference the two platforms also differ in the
amount of mobile phones that support the specific plat-
form. At the moment, the J2ME platform is much more
widely supported than Symbian OS. We have therefore
decided to develop for the J2ME platform as we would
like to develop for as big an audience as possible.

5.2 J2ME Development Cycle

J2ME development revolves around the Java Wireless
Toolkit[18], which contains the Java compiler, phone
emulator, packaging software and software libraries.
As the standard J2ME platform offers extremely lit-
tle functionality one has to select which additional li-
braries to use. These libraries offer for example the ca-
pability to capture video, connect to other devices via
bluetooth, support networking (http), access memory
cards, play audio files, etc. As not all phones support all
these features the use of these libraries further restrict
the portability of the code. The toolkit also contains
an emulator that greatly shortens the development cy-
cle as one does not need to upload the software to the
mobile device in order to test it. For each mobile phone
there exists a different mobile phone that not only em-
ulates the functionality of the phone but also, to some
extent as we will shortly discuss, the performance of
the phone. Instead of offering just the emulator, each
mobile phone manufacturer offers their own blend of

the Wireless Toolkit as it appears the implementation
of the additional libraries is different for each phone. It
would appear "Write once, run everywhere" does not
hold for mobile phone development. After the software
has been written it has to be tested and compiled for
each type of mobile phone that one wishes to support
as the implementation of the libraries differ for each
platform.

5.3 Performance

A mobile phone is computationally challenged w.r.t. a
desktop computer. Consider that the mobile phone we
have developed on 2 has a heap size of only 1.5MB and
it should be obvious that efficiency and speed are in-
deed an issue. In order to gain an insight into where
the bottlenecks of an application might be we have run
several benchmarks. We have included a barchart of
the performance below. The benchmarks test the fol-

lowing operations: casting from int to float and vice
versa, if statements, square root, method call, bit shift-
ing, division, multiplication, addition and array alloca-
tion/assignment. We can see that in general the phone

2Sony Ericsson K700i

13

simulator emulates the performance of the phone quite
closely except for operations on the double primitive
datatype. We must note that the calculation of the
square root of a double took 2352ms, this has been
plotted as 500ms. in order to keep the rest of the chart
readable. We can conclude that we must avoid opera-
tions on doubles as these are extremely expensive. An
interesting result of the benchmark is that floats and
ints appear to be comparable in performance.

In the setting of image processing a lot of operations
must be done on two-dimensional arrays. Minimizing
the amount of data access turns out to be much more
fruitful than minimizing the amount of calculations.
This is due to the small heap size of 1.5MB. We refer
to the appendix about the optimization of convolution
with a Gaussian kernel for a discussion about this type
of optimization.

5.4 Implementation of algorithms on the
mobile phone

We have succeeded in porting all of the evaluated meth-
ods to the mobile phone. The time-performance of run-
ning the methods on our Sony Erickson test phone are
listed in figure 10. As can be seen, the methods we pro-
pose take around 10 seconds to execute on the mobile
device. This time encompasses all stages of the clas-
sification process: the loading of the database, feature
extraction and the comparison of the captured query
image with all buildings within the database.

Algorithm Runtime
rgb, hue and cluster combined 13 seconds

Local invariant regions 10 seconds

Figure 10: Time performance on the mobile phone

6 Discussion

We have suggested several potentially interesting tech-
niques for mobile landmark recognition. We set out

to implemented a set of simple, cheap and robust fea-
tures which might be used as an initial filtering mech-
anism in classifying buildings and a robust algorithm
capable of dealing with similarity and affine transfor-
mations. We have selected and implemented two color
histogram based approaches, an approach based on his-
tograms on the transitions between HV C colorclusters
and have introduced a new algorithm based on local
invariant regions. These methods were implemented in
MATLAB and tested on three different datasets: the
Zurich Building Database (ZuBuD) and two different
flavors of a small custom database containing images of
buildings on the ‘Roeterseiland complex’. The first of
these databases was constructed with the expectation
that our histogram based approaches would show good
performance, while the local invariant region algorithm
would show suboptimal performance due to occlusion
within the images includes in the database. The sec-
ond version of the database was constructed with the
expectation that the local invariant region algorithm
would perform quite well, but that the histogram based
approaches would show suboptimal performance due to
very strong variation in the lighting conditions between
the images includes in the database.

The obtained performance measures showed that the
simple histogram based features managed to distinguish
rather well between buildings on the ZuBuD database.
If subsets of this database were selected of the size
that we expect to encounter in our real life applica-
tion, performance even approached 100%. This per-
formance was quite surprising, as the ZuBuD database
is an industrial standard within the computer vision
literature. The local invariant regions approach also
showed quite good performance on this database, clas-
sifying almost 90% of the buildings correctly. On our
custom datasets, performance dropped in accordance
with our apriori expectations, indicating that the vari-
ous algorithms we have proposed each have their indi-
vidual weaknesses. One should take these advantages
and disadvantages into account when developing a real
life commercial application that requires robust perfor-
mance and construct the database very carefully.

We believe that there is also still much room for

14

improvement in our current implementation of the de-
scribed methods.

On the color clustering method a lot of improvement
is possible by tuning the parameters of the clusterings
algorithm. The biggest boost is probably the variation
in the number of clusters. This probably the cause of
the bad performance on the ZuBuD database.
Another possible boost could be to only look at tran-
sitions of the larger clusters in the picture since the
smallest blobs are probably only noise. This could be
implemented quite efficiently by first sorting the cluster
number on their total size in the query image and then
apply a dilation erosion on them to remove the small
clusters.

There are also many possible improvements to the
method based on local regions. First of all the selec-
tion of key points can be improved judging from com-
parisons between different views of the same building.
The more key points are repeated in different views the
better. Often key points of some discriminating regions
are not detected in every view, because pixels around
the intensity extrema often have the same intensity. In
such a case none of the pixels are regarded as extrema
to avoid too many key points in regions where intensi-
ties do not vary. Maybe this can be avoided without
discarding useful key points. We could also consider
different types of key points.

Different color spaces to represent the regions could
be of use to make the representation more invariant to
different illumination conditions and thus giving better
matches.

Different voting schemes might also boost the per-
formance of the classifier. Wrong matches might be
detected. Not just voting for the nearest neighbor but
also for a few less near ones might help as well. A prob-
lem is that such extensions require setting more para-
meters. Better is to take many pictures of the buildings
to be recognized and use a machine learning scheme to
determine how to classify best. Radial basis functions
seem like a natural choice for the problem.

7 Conclusion

We have showed that an application for mobile land-
mark recognition is indeed feasible and that the image
processing techniques required to solve the problems
faced by such an application can successfully be im-
plemented on a mobile phone to run within acceptable
time. We believe that the performance obtained on
the test databases shows that the application could be
made robust enough for a commercial application, al-
though more work remains to be done before the re-
quired level of robustness is obtained. We have sug-
gested several improvements on our current algorithms
which might serve to boost the levels of performance
and robustness and are convinced that the required per-
formance levels can indeed be obtained following the
approaches we have outlined in this paper.

8 Appendices

A HCV colorspace

The transformation from the RGB colorspace to
the HCV colorspace is acquired from the analysis
of a huge amount of Munsell colors and their RGB
value. From this analysis it follows that the RGB to
HVC colorspace transformation can be done as fol-

lows:

 xc

y
zc]

 =

 0.620 0.178 0.204
0.299 0.587 0.114
0.000 0.056 0.942

 =

 r
g
b

H1 = f(xc) − f(y)
H2 = f(zc) − f(y)
H3 = f(y)
wheref(u) = 18.51u

u+17.58(1+ 5.146u
u+30.07

)

M1 = H1

M2 = 0.4H2

S1 = (8.880 + 0.966cos(θ))M1

S2 = (8.025 + 2.558cosθ)M2

whereθ = arctanM2
M1

H = arctanS2
S1

V = H3

C =
√

S2
1 + S2

2

15

To calculate the distance between two colors we use
the National bureau of standards (NBS) color distance
instead of the Euclidian distance, since it was found
that the NBS distance has a close relation with the
difference humans perceive between two colors.

The NBS distance between color (H1, V1, C1) and
color (H2, V2, C2) can be calculated with: colordis =
1.2

√
(2C1C2)(1 − cos(2π∆H/100)) + (∆C)2 + (4∆V)2

where ∆H = |H1−H2|,∆V = |V1−V2|,∆C = |C1−C2|
With this formulas it’s possible to implement a

RGB2HVC method and to build a cluster algorithm
which is based on nearest neighboorhood.

B Color clustering

In this appendix a color clusterings method is described
which generates a predefined number of clusters in the
HVC colorspace based on the trainingsset. The cluster-
ing is based on the colorclustering in Gong. The only
difference is that we are clustering on multiple objects
and multiple pictures. We therefore have to compen-
sate for the different amount of pictures taken of every
object and the differences in size between those pic-
tures. It is easy to see that these compensations are
needed from the extreme case where we have a lot of
photos from one object and only one from another. If
would cluster by weighting all pixels the same, the color
clusters which are important for the first object will not
be created since, they have only a small set of pixel sup-
porting them.

With these additions the final algorithm comes to
look like this:

for ∀buildings do
for ∀views do

Convert the image to HVC.
Put all the colors of one building in to a tempo-
rary histogram.

end for
normalize the temporary histogram and sum it to
the final histogram.

end for
while k < Tsandmax(histogram > 0) do

set seeds = ∅andk = 1

Find the maximum in the histogram and add it
to the seeds if the distance to all other seeds is at
least Tsd, in that case increment k.

end while
Initialize all seeds as a cluster with radius 1;
merge=true.
while merge do

merge=false.
Add all colors in the histogram to their closest clus-
ter.
update the center and radius of every pixel to the
weighted average of the colors which are assigned
to the cluster.
Check wether there are two clusters for which holds
that their center distance is smaller then tsd and
their radius smaller then Tcr, if so merge the two
clusters and set merge to true.

end while

C Optimization of convolution with
a Gaussian kernel

This appendix describes the process of optimizing
the implementation of the convolution operator in
J2ME when the kernel is a standard two dimensional
Gaussian, with zero mean and standard deviation of
one. We will first describe a naive implementation and
then elaborate on each optimization step.

C.1 Naive implementation

Our first naive implementation of the convolution oper-
ator considers a generic two-dimensional kernel. Appli-
cation of the convolution operator with kernel K over
image F resulting in the image G boils down to the
following pseudocode, ignoring border conditions:

for x=0:imageWidth
for y=0:imageHeight

sum = 0
for i=-xOrigin:-xOrigin+kernelWidth

for j=-yOrigin:-yOrigin+kernelHeight
sum += F(x+i, y+j)*K(xOrigin+i, yOrigin+j)

G(x, y) = bound(sum)

16

Note that we consider only greyscale images that are
stored in two dimensional arrays of signed integers of
8 bits wide. Therefore we have to keep overflow in
mind. This is solved by using a wider data type (32bit
integer) for the sum variable, which is then bounded to
the allowed values of the narrower data type. Also since
the weights of the kernel are floats the multiplication is
also done for floats.

In image processing convolution is an essential op-
eration which is performed many times. The canny
edge detector, for example, convolves the input image
five times using different gaussian derivative kernels.
As this operation was deemed necessary for the mobile
application it was important to optimize this. Espe-
cially since it turned out that the first naive version of
the canny edge detector took nearly 12seconds on the
mobile phone, most of this time was consumed by the
convolution operator.

C.2 Gaussian kernels

Two dimensional Gaussian kernels have the property
that they can be decomposed. This entails that con-
volving an image by a two dimensional kernel can be ac-
complished by convolving an image first row wise than
column wise by a one-dimensional kernel. Which re-
sults in a lot less multiplications being done, for ex-
ample for a 3x3 kernel we can reduce the amount of
multiplications from 9 to 6.

Implementing this in J2ME has the consequence that
the quadruple for loop reduces into two triple for loops.
Unfortunately this resulted in a speed loss instead of a
speed gain. This is deemed to be due to the small cache
size of the embedded processor which makes data access
from the heap an expensive operation. The drop in
arithmetic effort unfortunately does not compare to the
more frequent data access, w.r.t. run time efficiency.
Fortunately further investigation of the Gaussian kernel
gives rise to a speedup indeed.

C.3 Bitshifting

Consider the following Gaussian kernel:

1
8

 0 2 0
2 4 2
0 2 0

As the coefficients are all multiples of two we can im-
plement the convolution of an image by this kernel as a
sum of bitshifts. Furthermore since the coefficients sum
to unity we do not have to take care of possible over-
flow. The only care we have take is when the weights of
the derivatives of this kernel are negative, in this case
we have to negate the result of the bitshift.

Implementing this optimization results in the
quadruple for loop but we there are no operations on
floating points nor is there an accumulator variable in-
volved. Only bytes are manipulated which as previ-
ously discussed in the article, is extremely fast. At this
point we have taken the canny edge detector from a
runtime of 12seconds to less than 2 seconds.

References

[1] Comaniciu D.,Ramesh V., and Meer P., Kernel-
Based Object Tracking, IEEE trans. on Pattern
Recognition and Machine Intelligence, May 2003,
vol. 25, number 5, pp. 564- 578, 2003

[2] Gevers, T. Color in Image Search Engines Sur-
vey on color for image retrieval from Multimedia
Search, ed. M. Lew, Springer Verlag, January, 2001

[3] Gong,Y. Advancing Content-Based Image Re-
trieval by Exploiting Image Color and Region Fea-
tures, Multimedia Systems, 1999, vol. 7, number
6, pp. 449-457.

[4] Harris, C. and Stephens, M. A Combined Corner
and Edge Detector. Proc. Alvey Vision Conf., Uni-
versity of Manchester, pp. 147-151, 1988.

[5] Li, Y. and Shapiro, L., Consistent Line
Clusters for Building Recognition in CBIR,

17

CBIR International Conference on Pat-
tern Recognition, August 2002. Url =
http://citeseer.ist.psu.edu/li02consistent.html

[6] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60, 2, 2004, pp. 91-110.

[7] F. Mindru, T. Moons and L. Van Gool. Recognizing
color patterns irrespective of viewpoint and illumi-
nation, IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 368-373, 1999.

[8] Miyahara, M. and Yoshida, Y., Math. Transform
of (R,G,B) Color Data to Munsell (H,V,C) Color
Data, Vis. Comm. and Image Proc., SPIE, Vol.
1001, pp. 650-657, 1988.

[9] O’Hanlon, K. Building Recognition using Com-
puter Vision for Urban Ubiquitous Environments.
A dissertation submitted to the University of
Dublin, 2005.

[10] Shao H., Svoboda T., Tuytelaars T. and van Gool
L.J. HPAT Indexing for Fast Object/Scene Recog-
nition Based on Local Appearance. CIVR 2003: 71-
80

[11] Tuytelaars T. and van Gool L.J. Wide baseline
stereo based on local affinely invariant regions. In
British Machine Vision Conference, 2000.

[12] Zhang W. and Kos̃ecká J., Localization based on
building recognition, Workshop on Applications
for Visually Impaired, IEEE Conference, CVPR,
2005.

[13] Zheng Z., Wang, H. and EKTeoh. Analysis of Gray
Level Corner Detection., Pattern Recognition Let-
ters, Vol. 20, pp. 149-162, 1999.

[14] Shao T. S. H. and van Gool L.J. Zubud-zurich
buildings database for image based recognition.
Technique report No. 260, Swiss Federal Institute
of Technology, 2003.

[15] Symbian developer site:
http : //www.symbian.com/developer/index.html

[16] Java 2 Mobile Edition homepage:
http : //java.sun.com/j2me/

[17] Description of ARM Jazelle processor:
http : //www.arm.com/products/esd/jazelle_home.html

[18] Sun Java Wireless Toolkit:
http : //java.sun.com/products/sjwtoolkit/index.html

18

	Introduction
	Methods
	Robust features for weak classifiers
	Color based approaches
	Shape based approaches

	Robust algorithms
	Normalization after Radon transformation
	Local Invariant Regions

	Selected techniques and implementation
	Histogram based approaches
	Color clustering in HVC colorspace
	Local invariant regions
	Considerations for rejecting other approaches
	Shape based approaches
	Normalization after Radon transformation

	Results
	Evaluation databases
	The Zürich Building Database
	Roeterseiland databases

	Evaluation in MATLAB

	Mobile Phone Development
	Platforms
	J2ME Development Cycle
	Performance
	Implementation of algorithms on the mobile phone

	Discussion
	Conclusion
	Appendices
	HCV colorspace
	Color clustering
	Optimization of convolution with a Gaussian kernel
	Naive implementation
	Gaussian kernels
	Bitshifting

