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Abstract

Vision based free space detection is an upcoming
approach to obstacle detection in robotics. The
problem of empty space detection is typically solved
with active sensors. Vision has the advantage of
providing a larger range, facilitiating more efficient
navigation by looking further ahead. Our work-
ing domain is the the Virtual Rescue League of
the RoboCup. In this domain efficient naviga-
tion is crucial to finding the victims fast enough.
In this domain a learning approach is applied to
distinguish the difference in appearance of obsta-
cles and free space. In this study two color-based
models are compared; a Histogram Method and a
Gaussian Mixture Model (GMM). Both methods
achieve very good performances, with results in a
high precision and recall on a typical map from
the Rescue League. The GMM achieves the best
scores with much less parameters on the normal
map, but is beaten by the Histogram Method on
an artificial map with many pure colors. Addition-
ally, the importance of the right color normalization
scheme and model parameters is demonstrated in
this study.

1 Introduction

Collecting accurate information about a robot’s en-
vironment is a very important aspect of robotics,
especially when the environment in which the robot
performs its task is unstructured. Hence, many
methods have been devised to extract information
about a robot’s environment based on a broad spec-
trum of sensor types (i.e. visual, sonar, laser, radar,
etc.). There can be many aspects of interest in an
environment which detection methods have been

designed to detect. This paper focuses on the ex-
tension of the perception system of a rescue robot
which could be used in the Virtual Robot compe-
tition of the Rescue League at the RoboCup.

The motivation behind using a visual sensor to
detect free space is the fact that visual sensors
are passive sensors. Until now, to detect obstacles
and free space, rescue robots used active sensors
which emit a beam and analyze the reflections (i.e.
sonar scanners, laser scanners, etc). Though being
very accurate, active sensors have limited range and
most active sensor implementations have a limited
field of view. Additionally, active sensor are rela-
tively heavy and consume considerable amounts of
energy, which makes them less attractive for small
mobile robots. In contrast, the limit of a visual
sensor range can lie as far as the horizon and omni-
direcional vision methods can provide a 360◦ view
of the environment. A method to identify free space
based on visual sensor data could well expand the
environment observation quality of a rescue robot.
An instance of such a method has been applied
previously with great succes to the DARPA grand
challenge, were automobile robots must detect and
avoid obstacles at great speeds [4].

In this paper two color based statistical models
are compared which are used to identify free space
in bird-eye perspective images of the robot’s en-
vironment: a RGB color histogram pixel classifier
and a hue/saturation mixture of Gaussians pixel
classifier. Using laser-range sensor data to identify
free space in the immediate surroundings of the res-
cue robot, these statistical model based classifica-
tion methods can be trained on the spot. The same
laser-range data, acquired elsewhere on the map, is
used as reference to accurately test the precision
and recall of the methods. In this paper a compar-
ison is provided of their performance in different
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environments and under different circumstances.
In Section 2 we first describe the environment in

which the identifyers have been tested as well as all
the methods which contributed to the development
and validation of the free space identifier. In this
section we also describe the measures which have
been used to represent the performance of the free
space identifyer methods. In Section 3 an extensive
analysis of the test results is made. In Section 4 we
discuss these test results as well as possible future
work which might improve the quality of the free
space identifyer. We end this paper with a section
containing our conclusions.

1.1 Related Work

Shakey, the first autonomous mobile robot, already
used a simple form of appearance-based obstacle
detection [12]. In the artificial environment of tex-
tureless floor tiles, simple edge detection sufficed
to detect obstacles. Ulrich and Nourbakhsh [16] de-
scribe a color-based obstacle detection method used
on a mobile robot. In their work they use a (real)
mobile robot with a normal camera, combined with
information about the robots trajectory to find im-
age pixels which are certain to belong to empty
space. Sun et al. [3] combine color-based obstacle
modeling with a ”Learning from Example” method,
to perform automatic region-preferability learning,
planning and navigation in unstructured outdoor
terrains. Their approach relies on a combination of
binocular and monocular vision. In contrast, the
work of Michels et al. [10] focuses on using only
monocular information in combination with color
and texture modeling to perform obstacle avoid-
ance. First they train a classifier on a combination
of real and synthetic labeled data, that estimates
depths from single monocular images. Reinforce-
ment learning is next applied to a simulator of syn-
thetic scenes to learn a control policy that selects
a steering direction as a function of the vision sys-
tem’s output. Sridharan and Stone [15] use color
information to perform structure based learning of
colors for specific objects, with special attention to
automatic model adaptation in case of changing il-
lumination conditions. Rauskolb et al. [2] discuss
an extension to the original Stanley [4] vision based
obstacle detection used in the DARPA grand chal-
lenge. They improve the original algorithm to make
it usable for the Urban Environments, were the us-

(a) A view of a disaster area
in the simulation environ-
ment USARSim.

(b) A simulated P2DX
robot mounted with a cata-
dioptric omnidirectional
camera and a SICK laser
range sensor.

Figure 1: Images taken from the USARSim simu-
lation environment.

ability of laser scanners is decreased, and more pre-
processing of the visual information is required.

For omnidirectional cameras, obstacles are typi-
cally detected from the optical flow, after removing
the egomotion [7]. A nice example is the visual ob-
stacle detection developed in the PERSES project
[8]. Visual obstacle detection is accomplished by
first creating bird-eye view transformations, and
use the difference to create panoramic optical flow
images.

2 Method

In this section the method is described with which
free space pixel indentification has been performed.
First, omnidirectional views were created in a high
fidelity robot simulation environment. Image data
obtained in this manner has then been transfor-
mend into bird-eye views. Then, two color pixel
classifiers have been trained using simulated laser
range data to identify free space pixels. Finally,
those pixel classifiers have been used to identify free
space pixels and the results have been compared to
free space pixels identified with laser range data to
meaure the performance of the pixel classifiers.

2.1 The Simulation Environment

The environment chosen to do research is the simu-
lation environment called USARSim. USARSim is
a platform-independent open source project built
on top of a 3D game engine created by Epic
GamesTM. It is a high fidelity simulation environ-
ment, which means it utilizes realistic materials and
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(a) Omnidirectional im-
age data obtained from
USARSim.

(b) A bird-eye view pro-
jection of Figure 2(a).

Figure 2: Images depicting bird-eye view image
transformation.

equipment to represent the tasks that USAR robots
must perform. Figure 1 depicts both a simulated
disaster area as well as a simulated robot mounted
with two sensors used for free space identification.
Validation experiments performed on several visual
perception algorithms [1] have shown that percep-
tion algorithms developed in USARSim can be di-
rectly transfered to reality. This make USARSim
a valuable development environment for perception
algorithms.

2.1.1 Simulated Bird Eye Views

The environment supports simulation of a cata-
dioptric omnidirectional camera providing a
360◦ view of the robot’s environment, which is used
to create a bird-eye view of the environment, as
depicted in Figure 2. The omnidirectional camera
uses texture projection to simulate the reflecting
surface of a parabolic convex mirror and the data
which the camera simulation model generates has
been validated in [14].

Bird-eye views are obtained by radial correction
around the image center which is the result of a
scaled perspective projection of the ground plane.
Nayar describes a direct relation between a loca-
tion in a 3D environment and the location in the
omnidirectional image where this point can be seen
if nothing obstructs the view [11]. He describes the
correspondence between a pixel in the omnidirec-
tional image pomni = (xomn, yomn) and a pixel in
the birds-eye view image pbe = (xbe, ybe) to be de-

(a) A bird-eye
view.

(b) Free space
identified by
the laser range
finder.

(c) Free space
identified by
the laser range
finder projected
on the bird-eye
image.

Figure 3: Free space pixel identification using a
laser range sensor.

fined by the following equations:

θ = arccos
z√

x2
be + y2

be + z2
, (1)

φ = arctan
ybe

xbe
, ρ =

h

1 + cos θ
(2)

xomn = ρ sin θ cos φ, yomn = ρ sin θ sinφ (3)

where h is the radius of the circle describing the
90◦ incidence angle on the omnidirectional camera
effective viewpoint. The variable z is defined by
the distance between the effective viewpoint and
the projection plane in pixels. These equations can
be used to construct perspectively correct images
based on omnidirectional camera data by translat-
ing 3D projection plane pixel locations to omnidi-
rectional pixel locations.

2.1.2 Simulated Laser Range Data

The laser range sensor is simulated by ray tracing
multiple lines from the sensor position in the Un-
real world. The sensor returns the distance between
the sensor and the first line intersection with a sur-
face (a ‘hit point’), though if the range is beyond
the sensors detection range, the sensor will return
the maximum detection range for that line. Before
USARSim provides the data, a random number is
added to simulate random noise and a distortion
curve is used to interpolate the range data to sim-
ulate a real laser range sensor.

3



Multiple laser-range measurements can be accu-
mulated in an occupancy grid, which indicates the
probability that free space is present as a number
between 0 and 1. This probability information can
be thresholded into a binary image which the same
dimensions as the bird-eye view (see Figure 3(b)).
The information from the omnidirectional camera
and the laserscanner can easily be fused, as illus-
trated in Figure 3(c)). The top of the robot is al-
ways visible in the omnidirectional camera. The
pixels representing the robot have been indicated
in yellow, and have not been used to train the clas-
sification methods.

2.2 Color Pixel Classification Meth-
ods

The two classification methods studied in this ar-
ticle use statistical models to identify color pix-
els based on their R, G and B values. The con-
cept behind these classifiers is using a large collec-
tion of pixels of which the class (i.e. free space or
non free space) is known to determine the likely-
hood that a certain rgb value belongs to a certain
class. As has been explained in Subsection 2.1.2,
laser range data has been used to obtain this large
set of pixels, which will be referred to as training
data and testing data.

2.2.1 Histogram Method

The first method used to identify free space pixels
was a pixel classifier based on a well established
statistical model, the color histogram. The color
histogram classifier uses training data to create a
three dimensional histogram with a specified num-
ber of bins per color channel. The histogram counts
were then converted into a discrete probability dis-
tribution PHIST(·):

PHIST(rgb) =
c[rgb]

Tc
(4)

where c[rgb] gives the count in the histogram bin
associated with the color rgb ∈ RGB and Tc is
the total count obtained by summing the counts in
all of the bins. A particular color rgb is labelled
positive by the classifier if

PHIST(rgb) ≥ Θ (5)

where 0 ≤ Θ ≤ 1 is a threshold which can be ad-
justed to trade-off between correct classifications
and false positives. As the classifier is trained to
detect the colors of free space, all pixels in the im-
age can be labelled either positive or negative, in-
dicating the presence of free space.

2.2.2 Gaussian Mixture Model Method

The second pixel classifier is based on another es-
tablished statistical model, a Nixture of Gaussians.
Initially, a number of three dimensional Gaussians
is initiated in the RGB color space by a K-Mean
algorithm using all observed free space color val-
ues. Then, an EM algorithm optimizes the like-
lyhood of the distributions with respect to these
color values until convergence of the likelyhood is
observed. These Gaussian distributions can then
be converted to the continuous probability distri-
bution PGMM (·):

PGMM (rgb) =
n∑

i=1

wiNi(rgb) (6)

where n is the total number of normal distributions
N(·), and wi is the weight applied to the distribu-
tion i and for which

∑n
i=1 wi = 1. A particular

color rgb ∈ RGB is labeled positive by the classi-
fier if

PGMM (rgb) ≥ Θ (7)

where 0 ≤ Θ ≤ 1 is again a threshold which can be
adjusted to trade-off between missed detections and
false positives. As the classifier is trained to detect
the colors of free space, all pixels in a normalized
image can be labeled either positive or negative,
indicating the presence of free space.

2.2.3 Normalized RGB Color Spaces

In the field of image processing many techniques
exist to enhance or modify image data for spe-
cific purposes. Multiple of these image modifica-
tion techniques belong to the normalization cate-
gory, which is based on normalizing the range of
color values in an image. While there are multiple
types of normalization, normalizing color intensity
is one of the most commonly used. This normali-
sation is implemented by division through the to-
tal intensity, and provides invariance to lightning
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intensity differences.The method transforms each
color col : {r, g, b} ∈ [0, 255]3 in an image accord-
ing to the following formula

colnorm : {rnorm, gnorm, bnorm} =

{r, g, b} ∗ 255
r + g + b

(8)

For this project the influence of this type of nor-
malization on the effectiveness of the classification
methods was investigated and compared to the per-
formance of the classification methods based on the
standard {r, g, b} values.

2.3 The Experimental Setup

Using the free space pixel identification method de-
scribed in Subsection 2.1.2, both color pixel classi-
fiers have been trained and tested in the following
settings.

2.3.1 USARSim Setup

Testing data was obtained by simulating the traver-
sal of a P2DX, a 2-wheel drive pioneer robot from
ActivMedia Robotics, LLC., through two different
mazes. The P2DX was mounted with both a SICK
Laser Scanner LMS200 simulation model to obtain
laser range data and a Catadioptric Omnidirec-
tional Camera simulation model to obtain omni-
directional camera image data.

The first maze which the robot traversed
is a specific area present in a map used
in the 2006 RoboCup competition, DM-
compWorldDay1 250.ut21, which is depicted
in Figure 4(a). At the start of each test run, the
robot was spawned in the middle of the maze.
Tele-operation was then used to drive around,
collecting data.

The second map, depicted in Figure 4(b), has
specifically been designed for this study to observe
a distinct difference in performance between the
two classification methods and their performance
both standard and normalized RGB color spaces.
The wall (which defines non-free space) is textured
with a simple four color image identical to the im-
age on the floor of the maze (which defines free
space) except for image intensity. This means that

1Available for download on: \\http://downloads.
sourceforge.net/usarsim/ - last accessed: October 2008

(a) DM-
compWorldDay1 250.ut2
map

(b) Modified DM-
compWorldDay1 250.ut2
map

Figure 4: Views on the maze maps used for testing.

normalized rgb values defining free and non-free
pixels will lie very close to each other in the normal-
ized color space. Also, as the intensity difference of
the wall texture is both positive and negative, free-
space rgb values will lie in between obstacle rgb
values in the standard RGB space. The influence
of this environment on the classification methods
is portrayed in Section 3 and will be discussed in
Secion 4.

2.3.2 Testing Parameters

To properly analyse the behaviour of both classi-
fication methods, method performance differences
have been measured by varying the following pa-
rameters:

• Number of Mixtures/Bins - The amount of
Mixtures or Bins influences the classifier per-
formance, as too few mixtures/bins might
make the classifier incapable of discerning re-
quired rgb value differences, while too much
mixtures/bins will result in overfitting of the
statistical model on the training data.

• Normalized Color Space - As lighting in the
environment greatly influences the intensity
with which colors are observed, normalization
is a classic method to improve classification
of colored pixels [6]. However, the influence
of normalizing image data rgb values on clas-
sifier performance closely relates to the size
of Mixtures/Bins used by the classifier. As
the normalization process effectively reduces
the threedimensional color space to a two-
dimensional color plane, the Mixture Comp-
nents can be trained with only two of the three
normalized color channels. The histogram
method keeps three dimensions but will effec-
tively use only part of its bins.
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• Threshold Θ - varying the threshold described
in Equations 5 and 7 influences the amount
of rgb values labeled free-space pixels. The
threshold value Θ dictates a tradeoff be-
tween correct classifications and false posi-
tives and produces optimal classifaction per-
formance between 0 and 1.

All parameter settings were tested by performing
twenty runs in the simulation environment to make
measurements reliable. The training set consisted
of 14 images, and the test set also consisted of 14
images.

3 Experimental Results

In this section we provide detailed descriptions of
experimental results obtained in the test runs de-
scribed in Subsection 2.3.

3.1 Performance Measurement

The performance of the two free space color pixel
classifiers (Sections 2.2.1 and 2.2.2) is based on
measurements of true positive and true negative
pixel classifications versus false classifications of
both classes. With these measurements we can de-
fine the following performance measures:

3.1.1 Precision

The precision of the classification methods is de-
fined by the following formula:

precision =
tp

tp + fp
(9)

where tp and fp define true and false positive pixel
classifications respectively. This measure defines
the probability that a positive pixel classification is
correctly classified.

3.1.2 Recall

The recall of the classification methods is defined
by the following formula:

recall =
tp

tp + fn
(10)

where tp and fn define true positive and false nega-
tive pixel classifications respectively. This measure

defines the probability that a pixel representing free
space is positively labeled by the classifier.

3.1.3 F-measure

The recall of the classification methods is defined
by the following formula:

F =
2 · precision · recall

precision + recall
(11)

where precision and recall are defined by Equa-
tions 9 and 10 respectively. This measure is the
harmonic mean of precision and recall.

3.2 Results Test Runs

This subsection describes the results obtained per-
forming the tests described in the previous section.

3.2.1 Gaussian Mixture Model

Figures 5(a) to 5(d) display three-dimensional plots
of measured F-measure F set against the logarith-
mic scale of the threshold, log(Θ) and the logarith-
mic scale of the number of Mixtures/Bins, log(n).
The four images display results obtained in both
maps and using both color spaces.

F±σ Standard Normalized
{No.Mix, Θ} RGB RGB

Map 1 0.867±1.33e−2 0.896±6.15e−3

Normal Maze {1, 0.025} {1, 0.03}
Map 2 0.445±9.22e−2 0.291±7.70e−3

Colored Maze {6, 0.008} {7, 0.00004}

Table 1: GMM: Overview of the highest average
F-measure scores F in the 4 setups.

The optimal F-measure measurements obtained
in all four settings have been recorded in Table 1.
For the Normal maze, the GMM performed very
well, with F-measure scores of nearly 0.9 for both
the standard and normalized RGB.

3.2.2 Histogram Method

Figures 6(a) to 6(d) display three-dimensional plots
of measured F-measure F set against the logarith-
mic scale of the threshold, log(Θ) and the logarith-
mic scale of the number of Mixtures/Bins, log(n).
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(a) Map 1, Standard RGB (b) Map 1, Normalized RGB

(c) Map 2, Standard RGB (d) Map 2, Normalized RGB

Figure 5: GMM Test Results. Note that numberofMixtureComponents and Threshold values are
represented on a logarithmic scale.

F±σ Standard Normalized
{Binsize, Θ} RGB RGB

Map 1 0.858±1.67e−2 0.890±3.53e−3

Normal Maze {123, 0.003} {73, 0.007}
Map 2 0.704±3.02e−2 0.323±1.04e−3

Colored Maze {223, 0.001} {403, 0.007}

Table 2: HIST: Highest average F-measure scores
F in the 4 setups.

The four images display results obtained in both
maps and using both color spaces.

The optimal F-measure measurements obtained
in all four settings have been recorded in Table 2.
For the Normal maze, the HIST method performed
nearly as good as GMM. The HIST method applied

in the standard RGB space was the only method
capable of obtaining a reasonable F-measure of the
Colored Maze.

4 Discussion

The test results reveal the succes of using both
methods to detect empty space. They also reveal
the importance of performing adequate preprocess-
ing of the data, and choosing the right model pa-
rameters and thesholds.

The tests results obtained in the normal world
show that the Gaussian mixture model classifier
using only one component has the highest perfor-
mance, with an F-score of 0.896. The color his-
togram classifier has an almost equally high per-
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(a) Map 1, Standard RGB (b) Map 1, Normalized RGB

(c) Map 2, Standard RGB (d) Map 2, Normalized RGB

Figure 6: HIST Test Results. Note that numberofBins and Threshold values are represented on a
logarithmic scale.

formance with an F-score of 0.89 using normalised
images and 7 bins per color channel.

The Gaussian mixture classifier seems most
preferable to use in this world, as a color histogram
classifier with a bin size of 7 has approximateley
(256/7)3 ≈ 50000 bins and as much parameters and
in comparison, the Gaussian mixture model clas-
sifier with only one mixture component has only
12 parameters, which are the variables that de-
note the three dimensional component mean and
covariance matrix. The color histogram classifier
requires more memory and has a higher likeliness to
overfit the data. Given that the Gaussian Mixture
Model classifier achieves a higher accuracy using a
far lower amount of parameters, we believe it is the
preferred classifier in the normal world.

The Colored maze was especially designed to
stress test the methods. The results obtained in
the colored world show greater differences in clas-
sifier performance. In this world, color intensity is
essential for separating the empty space from ob-
stacles and, hence, color normalization decreases
the performance both classifers dramatically. How-
ever, using original RGB image data, the color
histogram classifier achieves an F-measure score of
0.7039, where the Gaussian mixture model classi-
fier only achieves a an F-measure score of 0.4448.

Given that free-space rgb values will lie in be-
tween obstacle rgb values in the standard RGB
space (see Section 2.3.1), this difference in per-
formance can be explained by the fact that the
color histogram classifier is less distracted with the
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proximity of obstacle rgb color values. This allows
the classifier to correctly classifiy a large amount
of non-similar free-space rgb values in the RGB
space, even when most lie relatively close to obsta-
cle rgb values. In comparison, the Gaussian mix-
ture classifier defines probability based on varia-
tion(s) and mean(s) and is hence less capable of
creating discrete separations between the two pixel
classes. Also, considering the distribution of the
two classes in the RGB space, the K-Mean ini-
tialisation of the Gaussian mixture model classifier
will more likely result in the EM-algorithm reach-
ing a local optimum, dramatically influencing clas-
sifier performance. Hence, based on these results,
we must conclude that the color histogram classifer
is the preferred classifier when free-space colors lie
dispersed in the RGB space but are relatively sim-
ilar to non-free colors.

5 Further Work and Conclu-
sion

In this article a method is described which is able
to learn to classify free space based on color infor-
mation. The applicability of this method is demon-
strated in a simulated world. This world allows to
test in a controlled environment, with a constant
texture on the floor. Notice that a constant texture
on the floor is not uncommon in many applications.
The simulated world has a constant but realistic
lighting, and the same texture is seen in varity of
shades. This explains why both tested methods
work better for the Normalized color space in the
Normal Maze.

Color constancy and color normalization play an
important role in the correct detection of empty
space under changing lightning conditions. The
normalization method used for this research is un-
able to deal with changing illuminant color. More
advanced color consistancy methods such as nor-
malisation based on the gray world assumption or
the white patch assumption [13] are able to remove
the effect of a changing illuminance, so they could
particularly improve performance in real world sce-
narios. Otherwise the free space model has to be
dynamically retrained when the illuminant color
changes. This requires the proximity of another
robot equiped with both an camera and laser scan-

ner.
An equally important improvement of our ap-

proach would be the automatic discovery of the
best parameter settings for our classifiers. For the
selection of the best number of components for a
Gaussian mixture classifier, there exists some well
established criteria such as the Baysian Information
Criteria (BIC) and the Akaike information criterion
(AIC) [9]. These methods attempt to balance per-
formance gain against increase in model. A new
Gaussian mixture model training algorithm that
includes selection of the number of components as
part of the algorithm is introduced in [5].

lxplicitly learning a statistical model of the ap-
pearance of the obstacles gives another oppor-
tunity for improvement. Instead of the cur-
rent tuple (free space,non-free space), the tuple
(free space, obstacle, unknown) is learned. The ob-
stacle information is now ignored since it is typi-
cally more difficult to collect accurate obstacle color
information than to get good empty space color in-
formation, while the latter is sufficient in princi-
ple. However, including obstacle information might
make it easier to automate the optimal selection
of thresholds, and improve general performance as
well.

To summarize, we implemented and compared
two methods for vision-based free space detection
for robots in the rescue domain. Both the color his-
togram classifier and the Gaussian mixture model
classifier method performed very well in the nor-
mal world with F-scores on free space recovery of
nearly 0.90. The Gaussian mixture Model classifier
performs better in scenarios with a relatively small
amount of different colors defining free space, par-
ticulary given its better performance with a much
lower amount of model parameters. In case of a
large amount of non-similar free-space rgb values
in the RGB space, the color histogram classifer
proved to achieve better performance.

This vision based free based detection can be
learned by robots equipped with both a camera and
a laser sensor and distributed wirelessly to other
robots equiped with only a camera.
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