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Abstract

Detecting objects in static images without any prior
knowledge is considered to be one of the hardest tasks
in machine vision. One of the most successful ap-
proaches is the use of haar-like features as described
by Viola and Jones [12]. This approach is known
for its high accuracy and low classification time cost.
However, training such a classifier is computationally
expensive.

In this paper we will demonstrate that we can con-
struct a full-body classifier from combining detectors
that label sub parts of a human body that will out-
perform each individual detector. We will show an
approach which does not require any domain knowl-
edge and operates on single frames, we will improve
this design by incorporating background subtraction
and knowledge learned from previous frames.

1 Introduction

This paper explores ways to combine the results of
different visual detectors into a single high perfor-
mance classifier. Towards this end we have con-
structed a human body detection system which
achieves detection and false positive rates that out-
perform the original detectors. This full body detec-
tion system is most clearly distinguished from pre-
vious approaches in the low number of features it
requires to find a human body. Each classification
needs no more than two detected regions for the sys-
tem to be able to completely reconstruct the person
their location and size. In other detection systems
full bodies are resembled by iteratively growing clus-
ters of body parts, increasing the chance of correct
classification.

The notion that different (weak) classifiers pro-
duce uncorrelated false positives, although correct re-
gions are collectively detected, is directly exploited
by our system. This enables us to find full bodies

with only few detected parts. Now running on single
images, this notion can be extended to series of im-
ages where incorrect detections are also uncorrelated
through time.

Two approaches to combine different classifiers
have been tested, a rule based system and a rela-
tional boundary learner plus the influence of back-
ground subtraction as a means to rule out false pos-
itives. Knowing that the body part detectors have
been trained on complete images, background sub-
traction is applied in a late stage, on the detected
regions, rather than on the input images directly.

1.1 Background

In this project our main goal is to detect people in
static images without any prior knowledge. When we
restrict ourselves to using just the pixel data we are
dealing with arguably the most difficult problem in
computer vision. In most recent research, robust peo-
ple detection combines different features beyond the
pixel data from a single frame, such as motion [11], in
order to improve results. However, research has also
been done into human detection by just taking the
pixel data in account. For example, Micilotta et al.
[8] detect and assemble humans from individual part
detectors with an added skin color detector. Mori
et al. [9] use segmentation to detect body parts and
reconstruct these to a full body.

In our approach we try to boost individual haar
cascade classifiers by making use of the relations be-
tween detected regions. This is done either through
rules extracted from expert knowlegde, or through a
learning system which learns those relations. The de-
veloped algorithms were evaluated on 900 sequential
images provided by the CASSANDRA [5] project and
the ISLA laboratory. The frames were captured from
six different realistic video sequences recorded in a
real-word setup (train station). From the set of im-
ages, (and previous research results) it was decided to
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only label people in the foreground. The developed
algorithms have been tested on these hand labelled
image sequences. The learning system also used a
subset of 100 images for training.

1.2 Haar cascades

For our body part classifier we make use of so called
haar cascade classifiers [12] [7] This classifier works on
grey scale images by utilizing window like features as
depicted in figure 1.

Figure 1: The used haar like features

By scanning through possible positions of these
windows in images of various size (scaled by a cer-
tain factor), the sum of pixel values covered by black
and white region are summed, and subtracted from
each other (weighted, to compensate the difference
size of the regions). These value are further applied
as weak classifiers in an AdaBoost [4] framework, and
form strong classifiers which constitute the stages of
the final cascade. If the sample is classified as a pos-
itive instance, it is processed by a following stage of
cascade, otherwise discarded. Thus only instances
positively classified by all stages of the cascade are
classified positively by the final classifier. The cas-
cade acts as an degenerated, single branch decision
tree.

Figure 2: The cascade architecture of weak classifiers

Thanks to the use of simple image features and the
cascade method, we are able to quickly discriminate
between feasible and infeasible regions and focus our

attention to the most promising ones. This results
in the possibility of real time classification, which is
vital in the surveillance problem domain.

1.3 Initial Experiments

For our classifier we planned to make use of the Haar-
cascade detectors as provided by OpenCV [2]. How-
ever, initial experiments showed that these detectors
performed below our expectations. As we need a rel-
ative high ’hit rate’ in order to be able to combine
the results of different classifiers we tried to improve
these initial results in several ways:

1. Peeling of layers of the cascade

2. Tweaking parameters of the haar detectors

3. Applying morphological operations

4. Filtering images

5. Using different cascades

1.3.1 Peeling of layers of the cascade

As explained previously a haarcascade detector is a
cascade of classifiers where with each stage it tries
to reduce the false positive rate and the detection
rate of the previous stage. Thus the main idea is
that by peeling of one of the last cascades, we might
increase the detection rate at the cost of a higher false
positive rate. However, visual examination after this
mutation showed that this resulted in uncontrollable
and erratic behaviour.

1.3.2 Tweaking the parameters of the haar
detectors

A haar detector applies a sliding window over the im-
age in order to be able to detect object at different
locations. To make sure that it will also detect ob-
jects of different sizes it will grow the window with a
certain ratio. When we also scale down the image by
a factor 1.3 prior to object detection and set the ra-
tio at which the window size increases to 1.1 we can
cut down the time cost of object detection without
any loss in performance. Our experiments show that
when we set the minimum window size to a region
of 10 by 10 pixels we can even filter out some of the
false positives.
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1.3.3 Applying distortion correction opera-
tions

All the haar cascades we where using where trained
on people straight in front of the camera. In our test
data, the camera is tilted down towards the scene.
We suspected that this might negatively influence the
performance of our detectors and tried to improve the
performance by applying distortion correction opera-
tions prior to detection. A result of such an operation
can be seen in figure 3

(a) Original image (b) Straigthened image

Figure 3: Straigthening the image

Unfortunately these operations did not result in
a better performance of our detectors. It could be
that such operations introduce new artefacts which
outweigh the positive results. Also, since estimating
the correct operations is a hard problem which could
be the subject of a whole project by itself we did not
spent any more time on this approach.

1.3.4 Image filtering

Since previous attempts [6] to filter the image prior
object detection has been shown to be fruitless we did
not attempt to waste much time here. However, some
quick experiments did show that disabling image his-
togram normalisation does significantly improve the
performance of the haar cascade detectors. Therefor
all our results where performed without histogram
normalisation.

1.3.5 Using more cascades

Since the obtained results where still somewhat disap-
pointing we experimented with extra body part clas-
sifiers. Due to time constraints we were unable to
train our own classifiers. (Training requires a large
labelled dataset and the training process itself can
take up to a week). We were able to obtain extra
’Head Shoulder’ detectors provided by S. Korzec [5]
and M Castrillo-Santana [1].

While OpenCV also provides some Face detectors
and recent experiments [3] show that they outperform
the other classifiers, our experiments show that these
classifiers are not suited for our domain. We have
therefore chosen to exclude them. One can see the
resulting list of classifiers in the next table.

CASCADE AUTHOR Target
HS10−18 Korzec Upper body

HS Castrillo-Santana Upper body
upperbody Kruppa et al. Upper body
lowerbody Kruppa et al. Lower body
fullbody Kruppa et al. Full body

2 Methodology

We will now continue with explaining how we will im-
prove upon the individual body part detectors. The
first section will describe our approach to interpre-
tation and representation of the results of our body
part detectors. Section 2.2 discusses our rule based
system, which we built from a set of static relational
rules after carefully examining combined behaviour of
the loose body part detectors. Recognizing the possi-
bility of dynamically learning those rules, section 2.3
will explicate our approach to learning from a train
set, and how to use the learned model to classify new
data.

2.1 Interpretation and Representa-
tion

The body part detectors that are used as a basis for
our classifiers are based on cascades of haar-like fea-
tures trained for a single body part. With an image
as input, per detector a set of rectangles is returned
designating the areas of specific detected body parts.
The task at hand is to find stronger performance hid-
den in the relations between the different body part
detectors. This means that the relations between dif-
ferent rectangles are modelled.

Various approaches to model relational differences
are possible. Our methods analyze the relations be-
tween no more than two body parts at a time. The
relation between two body part regions is calculated
over three different geometrical measures; angle, dis-
tance, and scale. Angle is the relative direction from
one body part to another. The distance is calculated
as the Euclidean distance. Scale is the surface area of
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one body part with respect to the other. In each mea-
surement, rectangle centres are used as the position.
Please notice that the relations must be calculated
independent to the image size.

direction = arctan(
dy

dx
)

Euclidean distance =
√
dx2 + dy2

scale =
h1

h2

Each detector returns rectangles that hold a fixed
width/height ratio specific to the body part. This
constancy is used by our systems to recover the as-
sumed full body from any single body part. Since
each classification is performed on two body parts,
the most reliable of the two is chosen for full body
reconstruction.

2.2 Rule based System

Recognizing the original body part detectors’ poor
performance, the quality of our rule based classifier
mainly relies on the high precision resulting from the
combination of (a) lower body regions with full body
regions, and (b) similar upper bodies. Especially the
similarity of all the upper body detectors is remark-
able. They perform almost the same, however, since
their errors are uncorrelated, when they fire on the
same region, we can almost certainly define a com-
plete full body from that.

Prior to application of the rules, a pre-processing
step is performed, aimed at combining the results of
the different upper body detectors. This is done by
splitting, clustering and combining the result of the
three chosen upper body detectors.

Using simple clausal rules, candidates for full body
(person classification) are constructed. These are
then post-processed to average nested or similar re-
gions. Averaging two regions is simply averaging
each corresponding corner, extended with a weighting
where appropriate.

The four rules are:

1. Construct a person from overlapping full body
and lower body regions

2. Construct a person from overlapping full body
and correctly aligned upper body regions

3. Construct a person from two overlapping upper
body regions, suggesting high probability

4. Construct a person when a lower body is cor-
rectly aligned with an upper body

2.3 Learning based Approach

As a dynamic alternative to hard coded boundaries
on the body part relations, a learning system is
introduced which models the relations using mean
and variance, which are derived using a training set.
Noticing that each relation is a vector holding three
measures, we calculate the entire covariance matrix
instead of just the variance in each individual mea-
sure, which makes it also a more robust classifier.
Using the sample mean and an unbiased estimator
for the covariance matrix, we are not bound to pre-
supposing normal distribution. For each combination
of two body parts, we model both a positive and a
negative distribution. This is useful for classification,
which will be discussed later on in this section.

So, using four different body part types, our model
exists of six relations represented by 3x1 mean and
3x3 covariance matrix for two sets (positive and nega-
tive). The mean and covariance are derived from one
training set, accounting for both positive and nega-
tive examples in the following manner: For each im-
age (f) in the manually labelled gold set (I), the rela-
tion (Rel) of any two body parts (r) belonging to the
same identity (p) is added to the positive set (R+).
The relation of any two body parts not belonging to
the same identity is added to the negative set (R−).

2.3.1 Explanation of model

I = {f1, . . . , fm} labelled images
fi = {p1, . . . , pn} set of identities
pi = {r1, . . . , ro} ordered set of regions.

xfpi = region i of person p in frame f
R+

ab = {Rel(xfpa, xfpb)|a 6= b}
R−ab = {Rel(xfpa, xfqb)|p 6= q, a 6= b}

Where Rel is the relation as defined in section 2.1
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2.3.2 Definition of the Learning system

µs
ab =

1
|Rs

ab|
∑

r∈Rs
ab

r

Σs
ab =

1
|Rs

ab| − 1

∑
r∈Rs

ab

(r − µs
ab)(r − µs

ab)
T

When classifying new images, the results from the
loose body part detectors are compared against the
associated positive and negative model. Comparison
is performed by calculating the Mahalanobis distance
(D) to each of the means. The distance is formally
defined as:

D(x) =
√

(x− µ)T Σ−1(x− µ)

In our case, we use it as a dissimilarity measure for
a relation (r) on two body parts (a and b) to both
positive (D+) and negative (D−) distributions:

D+(rab) =
√

(rab − µ+
ab)T Σ+

ab

−1
(rab − µ+

ab)

D−(rab) =
√

(rab − µ−ab)T Σ−ab

−1
(rab − µ−ab)

2.3.3 Classification of full bodies given de-
tected body parts

A certainty factor (α) is introduced, which puts a
threshold on classifying relations as positives. If the
distance to the positive set is α times smaller than the
distance to the negative set, then the relation is clas-
sified as positive and a full body region is recovered
from the two body parts.

Let B = {full, upper, lower, head} be the retrieved
set of detected body parts with each of full, upper,
lower, head = {r1, . . . , rn}, a collection of detected
regions for each type, then

F = {FullBody(ra, rb)|ra ∈ Ba, rb ∈ Bb, a 6= b,

αD+(Rel(ra, rb)) < D−(Rel(ra, rb))}

Because multiple body part pairs exist for a single
person, multiple largely overlapping full body regions
may be generated for a single person. A late fusion
which merges similar regions, overcomes this hurdle.
Similarity is a value between 0 and 1, which is defined
as the overlapping area divided by the union area of
the two regions. A threshold value (typically 0.4) is
applied to accept or refute similarity. Any two similar

full body regions are merged by taking the average
position and size.

Similarity =
regiona ∩ regionb

regiona ∪ regionb

To summarize, the learning system learns from pos-
itive and negative examples. It models the training
data using mean and covariance to estimate the dis-
tribution of body part relations. Classification of full
bodies on new sample data is performed by compar-
ing the distances to the positive and negative sets
respectively. Similarity is used in a late fusion to
combine multiple detected full bodies for single iden-
tities. More pre- and post-processing techniques have
been investigated and will be presented in the next
section.

3 Enhancements

In the previous chapter we focused on working with
static images without any prior knowledge. However,
on the domain we are working with we obtain an
image sequence from a set of static cameras. This
provides us with extra information we can choose to
exploit in order to improve the performance. Also,
since the cameras are static we can try to segment
the foreground from the background and only apply
our detectors to the foreground part of the image, we
will take a look at this approach in section 3.1. An-
other way to try and lower the false positive rate is
exploiting the knowledge that people can not appear
or disappear in thin air. Since our images are a se-
quence of frames we can use the knowledge we have
gained in previous frames in our current frame. We
will explain exactly how we exploited this in section
3.2.

3.1 Background Subtraction

As our frames are taken by stationary cameras, we
may use a method to differentiate between a static
background and interacting objects to reduce the
false positive rate. One such a method is presented
in [10], which is effectively robust against lightning
changes, repetitive motion, and tracking though clut-
tered images. We adopted the concept of “pixel pro-
cesses” to calculate mean and variance in an online
fashion. Rather than using a mixture model of Gaus-
sians, our method stores the mean and variance for
each pixel.
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So, each colour component for each pixel is mod-
eled over time using the following calculation:

µt+1 = αft+1 + (1− α)µt

Σ2
t+1 = α(ft+1 − µt)

2 + (1− α)Σ2
t

where ft + 1 is the current pixel value and α
is a weighting factor that determines the speed at
which the distribution’s parameters change. This
process incrementally builds a model, weighing his-
torical data less and actual data more. A typical
value for α is 0.05.

Using this model, each current pixel in the new
image can be classified as either background or fore-
ground, depending on how much it fits within the
model. If it fits well, then it is highly likely static
background. On the other hand, if it does not fit at
all (e.g. a multitude of σ away from the mean), then
it is likely to be part of a moving object and thus fore-
ground. By matching each pixel against its model, a
black and white image is built, where white indicates
foreground and black indicates background.

(a) Original image (b) Detected foreground

Figure 4: Background subtraction

This classification can be used to exclude detected
regions based on the foreground-background ratio
over the detected area. Detected regions that contain
too much black area are dropped out of the classifier
because it is likely to be falsely labelled as positive.

3.2 Time Coherence

Since the data on which we operate is a sequence we
can exploit this to improve our classifier. Remem-
ber that we are trying to combine individual body
part detectors to a single person. If we assume that
we can do this fairly reliable and we assume that a
subsequent frame contains the same persons we can
use the result of our ’person detector’ in the previous

frame as some sort of full body detector for the cur-
rent frame. Thus, when trying to combine body part
detectors at ft we not only use the detectors that fire
at ft but supplement it with the persons detected in
ft−1.

4 Evaluation

To compare performance of our combined full body
detector to the original body part detectors, it is nec-
essary to first test both on the same domain. Sec-
ondly, since our system detects people from body
parts, labelled body parts must be accompanied by
an ID to collectively define a single person.

4.1 Mr. Tag

None of the datasets provided to us have this spe-
cific labelling, nor did any labelling tool allow for this
structure of definition. So we built our own labelling
tool named ’mr Tag’. This multi-platform program
enables you to manually label an astonishing three
thousand regions per hour! It loads a series of frames
directly from a selected folder. Each time when you
skip to the next frame it automatically copies all re-
gions so that you only need to adjust the changed
parts, saving precious minutes. Multiple different re-
gions are possible (for us that was; upper body, lower
body, full body, and face) and twelve different identi-
ties. Each region is marked with the identity number
so they can even be preserved through time series.
Regions can be easily adjusted by dragging and scal-
ing them with the mouse. With this tool we have
been labelling all 900 images and thus identified a
total of about 10.000 regions.

Figure 5: Mr. Tag - The labeling tool
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4.2 Performance Assessment

To evaluate the performance of our methods, we
should first look at the performance of the individ-
ual body part detectors. Assessing the performance
of the body part detectors in our domain is done by
calculating the True Positive Rate (TPR) and the
False Positive Rate (FPR) of each detector. We de-
fine these rates as follows:

TPR =
TP

P

FPR =
FP

N

Thus, the TPR is a rate which resembles how much
of the Gold set labels we are able to retrieve. We
want this to be a as high as possible. FPR defines
how specific our classifier is, as it is a ratio of the
errors we produce to the maximum amount of errors
(N)

We have a hit (TP) when one of our testboxes cov-
ers a certain ratio of a goldbox (recall) with a certain
precision. For this we use the following formula:

Recall =
goldbox ∩ testbox

goldbox

Precision =
goldbox ∩ testbox

testbox

When given a set of testboxes, we have to iden-
tify for each goldbox which testbox matches that box
best, as each goldbox can only have a single testbox
attached to it. For this we make use of the overlap
ratio:

OverlapRatio =
goldbox ∩ testbox
testbox ∪ goldbox

Thus, in order to evaluate the performance, we cal-
culate the OverlapRatio of each testbox with each
goldbox, from which we take the combination of boxes
that has the highest OverlapRatio. From these boxes
we calculate the Recall and Precision. When the
Recall is above some threshold γ and the preci-
sion is higher then some threshold β, we register a
TruePositive otherwise a FalsePositive. We repeat
until we have no more goldboxes or testboxes then
add the respective FalsePositives and continue with
the next frame.

5 Results

The developed algorithms were evaluated on 900 se-
quential images provided by the CASSANDRA [5]
project and the ISLA laboratory. The frames were
captured from six different realistic video sequences
recorded in a real-word setup (train station). From
the set of images, (and previous research results) it
was decided to only label people in the foreground.
The developed algorithms have been tested on these
hand labelled image sequences. The learning system
also used a subset of 100 images for training.

In the table below one can find the results of the
individual body detectors we have used.

CASCADE TPR FPR
HS10 0.58 0.97
HS11 0.51 0.65
HS12 0.41 0.40
HS13 0.38 0.33
HS14 0.28 0.12
HS15 0.24 0.08
HS16 0.18 0.06
HS17 0.15 0.05
HS18 0.11 0.04

HeadShoulder 0.08 0.09
upperbody 0.12 0.03
lowerbody 0.26 0.06

fullbody 0.17 0.02

We can clearly see that HS10 has the highest True
Positive Rate, however this comes at a huge cost in
False Positives. We can also see that the fullbody de-
tector has the lowest FPR but on average the lower-
body seems to be the best of both worlds, having a
low FPR but still able to obtain a relative high TPR.

CLASSIFIER TPR FPR
Expert Rules 0.41 0.16

Training 0.48 0.29
Training + Time 0.97 0.48

Our results depicted in the table above show that
our expert rules are able to obtain a TPR of 0.41
while maintaining a low FPR of just 0.16. The trainer
boosts the TPR even more but comes with a high cost
in FPR. We can clearly see that by adding time co-
herence we can dramatically boost the TPR of the
classifier. This improvement is extraordinary consid-
ering its simplicity.

When we plot all these values we obtain the graph
in figure 6. Please notice that we represented the
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HS10−18 classifier as a ROC curve where we con-
nected the body part connectors HS10 - HS18 to form
a single line.

From this graph we can see that we clearly outper-
form all individual detectors. Also, we expect that
we can drop the FPR even more as our detector was
able to classify people in the background observing
the scene. Thus lots of these hits were incorrectly
identified as a False Positive as we did not label all
people in the background.

Unfortunately we where unable to thoroughly test
the results of the background subtraction method.
However the first visual inspection of its results look
promising. And we think this can be a great way to
further limit the false positives.

Figure 6: TPR vs FPR. For the various cascades we
can clearly see that our classifier outperforms the rest

(a) The individual classifiers
fireing

(b) Our expert rules combin-
ing them to single persons

Figure 7: Visualizing the results of our people detec-
tor vs the part detectors.

5.1 Conclusion

We have presented an approach for accurate human
body classification, based on an array of weak clas-
sifiers. The approach was used to construct human
body detection systems which perform significantly
better than each of the single classifiers. The same
approach was used in two different settings. One
through a rule based system, the other through a sim-
ple learning system. In both cases only needing two
detected regions to fully recover the entire person in
each image.

The systems were designed to operate on still im-
ages, which casts the challenge to the domain of hard-
est applications in computer vision as of today. We
have also shown that when we add domain specific in-
formation we can boost the performance even more.
As our results by applying time coherence show.

We have shown how to robustly evaluate the results
of our classifier in section 4. And while our methods
do allow for tweaking of various parameters, the re-
strictions in time, unfortunately did not allow us to
optimize these parameters.

Finally, this paper presents a set of detailed experi-
ments on a difficult body detection dataset which has
been previously studied. This dataset includes peo-
ple under a very wide range of conditions including:
pose, illumination, and occlusion. Correctly identify-
ing the people in such images is a hard task, especially
regarding the performances of all previous classifiers.
Nevertheless systems that do detect the right people
are extremely valuable, both to the CASSANDRA
project and to other areas that use cameras in public
areas.
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