Mobile Landmark Recognition

Introduction

Approach taken

Computer Vision part

J2ME

Conclusion

MOBILE LANDMARK RECOGNITION Working title - POIRE: Point of Interest Recognition

njgroene, bgroot, ahalma, mtromp, bquiroga

DOAS Progress Meeting

		a al i		
Introduction	mu	oau	JCUC	10

Computer Vision part

J2ME

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Mobile Landmark Recognition

SHORT PROJECT DESCRIPTION

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

- Landmark recognition;
- Computer Vision is done on local device;
- Approximate location is known: set of objects is small.

Approach taken

Computer Vision part

J2ME

Conclusion

Mobile Landmark Recognition

LIMITED HARDWARE

Introduction

Approach taken

Computer Vision par

J2ME

Conclusion

We can't use computationally expensive algorithms

- Photos can't be stored in a database, only a symbolic representation;
- Only machine learning algorithms which have a easy to calculate decision boundary.

Imri	na	lici	ın	n
	<u>u</u> u			

Computer Vision part

J2ME

Conclusion

Mobile Landmark Recognition

NO LAB CIRCUMSTANCES

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

- Different lightning conditions;
- Rotation/translation/scaling;
- Different cameras.

Introduction	Approach taken	Computer Vision part	J2ME	Conclusion
Mobile Landmark	Two sub-prob	LEMS		
Introduction				
Approach taken				
Computer Vision part				
J2ME	- Catting familia			
Conclusion	Getting familia	Ir with JZIVIE;		
	 Creating a cor demands. 	nputer vision applica	ation wich sati	fies our

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

Introduction	Approach taken	Computer Vision part	J2ME	Conclusion
Mobilo				
Landmark Recognition	I WO MAJOR AI	PPROACHES		
Introduction				
Approach taken				
Computer Vision part				
J2ME				
Conclusion	Use features	which are robust;		

Find a representation of images which is robust.

In	ł۳	0	Ч		C I	H	0	n
		υ	u	u	U	u	U	

Computer Vision part

J2ME

Conclusion

Mobile Landmark Recognition

POSSIBLE FEATURES

Introduction

Approach taken

Computer Vision part

J2ME

Conclusion

- Skyline detection combined with a descriptor (fft, distance between corners);
- Features of straight lines within an image (orientation, length, color pairs on either side);
- Corner features (location, angle etc.);
- Color histograms;
- Clusters in a colorspace (i.e. HVC).

Int	10	\sim		0	0	5
1110	.I U	u	u	U	υ	П

Computer Vision part

J2ME

Conclusion

Mobile Landmark Recognition

FINDING A ROBUST REPRESENTATION

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

- Problem is hard because of extrinsic variation;
- So: find a way to neutralize this variation;
- Many possibilities...
- Example: Möbius-Radon transformation.

Mobile Landmark Recognition

EXAMPLE: MÖBIUS-RADON TRANSFORMATION

ntroduction

Approach taken

Computer Vision part

J2ME

Conclusion

Steps:

- Obtain edge image
- Apply Radon transformation:

Approach taker

Computer Vision part

J2ME

< ロ > < 回 > < 回 > < 回 > < 回 > 三 回

Conclusion

Approach taken

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

Mobile Landmark Recognition

EXAMPLE: MÖBIUS-RADON TRANSFORMATION

Introduction

Approach taken

Computer Vision part

J2ME

Conclusion

Now connect $\theta = 180$ and $\theta = 0$

And 'normalize' by shifting important lines to $\theta = 0$.

Approach taken

Computer Vision part

J2ME

Conclusion

Mobile Landmark Recognition

Introduction

Approach taken

Computer Vision part

J2ME

Conclusion

EXAMPLE: MÖBIUS-RADON TRANSFORMATION

- The shift over the Möbius ring corrects for rotation;
- For other corrections, things aren't so easy.

Approach taker

Computer Vision part

J2ME

Conclusion

Mobile EXAMPLE: MÖBIUS-RADON TRANSFORMATION Landmark Recognition Computer Vision part Sin CAS < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mobile Landmark Recognition

CURRENT SITUATION ON MOBILE PHONES

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

- Lots of image retrieval systems;
- There exists an open source computer vision library for Symbian (cpp). Drawback: support on a limited number of phones;
- We have chosen J2ME because of its widespread availability.

Mobile Landmark Recognition

JAVA 2 MOBILE EDITION

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

- We've built an application which takes a picture and we're able to manipulate that image;
- We're now designing a small computer vision library which supports the most basic computer vision algorithms.

In	ł۳	0	Ч		C I	H	0	n
		υ	u	u	U	u	U	

Computer Vision part

J2ME

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Mobile Landmark Recognition

Introduction

- Approach taken
- Computer Vision part
- J2ME
- Conclusion

WHAT REMAINS TO BE DONE

- Experiment with features; choose final set;
- Decide upon learning algorithm;
- Implement J2ME feature extraction methods;
- Develop real-world test environment.