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Abstract

This thesis presents a model to describe the movements of an omnidirectional vehicle platform
based on Mecanum wheels. This model will be validated by a simulation of the KUKA youBot
in USARSim, an open source high fidelity robot simulator that can be used for research and
education. The KUKA youBot offers an experimental platform which bridges the gap between
industrial robotics of today and service robotics of tomorrow. The robot possesses four Mecanum
wheels providing the robot an omnidirectional mobile platform. The omnidirectional aspect will
give the KUKA youBot high maneuverability by allowing the vehicle to move in every direction
of the plane. This thesis describes the USARSim architecture, the kinematics of the Mecanum
wheels and validates these kinematics in the USARSim environment by comparing the behavior
of the simulated KUKA youBot to that of the real one. These kinematics can be extended to
other robots with a comparable omnidirectional drive. The results indicate that the movement of
the KUKA youBot can be simulated in a realistic way, however, further parameter optimization
and experiments testing every possible move are needed. It seems that USARSim could support
the behavior of an omnidirectional mobile platform.
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CHAPTER 1

Introduction

This thesis is about a simulator which can be used in robotic research and education. Robotic
research provides the ability to keep improving robots, e.g. the aim for a robotic soccer team1

or a robotic version of the cheetah2. The frontier of all known physical robot capabilities is
continuously being pushed forward by testing new possibilities. Simulating robotic behavior
is a fast and reliable way to find a novelty in the field of robotics. Using a simulator has
practical, efficiency and also scientific benefits. A simulation offers a virtual environment which
is completely under control. There is no unknown noise coming from the virtual setting. Also,
the ability to keep the simulation data stored in logs is supported. Data logs can be kept of
sensor information, so absolutely no information is lost during development. Logs are crucial
in providing scientific results. They also make debugging and parameter optimization easier.
Furthermore running an experiment in a simulation gives the user the ability to share not only
the results but also their entire experimental set up. Simulation specifications and classes can
be shared, e.g. robot classes, sensor classes or the environment file. Not to mention unlimited
access to robotic research, there are no robot malfunctions in the virtual world. However the
downside of using a simulation is that a simulation is only an approximation of the reality. High
fidelity in the simulation is a necessity for obtaining meaningful scientific results. In order for the
simulation results to be valid for implementation on real hardware, the accuracy of the simulation
as well as the simulation model of the robot must be validated. Altogether computer simulation
of robotic behavior is an essential tool for the development of robotic software.

The simulator used in this thesis is USARSim, short for Unified System for Automation and
Robot Simulation. USARSim today is based on the Unreal UDK engine and has the physics of

Figure 1.1: Simulation ran in the USARSim environment 3
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the NVIDIA PhysX engine. USARSim is a validated robotic simulator and the results obtained
by this simulation should be representative for the actual robot [15], [9]. USARSim offers a
variety of robot classes and sensor classes which form the foundation for any new class to be
made. The sensor called groundtruth gives the absolute position of the robot. The simulator
also provides a variety of location sensors, each supported with their own simulated noise. For
this experiment the groundtruth sensor will be used to eliminate any noise other than the noise
in the robotic behavior.

USARSim has experienced wide community acceptance with over 83.000 component down-
loads to date4. USARSim constitutes the simulation engine used to run the Virtual Robots
Competition within the RoboCup initiative. RoboCup is an annual scientific event where soccer
and rescue competitions take place.

An educational robot found in many robot competitions like the RoboCup@Work competition
and the RoCKIn@Work competition is the KUKA youBot. The aim of these competitions is to
foster research and development by competing in a wide variety of tasks where robots cooperate
with human workers. The KUKA youBot is an educational robot with a high programmability.
It is delivered with ROS drivers and is programmable at nearly all levels. The robot consists of a
chassis with four Mecanum wheels forming the KUKA youBot base. Two additional robot arms
can be placed on top of this base, but it is most commonly used with one arm. The additional
arms, the base and the sensors compose the entire robot. The focus of this thesis is only the
KUKA youBot base.

Mecanum wheels are used by a wide variety of robots, e.g. the Uranus seen in Figure (1.2),
SUMMIT XL HL5 and the KUKA youBot. These wheels give its platform an omnidirectional
aspect. An omnidirectional platform can move in any direction of the plane without having to
turn. The usage of the wheels is not limited to robots, they are also found in domestic use or
industrial use, e.g. a chair or a forklift. The main concept of the Mecanum wheel is that it has
a main wheel with rollers mounted around its periphery. The main wheels of the vehicle are
steered by the user, while the rollers are freely movable.

Figure 1.2: Uranus robot uses the Mecanum wheels, 1990 [3]

1http://www.robocup2014.org/?page_id=51
2http://www.bostondynamics.com/robot_cheetah.html
3http://openrdk.SourceForge.net/index.php?n=Tutorials.USARSim
4http://SourceForge.net/projects/usarsim/files/stats/timeline?dates=2005-08-04+to+2015-06-02
5http://www.robotnik.eu/mobile-robots/summit-xl-hl/
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1.1 Research question

The goal for this thesis is to define a model for the movement of an omnidirectional vehicle based
on Mecanum wheels. This model will be validated by a simulation of the KUKA youBot base in
USARSim. The movement of the real KUKA youBot base will be compared with the movement
of the simulated robot.

The implementation will be an approximation of the real robot. This approximation will
have every aspect of the wheels modeled as closely to the real one as possible. The results of the
movement of both the real and the simulated robot will be compared. This thesis focuses on the
following questions:

• Is USARSim able to support the movement of an omnidirectional platform?

– Does an approximation of the rollers joints reproduce in the movement of the real
robot in USARSim?

7
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CHAPTER 2

Related work

Simulation is an important tool for robotic research as well for a great variety of other research
areas. In order for the simulation to contribute to the research, it has a few necessities. The
simulation is required to provide a realistic representation of the physics that are to be studied.
It should also provide a reliable sensor structure and data logging component, in order to obtain
simulation data. Results measured in the simulation are crucial in providing scientific results.
There are various other robot simulators out there, below a list is provided of robotic simulators
that satisfy previously stated requirements.

2.1 Stage

Stage version 3 is the simulator backend to the Player middleware1. Stage simulates a two-
dimensional world where multiple robots can concurrently act. It is realistic enough for many
purposes, finding a balance between fidelity and abstraction. Stage is also very scalable, making
the simulator suitable for swarm robotics and related research involving a large robot population
[20].

The KUKA youBot is not available in Stage.

2.2 Gazebo

Gazebo is a open source multi-robot simulator for outdoor environments2. It can also be the back-
end of the Player middleware or its own native interface. Like Stage, it is capable of simulating
a population of robots, sensors and objects, but does so in a three-dimensional world. Gazebo
allows several physics engines, of which the physics engine Open Dynamics Engine is frequently
used. Gazebo provides high fidelity and is able to handle complex simulation environments,
which allows a wide variety of applications to be possible. The simulator also has an active base
of contributers keeping the simulator evolving at a rapid pace [5].

Gazebo provides a KUKA youBot implementation, which uses the kinematic approach. The
wheels of the vehicle do not move, only the vehicle moves into the correct direction.

2.3 Webots

Webots is a commercial simulator initially developed to aid software development for the Kephera
robots3. Nowadays it is widely used for educational purposes. It is a three-dimensional mobile
robot simulator and it uses Open Dynamics Engine for physics simulation. Webots is used for
research and educational purposes in mobile robotics. The simulator is used in the following
research and education areas: mobile robot prototyping, robot locomotion research, multi-agent
research, adaptive behavior research, teaching robotics and robot contests [2].The simulator is
proprietary however.

9



Webots provides a detailed KUKA youBot base implementation, which uses the same imple-
mentation used in this thesis. The entire robot can be used in this simulator

2.4 SimRobots

SimRobots provides a three-dimensional simulation environment, with a physical model which
is based on rigid body dynamics of the Open Dynamics Engine [6]. SimRobots is a robot
simulator software package. It was developed in 1990 at the Universität Bremen and the German
Research Center for Artificial Intelligence4. The simulator was initially designed with the idea of a
kinematic, single-user, single-workstation robot simulator. It is being used for further research on
autonomous robots. The simulator can also be found among many others within the prestigious
group of RoboCup simulators [7].

The youBot is not available in this simulator.

2.5 MORSE

Modular Open Robots Simulation Engine is a three-dimensional open source robotics simulator.
MORSE is a python based simulator, which uses the also python based three-dimensional open
source modeling program Blender5. Simulations are executed on Blenders Game Engine mode
using the Bullet physics engine. These components provide the realistic graphics of the simulator
[11]. The simulator makes use of a Software In The Loop (SAIL) architecture for exchanging
data between MORSE components.

MORSE has no implementation of the KUKA youBot yet 6, but an implementation of the
KUKA youBot is currently in progress 7.

1http://playerstage.SourceForge.net/?src=stage
2http://gazebosim.org/
3http://www.cyberbotics.com/
4http://www.informatik.uni-bremen.de/simrobot/index_e.htm
5https://www.blender.org/
6https://github.com/morse-simulator/morse/tree/master/testing/robots
7http://www.student.kuleuven.be/~s0212251/
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CHAPTER 3

USARSim

USARSim, Unified System for Automation and Robot Simulation, is a high fidelity robot simula-
tor made in 2002. It was initially designed for urban search and rescue simulations but has been
developed into a simulator supporting a wide variety of research areas. The simulator is based
on the commercial Unreal Tournament game engine. It is open source, therefore the simulator
is available for everyone. The open source aspect allows the community to define models for
robots or sensors, which can be added to the USARSim models. USARSim can be interfaced
with Player, a previously popular middleware used to control many different robots, and with
the Mobility Open Architecture Simulation and Tools framework (MOAST), a fully functioning
hierarchical control system. USARSim works in a three-dimensional world using the NVIDIA
PhysX engine.

It is validated that the USARSim simulation behaves in much the same way as reality [12].
There are also validated models for the movement of several robots in USARSim [9], [16]. Vali-
dation of a robot does not mean that the virtual robot moves exactly like the real robot without
any error. It means that the movement of the virtual robot is representative for that of the real
one. Validation of the simulator and the robot is important in gaining sound scientific results of
robot experiments within the virtual environment.

At the creation of USARSim, it only included a few models for differential drive robotic
platforms, a restricted set of sensors and the models of three environments. In 2005, following
the endorsement of the RoboCup federation USARSim management was taken over by NIST,
who moved the project to SourceForge, and reorganized the code base while maintaining most
of the original structure. The transition to SourceForge and the involvement of the RoboCup
community brought a rapid development in USARSim [15]. RoboCup is an annual international
robotics competition with the aim to foster robotic research. The involvement of USARSim in
RoboCup will be discussed in the next section.

The simulator was initially designed to support urban search and rescue (USAR) robots
and USARSim originally stood for “urban search and rescue simulation”. The requirement for a
USAR simulator is to simulate an emergency situation with humans being in danger in a complex
environment. For example in Figure (3.1), if the emergency is a fire, the fire itself is a threat
to humans, but also the smoke is dangerous. Both threats, the humans in need and the robots
should behave in a highly realistic way. In order to support these features the simulator requires
human-robot interaction (HRI), multi-robot coordination and a high fidelity.

This version of USARSim was based on the Unreal Engine 2. It was created as a modification
for the game Unreal Tournament 2004 (UT2004). The UT2004 version supports a wide range
of different robots varying from wheeled robots, aerial robots and legged robots. The physics
simulation of Unreal Engine 2 is provided by the Karma physics engine. The next version of
USARSim moved to Unreal Engine 3 and was created as a modification for the game Unreal
Tournament 3. This version of USARSim supported a less wide range of robots and was mainly
focused on wheeled robots. This engine uses the NVIDIA PhysX for physics instead of the Karma
physics engine. The switch of physics engine caused a rise in processing speed due to improved
parallelization, support for more sophisticated models and enhancements to lighting, animation
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Figure 3.1: USARSim used for the Rescue Virtual Robot Simulation 1

and interactions with the simulation environment. The current version of USARSim moved
to the Unreal Development Kit (UDK). UDK uses a newer version of Unreal Engine 3 and is
monthly updated. One advantage of this version is that the simulator is no longer a modification
for a game, which simplifies the requirements for running the simulation. Currently, the latest
Unreal engine is the Unreal Engine 4, also created by Epic Games.

3.1 USARSim in robot competitions

USARSim is the basis of the Virtual Robots Competition within the RoboCup initiative. This
competition benefits robotic research by focusing tasks on current robotic problems in areas like
multi-robot control and mapping. By focusing on these problems the competition provides helpful
solutions and insights which benefits the community. The competition has tasks concerning urban
search and rescue. The goal of a competing team is to use robots to explore and map the unknown
areas of a disaster area and to report as much information as possible to a hypothetical team of
first responders in the virtual world. Progress is stimulated by making every participant obligated
to release their code to the community. By releasing code to the community, USARSim gains
more open source models supporting current robotic problems. Thanks to this, the competition
also fosters the development of USARSim [18]. USARSim is designed as a simulation companion
to the National Institute of Standards (NIST).

3.2 Game engines in scientific research

The overlap in focus on simulating realistic behavior by both the gaming industry and researchers
has created the concept of a scientific simulator build upon a gaming engine. Games have been
around for over five decades, starting with ’Space War’ made in 19622. In the early days games
were written by a small team of programmers or by a creative individual, usually starting from
scratch with very few reusable components. The notion that reusable components are useful
in programming came in 1968 when Edsger Dijkstra published “Go To Statements Considered
Harmful”, pleading for a better way of programming [24]. The use of reusable software com-
ponents is called modular programming. This way of programming has taken great popularity

1https://wiki.cc.gatech.edu/robocup/index.php/Rescue_Virtual_Robot_Simulation
2http://inventors.about.com/od/sstartinventions/a/Spacewar.htm
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and is key in how programmers design their software products nowadays. This also applies for
simulated games. Developing a high fidelity simulation costs a lot of resources, meaning game
makers can no longer afford making a new three-dimensional from scratch. Gaming companies
make several games utilizing reusable components to their maximum potential. The Unreal En-
gine 3 is the basis for 185 games on several gaming platforms1. Game engines are a very modular
component. As a result of this separability, game engines can also be purposed for scientific re-
search [21]. Because USARSim uses a continuously improving game engine, “every improvement
driven by the ever improving gaming industry translates into USARSim’s advantages.” [17]

3.3 Architecture

USARSim is built up from three major components: the Unreal Tournament game engine, models
and a controller. This is shown in Figure (3.2). The Unreal engine used in the simulator is
released by Epic Games. USARSim currently uses the UDK game engine. Communication with
the Unreal engine is complicated because of its proprietary communication protocol. However,
Gamebots is a modification build by researchers that allows easy communication with the game
engine. It opens a socket that allows communication over a TCP/IP network protocol [25].

Figure 3.2: USARSim architecture [29]

The models for USARSim are classes, which constitute the building blocks of every robot and
sensor. Classes in the Unreal engine are written in UnrealScript and are called the UDK classes.
UnrealScript is a custom language which looks a lot like the C++ language. USARSim classes
are written in the same language and provide an addition to the Unreal classes. Together, the
UDK classes and the USARSim classes make up the entire class system providing the basis for
all models in USARSim.

A robot class specifies what components are used to build the robot. Components are static
meshes, joints and robot parameters. Static meshes and joints will be discussed in the next

1http://www.giantbomb.com/unreal-engine-3/3015-86/games/
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section. Robot classes are built upon vehicle classes, which define the way a vehicle is steered,
e.g. the vehicle is skid steered.

The sensors classes are made up hierarchically, which will allow the user to add a new sensor by
extending from previously defined classes. A subset of all sensor classes is shown in Figure (3.3),
which displays the hierarchic division. Sensors have a time-step which specifies the frequency
of measurements. One sensor used in the implementation of the experiment is the groundtruth
sensor. This sensor measures the value of the robot location and rotation in the x, y, z axes
without any noise. Most sensors have noise added to them to match the noise of a real world
sensor [30].

Figure 3.3: Subset of the sensor classes of USARSim

USARSim has a variety of front-ends, which specifies the controller being used. The controller
handles the communication of USARSim. Commands for the robot are sent to the game engine.
For example it can spawn a robot with an ‘INIT’ command, and drive this around with ‘DRIVE’
commands. USARSim sends sensor information via the same channel to the controller, which in
turn displays the information to the user. The way the information can be logged depends on
the controller choice.

3.4 Simulation

A static mesh is a 3D representation of an object given in vertices, edges and faces. The Unreal
engine builds every static mesh through use of triangles.

A rigid body is a static mesh with the physics of the NVIDIA PhysX engine applied to it. In
Unreal editor the static meshes are linked to material.

Static meshes can be linked to each other using joints. USARSim classes include joint classes,
which can specify the joints being used. A joint in USARSim defines how a rigid body can pivot.
A joint is made up by a class. There are a variety of joint classes, e.g. revolutejoint, prismaticjoint
and wheeljoint. Joints have a few parameters parent, child, side, location, direction, maximum
velocity and stiffness. The joint should always be assigned to a child and a parent. The child is the
rigid body that pivots and the parent is the rigid body the child is attached too. Side is important
for the steering class. The side parameter puts a label on the joint. For example the skid-steered

14



class puts wheel speeds on the wheels on the left and the wheels on the right. The controller
sends a command DRIVE {Left 1,00}{Right 1,00}. The skid-steered class listens to this drive
command and parses the left-speed and the right-speed. The left-speed is assigned to the joints
with the side ‘Left’ and the right-speed is assigned to the joints with the side ‘Right’. Direction
of a joint has the form Direction = (X = X rotation, Y = Y rotation, Z = Z rotation) where
the rotations define the direction of the joint.

Collision specifies the boundary of a rigid body. Collision takes form in a static mesh attached
to a rigid body. As seen in Figure (3.4) the collision is represented as a static mesh.

Physical materials are used to define the response of a physical object when interacting
dynamically with the world. In the Unreal engine this is defined as a collection of physical
variables. Some noteworthy variables are AngularDampening, Friction, LinearDampening and
Restitution. The value for AngularDampening is the amount of resistance a physical object will
have while rotating. The Friction value defines how much resistance to movement the object
will have when touching or sliding along another surface. It commonly has a range from 0 to
1. If the value equals zero, the material is frictionless and if the value is 1, the material has a
rough surface. The Linea Dampening value is the amount of resistance an object will have when
moving in the world. This value is not the same as friction. The Restitution value is the amount
of ’bounce’ an object will have. There shouldn’t be bounce in the rollers of the Mecanum wheels.
Bounce would let some rollers float in the air instead of sliding over the surface, at the expense
of precision.

Figure 3.4: Left the static mesh, right the static mesh with collision

3.5 Design of the KUKA youBot in USARSim

In order to simulate the movement the KUKA youBot base in a highly accurate way only using
rigid body physics is not enough. Our simulated robot should also have its physical material
defined, more precisely physical material should be applied on the rollers of the Mecanum wheels,
because the only contact points with the ground are made by rollers of the Swedish wheels.

The values for the physical material described in the previous section are left to the default
value except for friction. Further experimenting with these values could definitely bring more
precision in the movement behavior of the Mecanum wheels.

In Figure (3.5) an abstract picture of the KUKA youBot base is shown. The blue elements
are the body and the four main wheels of the base, which are rigid bodies. The red elements
are the rollers of the Mecanum wheels, which are rigid bodies with physical material applied to
them.

The idea to design the KUKA youBot base is complete. The body should be a rigid body,
including the static mesh and physics. The four main wheels should also be rigid bodies, including
the static mesh and physics. The connection between the body and the main wheel should be
joints. This implementation will use the wheeljoint class to specify the joint for each of the main
wheels. The child of the joints will be a main wheel and the parent will be the KUKA youBot
base. The rollers should be rigid bodies including physical material. There are six roller per main
wheel. These twenty-four rollers are linked to the main wheel with rollerjoints. The rollerjoint
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Figure 3.5: Abstract representation of the KUKA youBot base in Blender

class is a custom made wheeljoint class, where specific joint values may differ. The child of the
roller joints will be the rollers and the parent will be their respective main wheel. Maximum
velocity and stiffness are two parameters of the roller joints that potentially have an impact on
the magnitude of the resulting movement. They were left to the default values in the design but
further optimization is a possibility.

The robot class is defined as the KUKA youBot class, which can be found in the appendix.
This class extends the custom made ‘omnidirectional steered’ class, which listens to the con-
troller and parses the ‘DRIVE’ command into four wheel speeds. The command for driving all
four wheels with speed 1 has the form ‘DRIVE {Front-Left 1,00}{Front-Right 1,00}{Back-Left
1,00}{Back-Right 1,00}’. The wheel speeds are assigned to the joints with the sides front-left,
front-right, back-left and back-right.
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CHAPTER 4

KUKA youBot

The term robot was first introduced in 1921 by the Czech playwright Karel C̆apek in his play
R.U.R. [28]. The word ‘robota’ is the Czech word for work. Since then the term has been applied
to a great variety of mechanical devices. The official definition of the term robot is given by the
Robot Institute of America1 as: “A robot is a reprogrammable, multifunctional manipulator de-
signed to move material, parts, tools or specialized devices trough variable programmed motions
for the performance of a variety of tasks”. The most important part of this definition in the
field of computer science is the reprogrammability of the robot, making the robot adaptable for
a wide variety of tasks.

The KUKA youBot as seen in Figure (4.1), is a mobile robot developed as open source
platform for scientific research and education. The robot consist of a mobile platform with
four Mecanum wheels and two optional robot arms. These components are driven by motors of
Maxon Motor2. Two years after the KUKA youBot was introduced to the market, the KUKA
has had a significant impact on research and education on mobile manipulators. KUKA is known
for its industrial robots, however they produced the KUKA youBot to promote the research in
robotics [26]. The KUKA youBot is a open source platform created for robotic research, in which
scientists, developers en students can write their own software for the robot, e.g. mounting tables
or transportation of supplies.

Figure 4.1: The KUKA youBot

The youBot comes with fully open interfaces and allows developers to access the system
on nearly all levels of hardware control. It has an application programming interface, with
interfaces and wrappers for current robotic frameworks like ROS3 or OROCOS4. The high level
of access in the robot system lets the developer control each actuator and sensors directly. The
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only limitations are the youBot’s kinematic structure, its drive electronics and its motors. The
KUKA youBot qualifies as a so-called partly completed machinery, it does not come with any
preinstalled software. The software is mostly open source and can be found on KUKA youBot
store.5

The KUKA youBot consist of an omnidirectional mobile platform with an one or two optional
robot arms mounted on top of the chassis. In the chassis an industrial PC and a battery are
integrated. The industrial PC communicates in real time with a time-step of 1 ms, through a
EtherCAT with a total of nine motors, used for regulation of current, speed and position.

The chassis of the robot consist of a platform of 53 cm by 36 cm with a height of 11 cm, with
four Mecanum wheels. On the chassis a 66 cm long arm is mounted with a gripper consisting of
two fingers. The gripper can grab objects with a size of 7 cm with a weight of up to 500 g. The
robot arm has five joints.

The KUKA youBot can be seen as a milestone in research and development in robotics.

1Robot Institute of America, 1979
2http://http://www.maxonmotor.com/
3http://www.ros.org/
4http://www.orocos.org/
5http://www.youbot-store.com/
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CHAPTER 5

Mecanum wheels

The Mecanum wheel is also called the Ilon wheel after its Swedish inventor, Bengt Ilon1. Ilon
invented the wheel in 1973 while working for the Swedish company Mecanum AB. The wheel
consists of a main wheel and rollers mounted around its periphery. The rollers mounted on the
main wheel can have any angle in relation to the main wheel. In case of the conventional Swedish
wheel this angle is 45 degrees. The wheels have the feature to provide the vehicle omnidirec-
tional movement. This means the vehicle can move in any direction of the plane, without the
requirement of making rotation. The scope of this thesis is to describe the movement of the
vehicle, which can be broken down in the movement of the four Mecanum wheels. Movement
will be described by mobility, kinematics, and dynamics.

Figure 5.1: Schematic of the Mecanum wheel [27]

Mecanum wheels are used by several robots. There are many variations possible, e.g. the
number of rollers or the angle of the rollers. One improved design is splitting each roller into two
[27].

5.1 Mobility

The kinematic mobility of a robot chassis is its ability to directly move in the environment.
Mobility is a definition covering several movement aspects. In describing the mobility of a robot
chassis movement aspects are a degree of maneuverability, a degree of steerability and degrees of
mobility. The degree of steerability is the number of controllable steerable axes. A configuration
of a robot is a complete specification of the possible movements. An object is said to have a
degree of freedom of n if its configuration can be minimally specified by n parameters.

The overall degrees of freedom (DOF) that a robot can manipulate is called the degree of
maneuverability δM . This is composed by the degree of mobility and the degree of steerability
with the equation [13]

δM = δm + δs (5.1)

1http://www.google.com/patents/US3876255
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The Mecanum wheel has a DOF of three, indicated with arrows in Figure (5.2). The first
DOF is in the direction of the wheel rotation. The second DOF is provided by motion of the
rollers mounted at a 45 degrees angle of the main wheel. In the Figure (5.2) the roller on top
of the wheel is shown, the roller at the bottom provides the movement, which is perpendicular
to the roller on top of the wheel. The third DOF is the rotational slip at the point of contact
with the floor. In the case of the KUKA youBot the wheels are also not steerable, providing the
robot a steerability of zero.

Thus the degree of maneuverability for our robot given Equation (5.1) is three. This does
not mean that our chassis is capable of 3D movement, it provides omnidirectional movement for
a (x,y) plane.

Figure 5.2: Three DOF of the Mecanum wheel [1]

5.2 Movement

In Figure (5.3) the required motions of the wheels for side movement of the robot is shown. The
combination of the left-front-wheel moving backwards and the left-back-wheel moving forward
results in a movement to the left. Also the combination of the front-right-wheel moving forward
and the back-right-wheel moving backwards results in a movement the to left. This is because
the forwards and backwards forces of the main wheels are balanced out and the only forces left
are due to the rollers of the Mecanum wheels. Note that in this top view it may seem that the
DOF of the roller is along its long side, this is not the case because the roller on the bottom is
pivoted 180 degrees and the DOF is perpendicular to its long side.

Figure 5.3: Top view of side movement of the robot 1
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1https://www.google.com/patents/US20130068543
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CHAPTER 6

Kinematics

Kinematics describes the motion of a robot without any consideration of the forces or the torques
causing this motion. The kinematics of the KUKA youBot base can be decomposed into the
kinematics of the four Mecanum wheels. Kinematics can be divided into forward kinematics and
inverse kinematics. Forward kinematics describes how to determine the position and orientation
of a robot given the values of the joint variable of the robot. Inverse kinematics describes values
of the joint variable of the robot given the position and orientation of the robot. The goal is to
make an inverse kinematic model for the KUKA youBot base. This model consists of a set of
matrices, that will result in the position that the four wheels have to be, given the position and
orientation of the robot. The four wheels each have their own frame and should be transformed
using transformation matrices. A frame is a space with its own unit vectors and origin. The
robot also has a frame, which will be the main frame in the final equation. Firstly it will be
described how to work with different frames by introducing transformation matrices. Then the
coordinate frames of the robot will be defined. Finally its corresponding transformation matrices
used in the inverse kinematic equation of the KUKA youBot base will be the result.

6.1 Transformation matrices

Transformation matrices grant the ability to work in different frames by allowing redefinition
of vectors from one coordinate frame onto another. Transformation of a vector is divided into
rotation and translation. The notation

(
a b

)T
, could be a 2D point in a coordinate frame

with a and b as scalar values or it could be a vector with a direction and a magnitude. In this
section this notation will be used to denote a vector with a direction and a magnitude. When
transforming rotation of a vector, the vector is not bound to be located at a particular point
in space. Only direction and magnitude matter when transforming the rotation of a vector into
another frame. It is not necessary to transform the rotation of a vector when both coordinate
frames are parallel. However when working with non-parallel frames, it is required to use a
rotation matrix to express the vector from one coordinate frame onto another.

Figure 6.1: Rotation between parallel coordi-
nate frames is not necessary.

Figure 6.2: Rotation between non parallel co-
ordinate frames is necessary.
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The notation for rotation matrix R0
1 in a three-dimensional space with origin o and with axes

(x, y, z) for transforming free vectors from frame o0x0y0z0 to frame o1x1y1z1 will be used in this
section [22].

R0
1 =

(
x01 y01 z01

)
(6.1)

In Equation (6.1), x01 is the vector from frame o1x1y1z1 expressed in what they would be in frame
o0x0y0z0. This mean that the x-component from frame o1x1y1z1 can be projected on the axes
of frame o0x0y0z0. The dot product of two vectors gives the projection of one vector onto the
other. Resulting in the following equation

x01 =

x1 · x0x1 · y0
x1 · z0

 (6.2)

Combining Equations (6.1) and (6.2), the resulting rotation matrix is given by

R0
1 =

x1 · x0 y1 · x0 z1 · x0
x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0

 (6.3)

This rotation matrix can be used to transform vectors expressed in frame o1x1y1z1, into
vectors expressed in frame o0x0y0z0. This matrix can be used to transform vector p1 from frame
o1x1y1z1 into p0 to his corresponding length and magnitude expressed in frame o0x0y0z0.

p0 = R0
1p1 (6.4)

Rotation matrices can be combined with each other with the following properties

R0
2 = R0

1R
1
2 (6.5)

The use of Equation (6.5) transforms a vector given in coordinates of frame o2x2y2z2 to coordi-
nates of frame o0x0y0z0, which results in the following formula

p0 = R0
1R

1
2p

2 (6.6)

This is the law for rotational transformations. The order of the multiplication of the rotation
matrices is crucial [23]. Similarity transformations are transformations between two frames with
the product being a linear transformation instead of a vector. A coordinate frame is defined
by a set of basis vectors. A rotation matrix can be viewed as redefining these basis vectors.
The matrix representation of a general linear transformation is transformed from one frame to
another using a similarity transformation. If A is the matrix representation of a given linear
transformation in frame o0x0y0z0 and B is the representation of the same linear transformation
in frame o1x1y1z1, then A and B are related as

B = (R0
1)−1AR0

1 (6.7)

Not only rotation is necessary within a transformation matrix but also translation. The use of
homogeneous coordinates allows the combination of rotation and translation in a matrix. The
homogeneous transformation matrix has the form

H =

(
R d
0 1

)
(6.8)

with the rotation matrix R and the translation vector d

d =

dxdy
dz

 (6.9)

and combines rotation and translation in one matrix. The d-component of the matrix defines the
translation in the (x, y, z) axes. The previously stated rules for the rotation matrices also apply
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to the homogeneous matrices. The homogeneous matrices can be used to transform vectors or
transformations from one frame to another. The possibility to combine the vectors of different
frames into one result frame grants the ability to work with several frames when describing the
kinematics of the KUKA youBot base.

6.2 Coordinate frames

The robot frame is defined at the center of the KUKA youBot base; four contact frames at wheel
axles of the Mecanum wheels and the world frame at a fixed location. The robot frame and
the contact frames are assigned parallel. Therefore the transformation matrices of the contact
frames to the robot frame define translation and no rotation.

Figure 6.3: Schematic side-view of KUKA youBot with X axis pointing out the page

Figure 6.4: Schematic top-view of KUKA youBot with Z axis pointing out the page

The Tx, Ty and Tz vectors in Figure (6.3) and (6.4) denote the distance between the robot
frame and the contact frames in the x, y and z directions. The homogeneous transformation
matrices for transforming vectors from the contact frames C1, C2, C3 and C4 into the robot
frame R, as seen in Figure (6.4) are given by

ΠR
C1

=


1 0 0 Tx
0 1 0 Ty
0 0 1 −Tz
0 0 0 1

 ,ΠR
C2

=


1 0 0 −Tx
0 1 0 Ty
0 0 1 −Tz
0 0 0 1

 (6.10)

ΠR
C3

=


1 0 0 −Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1

 ,ΠR
C4

=


1 0 0 Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1

 (6.11)

6.3 Jacobian matrix

A Jacobian matrix defines the velocity relationships within a certain frame. The coordinate
frames of the robot and the transformation matrices for working with different frames are specified
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in the previous sections. Now the focus will be on how to represent velocities in the wheels of
the robot base. There are two possible velocities, angular velocity and linear velocity. Both can
be in the same moment in a frame, just like translation and rotation. With the use of Jacobian
matrices the velocity relationships can be derived for the Mecanum wheels, relating the linear and
angular velocities of the end effector to the wheel velocities. Linear velocity is the velocity of a
rigid body in a straight line. When a rigid body is moving with constant speed without changing
its direction then it is said to be moving with the constant linear velocity. Linear velocity signifies
that direction is not changing, while constant velocity signifies that the magnitude of the velocity
is not changing. Pure angular velocity is the velocity of an object purely rotating around a certain
axis. When a rigid body turns or moves in the circular direction, it has both linear velocity and
angular velocity. The angular velocity of a particle moving on a circular path, is defined as the
ratio of the angle traversed to the amount of time it takes to traverse that angle. The Jacobian
is a matrix that generalizes the notion of the ordinary derivative of a scalar function.

Figure 6.5: Angular velocity of a triangle Figure 6.6: Linear velocity of a square

When a rigid body purely rotates over an angle θ, meaning there is no translation of the
body, any point of the body rotates over θ. If k is a unit vector in the direction of the axis of
rotation, then the angular velocity is given by

ω = θ̇k (6.12)

in which θ̇ is the time derivative of θ.
The linear velocity of any point on the body is given by the equation

υ = ω × r (6.13)

in which r is a vector from the origin to the point.
Looking at the motion of a moving frame, angular velocity is in our interest. The goal is to

compute relative velocity transformations between coordinate frames.

6.3.1 Derivative of the Jacobian

We introduce skew symmetric matrices to simplify the equations made for the Jacobian matrix.
A n× n matrix S is said to be skew symmetric if and only if the following formula applies

S + ST = 0 (6.14)

A 3× 3 skew matrix will be denoted as so(3).
If S ∈ so(3) has component sij , with i, j = (1, 2, 3), then sij + sji = 0, for i, j in (1, 2, 3).
Any vector can be rewritten in skew symmetric matrix form. For the vector a =

(
ax ay az

)
,

the skew matrix of the vector is defined as

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0

 (6.15)
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Suppose that rotation matrix R is a function of rotation value θ. Hence, R = R(θ) ∈ SO(3)
for every θ. Given R(θ) ∈ SO(3), R is orthogonal for all θ, the following rule applies for the
rotation matrix

R(θ)R(θ)T = I (6.16)

Differentiating both sides in Equation (6.16) on θ, the product rule provides the following
formula

d

dθ
RR(θ)T +R(θ)

d

dθ
RT = 0 (6.17)

Let us define S as

S =
d

dθ
RR(θ)T (6.18)

with the transpose

ST = R(θ)
d

dθ
RT (6.19)

Given Equation (6.17) and the definition of S and ST we can say that S + ST = 0, making
d
dθR(θ)T a symmetric skew matrix. Multiplying both sides of Equation (6.18) by R and using
RTR = I the following formula results

d

dθ
R = SR(θ) (6.20)

This formula is the definition of the derivative of the rotation matrix.
The Jacobian allows the expression of angular velocity and linear velocity to a given point.

The rotation matrix R is time varying, written as R(t). As already shown in Equation (6.20)
the derivative of a rotation matrix R(t) can be written as

Ṙ(t) = S(ω(t))R(t) (6.21)

where S(ω(t)) is a skew symmetric matrix and ω is the angular velocity with respect to the
frame. To use this formula for two different coordinate frame the next formula is given

p0 = R0
1p

1

d

dt
p0 = Ṙ

0

1p
1

= S(ω)R0
1p

1

= ω ×R0
1p

1

= ω × p0

(6.22)

The step from is using Equation (6.21). The step from uses the fact that S(a)p = a × p.
Angular velocities from several different coordinate frames can be added up. As previously stated
in Equation (6.5) rotation matrices can be combined. The derivative of this results in

Ṙ
0

2 = Ṙ
0

1R
1
2 +R1

0Ṙ
1

2 (6.23)

All the elements of this equation can be decomposed by the following equations

Ṙ
0

2 = S(ω0
0,2)R0

2 (6.24)

With R0
2 = R0

1R
1
2

Ṙ
0

1R
1
2 = S(ω0

0,1)R0
2 (6.25)

R1
0Ṙ

1

2 = R0
1S(ω1

1,2)R1
2 = S(R0

1ω
1
1,2)R0

2 (6.26)

As a result every component has R0
2 and since S(a) + S(b) = S(a+b)
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ω0
2 = ω0

0,1 +R0
1ω

1
1,2 (6.27)

Angular velocity and linear velocity are combined by use of homogeneous matrix. The matrix
is a function of time and is defined as

H0
1 (t) =

(
R0

1(t) o01(t)
0 1

)
(6.28)

where R0
1(t) handles the angular velocity by expressing the speed at which the frame is rotating

and o01(t) handles the linear velocity by expressing the speed at which the origin of the frame is
moving.

6.3.2 Jacobian for the KUKA youBot

The Jacobian matrix of the KUKA youBot base is made up out of four Jacobian matrices of the
four contact frames, positioned at the axis of each wheel. The Jacobian matrix for contact frame
i is defined as:

JCi =

−RisinθRCi
risin(θRCi

+ ηi) −dRCiy

Ricosθ
R
Ci

−ricos(θRCi
+ ηi) −dRCix

0 0 1

 (6.29)

Where R is the circumference of main wheel i, r is the circumference of roller of wheel i.
To further simplify this equation, the wheels and the rollers all have the same circumference, so
R1 = R2 = R3 = R4 = R and r1 = r2 = r3 = r4 = r. The magnitude of the roller angles are
also equal for wheel 1 and 3, and wheel 2 and 4 have this angle reversed. The Mecanum wheels
of the KUKA youBot are the traditional Swedish wheels, so η1 = η3 = −45◦ and η2 = η4 = 45◦.
The Jacobian matrices for the four wheels are defined as:

JC1
=

−Rsin(θ) rsin(θ − 45) Ty
Rcos(θ) −rcos(θ − 45) Tx

0 0 1

 (6.30)

JC2
=

−Rsin(θ) rsin(θ + 45) Ty
Rcos(θ) −rcos(θ + 45) −Tx

0 0 1

 (6.31)

JC3
=

−Rsin(θ) rsin(θ − 45) −Ty
Rcos(θ) −rcos(θ − 45) −Tx

0 0 1

 (6.32)

JC4 =

−Rsin(θ) rsin(θ + 45) −Ty
Rcos(θ) −rcos(θ + 45) Tx

0 0 1

 (6.33)

For example if wheel 1 has been assigned a speed of 1 in the y-direction the equation would
be 0 −r

√
(2)/2 Ty

R −r
√

(2)/2 Tx
0 0 1

0
1
0

 =

−r√(2)/2

−r
√

(2)/2
0

 (6.34)

6.4 Composite youBot base equation

The motion of the KUKA youBot base is the result of the movement of the four Mecanum wheels.
The motion for the Mecanum wheel is provided as a Jacobian matrix. The Jacobian matrices
can be combined trough the following equation

JRobot =


JC1 0 0 0
0 JC2

0 0 0
0 0 JC3

0
0 0 0 JC4

 (6.35)
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The robot matrix is a (12×3) matrix filled with zeros, where JC1
,JC2

,JC3
and JC4

are the
previously defined Jacobian matrices for the wheels. The matrix has as input the composite
wheel velocity vector, defined as 

q̇1

q̇2

q̇3

q̇4

 (6.36)

With q̇i is the velocity vector with (x,y,z)-components for Mecanum wheel i.

In summary, the previously defined robot and wheel frames and the Jacobian matrix are
combined as shown in Figure (6.7). The roller angle of -45 degrees causes the second movement.
Various angles of the rollers are possible, 45 degrees provides the maximum amount of side-way
movement whereas 0 degrees provides none. This model lacks any notion of friction. Therefore
it is not complete, however, it should provide a basis for understanding the motion of the wheels.

Figure 6.7: Two movement speeds of wheel 1
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CHAPTER 7

Experiments

The experiments provide the ability to compare movement behavior between the real KUKA
youBot and the simulated implementations. There are four types of experiments, each will be
executed five times.

• The first experiment is to move forward ten steps.

• The second experiment is to move backward ten steps.

• The third experiment is to move left ten steps.

• The fourth experiment is to move right ten steps.

All the four experiments are executed on a rough surface. Also the experiments are repeated
on a smooth surface, which has the goal to provide results with a different friction. The first
and the third experiment will also be executed with a small elevation element. For the first
movement, the robot will drive up a small slope. The elevation experiment will be repeated
for two different elevation settings. All these experiments will be performed by the real KUKA
youBot, the simulation approximation of the robot and the kinematic simulation of it. The goal
for the experiments is to provide validation of the movement of both simulated implementations.
A friction and an elevation element are added to further compare the movement.

7.1 Set-up

The real KUKA youBot was steered using the ROS Wrapper for the KUKA youBot API. The
real KUKA drove after the user hit a button linked to the movement command. Subsequently
the measurement was preformed and the next command was executed. The rough surface was
created using synthetic carpet used in RoboCup 2013 Eindhoven. Also the elevation element was
covered with this carpet. The angle of the slopes were 1.5 degrees for the first elevation and 4.5
degrees for the second. The smooth surface was provided by a cast acrylic sheet ‘ISO9001’.

The set-up for the virtual experiment in USARSim was using the standard Iridium controller.
The Iridium code was extended with an experiment section which gave DRIVE commands to
the robot after it was initiated. Interference of the user was not needed. These commands were
separated with the sleep function of Java. For this experiment three maps were used in the
Unreal engine, one with a rough surface, one with a smooth surface and one with a rough surface
with an elevation element. The rough surface was made with physical material with the default
values. And the smooth surface was made by physical material with glass as material type. For
the elevation element gravity is an important aspect in the simulation, the gravity of USARSim
is validated [9].

The code for the real KUKA youBot and the simulated KUKA youBot are the same for the
vertical movement. The real KUKA youBot was steered with equivalent C++ code steered by the
ROS Wrapper for the KUKA KUKA youBot API. However the horizontal movement of the ROS
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Wrapper seemed to be scaled up to have both vertical and horizontal movement match. This was
noted after the results, therefore the results of the real KUKA youBot’s horizontal movement
are scaled with the formula

horizontalmovementreal = horizontalmovementreal ×
√

2

2

This formula was obtained by the y-movement of the previously made Jacobian matrix.

7.2 Sensor

In the real experiments measuring tape was used to determine the position of the robot. A
reference point was set at the robot and two tapes were used to provide a measuring grid.

In USARSim the groundtruth sensor was used to log the position of the robot. The groundtruth
sensor has a frequency of ten measurements per second. These values were handled by receiving
the USARpackets with the Iridium controller, parsing the location and values and storing these
in a text file. The real youBot was measured once per movement and to adjust to this the
abundant sensor information of the groundtruth sensor was filtered at the first measurement per
twenty measurements. Twenty measurements were the time that one move was executed.

7.3 Parameter optimization

Before the real experiments are conducted, parameters should be optimized. This is done by
comparing one experiment of the real robot to various simulated experiments with different
parameters. The effect of friction of the rollers and weight of the chassis of the KUKA youBot
are tested.

7.3.1 Effect of friction on error in horizontal movement

The physical material of the rollers has a friction value. To determine the optimal value for
friction, experiments were done with friction values ranging from 0.50 to 1 with steps of 0.1. The
comparison was done with the real robot and the simulated one on the experiment to drive right
on the rough surface. This process was repeated five times for each friction value and the results
are shown in Figure (7.1). The movement to the right was very similar for all friction values.
However, the difference in forward movement differed for every value.

It is clear that the friction value of 1.00 has the least amount of error, however the early
rise in error followed by the decline to zero is suspicious. Friction values 0.60 and 0.70 show
a error in the backward-direction and friction values 0.50, 0.80 and 0.90 show a error in the
forward-direction.

In Figure (7.2) the forward movement of the real robot in shown for five samples. It is clear
that the real robot has an error in the forward direction.
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Figure 7.1: Mean difference in forward-direction over step count for all friction values

Figure 7.2: Difference in forward-direction over step count for five samples

After examining friction values 0.50, 0.80 and 0.90 and 1.00 the value 0.90 seemed best, shown
in Figure (7.3) None of the five samples had a clear movement in the backward-direction, this
was the case for all the other values causing there mean to be less. It is worth noting that the
variance in the forward-direction when moving to the right is a lot higher for the simulation than
for the real robot. The results for the other friction values can be seen in the appendix.
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Figure 7.3: Difference in forward-direction over step count for five samples

7.3.2 Effect of weight on step size

The weight of the KUKA youBot chassis could affect the step size in horizontal movement. The
experiment to the right on the rough surface was done for weight values of 12,16 and 20 kg.
The effect of the step size is shown in Figure (7.4). All lines are plotted on top of each other.
This means that different weight does not have a significant effect on the step size in horizontal
movement.
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Figure 7.4: Difference in movement

7.4 Results

In this section the results of the experiments comparing the real KUKA youBot to its simulated
version are provided. The movements forward and left are used to represent the vertical and
horizontal motions. A vertical motion has a step size in the vertical axis and an error in the
horizontal axis. A horizontal motion has a step size in the horizontal axis and an error in the
vertical axis. The results are presented for five samples per experiment. Since error can be in the
positive- or the negative-direction no mean was given. A positive and a negative error even each
other out in the mean value. Only plotting absolute error values does not provide the direction
of the error, which can be useful in interpreting the data. Lines are chosen to visualize in a
clearer way, this does not mean the data can be interpolated between points. The step count is
always ten steps, so only ten data points should be interpreted.

7.4.1 Average step size

In the Figures (7.5) and (7.6) the average step size is shown. In Figure (7.5) the average step in
the main movement is shown. The Figure shows that the main movement for every simulated
experiment was smaller than the real one. In Figure (7.6) the average step in the error-direction
is shown. The error step size is not direction dependent, only the difference in each step was
measured. Smooth forward for the simulation shows a very large error. This is due an exponential
error increase, this indicates rotation of the simulated vehicle.
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Figure 7.5: Average step size in main movement

Figure 7.6: Average step size in error-direction size

7.4.2 Forward movement for different surfaces

The forward movement for the rough and smooth surface is presented in Figure (??). In the figure
the movement in the y-direction (error) for the forward movement is shown. The variance in the
y-direction is higher for the smooth surface compared to the rough surface in the y-direction for
the real robot. The error for the real robot is linear. The variance for the simulated compared
to the real robot is considerably higher and seems to favor the left-direction. The error for the
simulated robot is exponential which indicates a rotation.

The forward movement step size is closely resembled with a consistent smaller step size for
the simulated version. Also the change of surface friction did not effect the step size for both
the simulated as well as the real robot. This resemblance is shown in the appendix. Overall
the main movement for the real robot was about 108 cm in ten steps and about 98 cm for the
simulated one. The error for the real robot was about 1.0 cm and did not favor any direction.
The error for the simulated robot was exponential and favored the left-direction, indicating a
small left rotation in the vehicle.
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Figure 7.7: Movement forward on the rough surface, difference in y-direction plotted

7.4.3 Forward movement for different elevations

The step size for the forward movement on rough surface for 0, 1.5 and 4,5 degrees as ”Rough”,
”Slope 1” and ”Slope 2 ” is shown in Figure (7.8). For the real robot the step size is lower as
elevation is higher. The difference between 0 and 1.5 is 1 cm and the difference between 1.5 and
4.5 is 2 cm after ten steps. This indicates that a 1.5 degrees in angle for the surface causes a
linear decrease of 0.1 cm in step size. For the simulated robot the step size seems more effected
by elevation. As the difference between 0 and 1.5 is 1.5 and the difference between 1.5 and 4.5
is 6 cm after ten steps. This indicates that the error is exponential. More elevation should be
tested to give a good estimate of the exponential function.

In Figure (7.9) the error for the forward movement on the different elevations is shown.
The real robot’s error is mostly in the left-direction and is linear. The error for the simulated
robot is also mostly in the left-direction but is more spread. The error also is exponential for
numerous results, mostly at the 4.5 degrees angle. This angle also produces a error mostly in the
right-direction for the simulated robot whereas for lower angles this was mostly the left-direction.
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Figure 7.8: Movement forward on the rough surface, difference in x-direction plotted

Figure 7.9: Movement forward on the rough surface, difference in y-direction plotted

7.5 Left movement for different surfaces

The left movement for the vehicle on the rough and smooth surface is plotted in Figure (7.10).
The forward movement step size for the real robot on a rough surface is closely resembled by the
step size for the smooth surface. This similarity also applies for the simulated robot. However,
there is a considerable discrepancy between the step size of the real robot compared to the
simulated robot.
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Figure 7.10: Movement forward on the rough surface, difference in x-direction plotted

In Figure (7.11) the vertical movement (error) is plotted of the left movement. As well as
with the forward movement for the real robot, the smooth surface increases the variance for the
error in the left movement (shown in purple compared to the cyan color). The simulated robot
seems to have a decrease in variance.

Figure 7.11: Movement forward on the rough surface, difference in y-direction plotted

7.6 Left movement for different elevations

The step size for the left movement on rough surface for 0, 1.5 and 4,5 degrees as ”Rough”, ”Slope
1” and ”Slope 2 ” is shown in Figure (7.12). For the real robot the step size is lower as elevation
is higher. The difference between 0 and 1.5 is 1 cm and the difference between the angles 1.5
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degrees and 4.5 degrees is ... cm after ten steps. This indicates that a 1.5 degrees in angle for
the surface causes a linear decrease of 2 cm in step size. Also seen in the forward experiment,
the step size of the simulated robot seems more effected by elevation. As the difference between
0 degrees and 1.5 degrees is 4 cm and the difference between 1.5 and 4.5 is 7 cm after ten steps.
This is a linear decrease.

The left movement decrease is linear for both the real and simulated robot, in contrast to the
exponential decrease of the forward movement on the elevated surfaces.

Figure 7.12: Movement left on three elevations, difference in y-direction plotted

In Figure (7.13) the error of the left movement on rough surfaces with elevations is plotted.
Again the variance in the error of the simulated robot is higher. The real robot has an error
distinctly in the forward-direction, whereas the simulated robot has errors in both the forward-
and backward-direction.
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Figure 7.13: Movement left on three elevations, difference in x-direction plotted
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CHAPTER 8

Discussion and future work

The real experiments were recorded by three people, it is possible that measurement were inter-
preted differently. As a precaution every experiment was measured by the same person so every
different interpretation had the same relative difference. Also the surface was a carpet meaning
that wrinkles and inconsistent bumps were possible. A countermeasure was that the carpet was
stretched as much as possible and locked in place. Measurement were done by measuring tape,
a better sensor would be a groundtruth sensor with a corresponding frequency of the USARSim
sensor for results measured with a higher frequency.

The results show that the movement of the virtual KUKA youBot can be improved. Future
research can be done by experimenting with a kinematic based implementation. This implemen-
tation has its movement based on the kinematic model of a platform with four Mecanum wheels.
The movement of the vehicle will be provided by use of additional code and the movement of
four wheels. The movement of the rollers of the Mecanum wheels are provided by the additional
code. Kinematic based movement is also used in different simulators, e.g. in Gazebo, which will
be discussed in related work, a KUKA youBot is implemented solely trough a kinematic model.

The use of the ROS wrapper to drive the real robot did complicate the interpretation of the
results. The wrapper made the movement equal for a move forward and a move left. This is
certainly not the case if wheel speeds were the same, the left movement should be less than the
forward movement. Real results were scaled with the angle of the rollers but there still is a
discrepancy. For further testing equivalent code should be used for both the real and simulated
robot.

The results of the simulated KUKA youBot were often exponential, indicating a rotation in
the robot. For further research rotation should be measured of the real robot to compare it to
the rotation of the simulated one.

The weight of the simulated youBot did not seems to effect step size, but the center of gravity
can seriously effect rotation as seen with previous results. The center of gravity of the real robot
is not precisely in the center of the KUKA youBot base, this is result of the internal computer
and motors. For further testing the center of gravity of the real robot can be measured and
applied to the simulated robot.

Only the left, right forward and backward movement are tested. Mecanum wheels have a lot
more possible moves, e.g. rotating in place or moving in a diagonal. A validation of all the moves
is needed to provide a the movement of the omnidirectional drive based on Mecanum wheels.

A kinematic correction for the errors of the simulated robot can be applied. For the main
movement, the simulation can simply scale its speeds. Also if a side-movement command is
given, the speeds can be increased by

WheelSpeedsimulation = WheelSpeedsimulation ×
2√
2

(8.1)
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CHAPTER 9

Conclusion

In this thesis it is demonstrated that the simulation of the KUKA youBot in USARSim resembles
the step size of the real one with a discrepancy. Further improvements should be made to narrow
this discrepancy, however, the results seem positive since more parameters can be optimized.
Optimizing of the physical attributes, center of gravity or even joint attributes are options.
Also kinematic approach instead of the approximate implementation is worth undertaking as an
alternative.

Future experiments could scale the main movement and reduce the errors of the simulated
robot by parameter optimization. That would validate that USARSim supports the movement
of an omnidirectional vehicle, serving as a research tool for a wide range of robots. Given the fact
that the implementation only approximates the real robot and does not use any code, proves
USARSim’s potential. All in all the simulator based on the Unreal game engine provides a
powerful combination with a focus on representing reality.
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APPENDIX A

Robot code

class KUKA youBot extends OmniSteeredVehicle c on f i g (USAR) ;

//wheel d i s t ance s
‘ d e f i n e WheelX .2355
‘ d e f i n e WheelY .15
‘ d e f i n e WheelZ −0.03

‘ d e f i n e c1 0 .0475
‘ d e f i n e c2 0 .02375
‘ d e f i n e c3 0 .04114
//
//
// r o l l e r d i s t ance s
‘ d e f i n e r o l l e r 1 x ‘ c1
‘ d e f i n e r o l l e r 2 x ‘ c2
‘ d e f i n e r o l l e r 3 x −‘ c2
‘ d e f i n e r o l l e r 4 x −‘ c1
‘ d e f i n e r o l l e r 5 x −‘ c2
‘ d e f i n e r o l l e r 6 x ‘ c2

‘ d e f i n e r o l l e r 1 z 0
‘ d e f i n e r o l l e r 2 z ‘ c3
‘ d e f i n e r o l l e r 3 z ‘ c3
‘ d e f i n e r o l l e r 4 z 0
‘ d e f i n e r o l l e r 5 z −‘ c3
‘ d e f i n e r o l l e r 6 z −‘ c3

// r o l l e r j o i n t ro ta t i ons , wi th incrementa l s t e p s o f −1/3 PI
‘ d e f i n e r o l l e r d i r y 1 0
‘ d e f i n e r o l l e r d i r y 2 −1.0471975512
‘ d e f i n e r o l l e r d i r y 3 −2.09439510239
‘ d e f i n e r o l l e r d i r y 4 −3.14159265359
‘ d e f i n e r o l l e r d i r y 5 −4.18879020479
‘ d e f i n e r o l l e r d i r y 6 −5.23598775598

‘ d e f i n e p i ha l v e 1.57079632679
‘ d e f i n e p i t h i r d 1.0471975512
‘ d e f i n e p i f o u r t h 0.78539816339

// crea t e wheel meshes
‘ d e f i n e Create wheelMesh (MyObject , MyMesh , MyMass , MyX, MyY, MyZ) \
Begin Object Class=Part Name=‘{MyObject}\n \
Mesh=‘{MyMesh}\n \
Of f s e t=(X=‘{MyX} ,Y=‘{MyY} ,Z=‘{MyZ}) \n \
Mass=‘{MyMass}\n \
End Object\n \
PartL i s t .Add( ‘{MyObject }) \n \
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// crea t e r o l l e r meshes
‘ d e f i n e Crea te ro l l e rMesh (MyObject , MyMesh , MyParent , MyMass , MyX, MyY, MyZ) \
Begin Object Class=Part Name=‘{MyObject}\n \
Mesh=‘{MyMesh}\n \
Relat iveTo = ‘{MyParent}\n \
Of f s e t=(X=‘{MyX} ,Y=‘{MyY} ,Z=‘{MyZ}) \n \
Mass=‘{MyMass}\n \
End Object\n \
PartL i s t .Add( ‘{MyObject }) \n \

// crea t e wheel j o i n t s
‘ d e f i n e Create whee lJo int (MyObject , MyChild , MySide , MyX, MyY, MyZ, MyDirX , MyDirY

, MyDirZ) \
Begin Object Class=WheelJoint Name=‘{MyObject}\n \
Parent=kukabody\n \
Child=‘{MyChild}\n \
Side=‘{MySide}\n \
Of f s e t=(X=‘{MyX} ,Y=‘{MyY} ,Z=‘{MyZ}) \n \
Dir e c t i on=(X=‘{MyDirX} ,Y=‘{MyDirY} ,Z=‘{MyDirZ}) \n \
MaxVelocity=2\n \
End Object\n \
Jo in t s .Add( ‘{MyObject }) \n \

// crea t e connec t i on j o in t s
‘ d e f i n e Crea t e connec t i onJo in t (MyObject , MyChild , MyX, MyY, MyZ, ) \
Begin Object Class=WheelJoint Name=‘{MyObject}\n \
Parent=kukabody\n \
Child=‘{MyChild}\n \
Of f s e t=(X=‘{MyX} ,Y=‘{MyY} ,Z=‘{MyZ}) \n \
End Object\n \
Jo in t s .Add( ‘{MyObject }) \n \

// crea t e r o l l e r j o i n t s
‘ d e f i n e C r e a t e r o l l e r J o i n t (MyObject , MyParent , MyChild , MyX, MyY, MyZ, MyDirX ,

MyDirY , MyDirZ) \
Begin Object Class=Ro l l e r J o i n t Name=‘{MyObject}\n \
Parent=‘{MyParent}\n \
Child=‘{MyChild}\n \
Side=SIDE None\n \
Relat iveTo =‘{MyParent}\n \
Of f s e t=(X=‘{MyX} ,Y=‘{MyY} ,Z=‘{MyZ}) \n \
Dir e c t i on=(X=‘{MyDirX} ,Y=‘{MyDirY} ,Z=‘{MyDirZ}) \n \
MaxVelocity=1.3\n \
End Object\n \
Jo in t s .Add( ‘{MyObject }) \n \

‘ d e f i n e Create meshJoint (MyObject , MyParent , MyChild ) \
Begin Object Class=Ro l l e r J o i n t Name=‘{MyObject}\n \
Parent=‘{MyParent}\n \
Child=‘{MyChild}\n \
Of f s e t=(X=0,Y=0,Z=0\n \
End Object\n \
Jo in t s .Add( ‘{MyObject }) \n \

d e f a u l t p r o p e r t i e s
{

// Create body part
Begin Object Class=Part Name=kukabody
Mesh=StaticMesh ’KUKA youBot . youbot base f rame ’
Mass=8.6
End Object
Body=kukabody
PartL i s t .Add( kukabody )
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‘ Create wheelMesh ( ArmJoint 1 , StaticMesh ’KUKA youBot . youbot arm jo int 1 ’ , 1 , 0 , 0 ,
0)

‘ Create wheelMesh ( ArmJoint 2 , StaticMesh ’KUKA youBot . youbot arm jo int 2 ’ , 1 , 0 , 0 ,
0)

‘ Create wheelMesh ( ArmJoint 3 , StaticMesh ’KUKA youBot . youbot arm jo int 3 ’ , 1 , 0 , 0 ,
0)

‘ Create wheelMesh (ArmBase , StaticMesh ’KUKA youBot . youbot arm base frame ’ , 1 , 0 , 0 ,
0)

‘ Create wheelMesh ( Plate , StaticMesh ’KUKA youBot . youbot p la te ’ , 1 , 0 , 0 , 0)

/∗
Create meshes f o r the whee ls
FLWheel
FRWheel
BLWheel
BRWheel
∗/
‘ Create wheelMesh (FLWheel , StaticMesh ’KUKA youBot . main try ’ , 1 , ‘WheelX , −‘WheelY ,

‘WheelZ )
‘ Create wheelMesh (FRWheel , StaticMesh ’KUKA youBot . main try ’ , 1 , ‘WheelX , ‘WheelY ,

‘WheelZ )
‘ Create wheelMesh (BLWheel , StaticMesh ’KUKA youBot . main try ’ , 1 , −‘WheelX , −‘WheelY

, ‘WheelZ )
‘ Create wheelMesh (BRWheel , StaticMesh ’KUKA youBot . main try ’ , 1 , −‘WheelX , ‘WheelY ,

‘WheelZ )

/∗Create meshes f o r r o l l e r s
x , z needed fo r r o l l e r placement
MyObject , MyMesh, Myparent , MyMass , MyX, MyY, MyZ
∗/
‘ Crea te ro l l e rMesh ( FLWheel Roller 1 , StaticMesh ’KUKA youBot . r o l l e r 3 b ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 1 x , 0 , ‘ r o l l e r 1 z )
‘ Crea te ro l l e rMesh ( FLWheel Roller 2 , StaticMesh ’KUKA youBot . r o l l e r 3 b 2 ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 2 x , 0 , ‘ r o l l e r 2 z )
‘ Crea te ro l l e rMesh ( FLWheel Roller 3 , StaticMesh ’KUKA youBot . r o l l e r 3 b 3 ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 3 x , 0 , ‘ r o l l e r 3 z )
‘ Crea te ro l l e rMesh ( FLWheel Roller 4 , StaticMesh ’KUKA youBot . r o l l e r 3 b 4 ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 4 x , 0 , ‘ r o l l e r 4 z )
‘ Crea te ro l l e rMesh ( FLWheel Roller 5 , StaticMesh ’KUKA youBot . r o l l e r 3 b 5 ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 5 x , 0 , ‘ r o l l e r 5 z )
‘ Crea te ro l l e rMesh ( FLWheel Roller 6 , StaticMesh ’KUKA youBot . r o l l e r 3 b 6 ’ , FLWheel ,

0 . 1 , ‘ r o l l e r 6 x , 0 , ‘ r o l l e r 6 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 1 , StaticMesh ’KUKA youBot . r o l l e r 3 a ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 1 x , 0 , ‘ r o l l e r 1 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 2 , StaticMesh ’KUKA youBot . r o l l e r 3 a 2 ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 2 x , 0 , ‘ r o l l e r 2 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 3 , StaticMesh ’KUKA youBot . r o l l e r 3 a 3 ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 3 x , 0 , ‘ r o l l e r 3 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 4 , StaticMesh ’KUKA youBot . r o l l e r 3 a 4 ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 4 x , 0 , ‘ r o l l e r 4 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 5 , StaticMesh ’KUKA youBot . r o l l e r 3 a 5 ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 5 x , 0 , ‘ r o l l e r 5 z )

‘ Crea te ro l l e rMesh ( FRWheel Roller 6 , StaticMesh ’KUKA youBot . r o l l e r 3 a 6 ’ , FRWheel ,
0 . 1 , ‘ r o l l e r 6 x , 0 , ‘ r o l l e r 6 z )

‘ Crea te ro l l e rMesh ( BLWheel Roller 1 , StaticMesh ’KUKA youBot . r o l l e r 3 a ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 1 x , 0 , ‘ r o l l e r 1 z )

‘ Crea te ro l l e rMesh ( BLWheel Roller 2 , StaticMesh ’KUKA youBot . r o l l e r 3 a 2 ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 2 x , 0 , ‘ r o l l e r 2 z )

‘ Crea te ro l l e rMesh ( BLWheel Roller 3 , StaticMesh ’KUKA youBot . r o l l e r 3 a 3 ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 3 x , 0 , ‘ r o l l e r 3 z )

‘ Crea te ro l l e rMesh ( BLWheel Roller 4 , StaticMesh ’KUKA youBot . r o l l e r 3 a 4 ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 4 x , 0 , ‘ r o l l e r 4 z )

‘ Crea te ro l l e rMesh ( BLWheel Roller 5 , StaticMesh ’KUKA youBot . r o l l e r 3 a 5 ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 5 x , 0 , ‘ r o l l e r 5 z )
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‘ Crea te ro l l e rMesh ( BLWheel Roller 6 , StaticMesh ’KUKA youBot . r o l l e r 3 a 6 ’ , BLWheel ,
0 . 1 , ‘ r o l l e r 6 x , 0 , ‘ r o l l e r 6 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 1 , StaticMesh ’KUKA youBot . r o l l e r 3 b ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 1 x , 0 , ‘ r o l l e r 1 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 2 , StaticMesh ’KUKA youBot . r o l l e r 3 b 2 ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 2 x , 0 , ‘ r o l l e r 2 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 3 , StaticMesh ’KUKA youBot . r o l l e r 3 b 3 ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 3 x , 0 , ‘ r o l l e r 3 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 4 , StaticMesh ’KUKA youBot . r o l l e r 3 b 4 ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 4 x , 0 , ‘ r o l l e r 4 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 5 , StaticMesh ’KUKA youBot . r o l l e r 3 b 5 ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 5 x , 0 , ‘ r o l l e r 5 z )

‘ Crea te ro l l e rMesh ( BRWheel Roller 6 , StaticMesh ’KUKA youBot . r o l l e r 3 b 6 ’ , BRWheel ,
0 . 1 , ‘ r o l l e r 6 x , 0 , ‘ r o l l e r 6 z )

// S e l f c o l l i s i o n i s turned o f f
// Co l l i s i o n wi th in the main o b j e c t
DisableContacts .Add( ( Part1=ArmBase , Part2=kukabody ) )
DisableContacts .Add( ( Part1=Plate , Part2=kukabody ) )
DisableContacts .Add( ( Part1=ArmBase , Part2=ArmJoint 1 ) )
Disab leContacts .Add( ( Part1=ArmJoint 1 , Part2=ArmJoint 2 ) )

Disab leContacts .Add( ( Part1=ArmJoint 2 , Part2=ArmJoint 3 ) )

// Co l l i s i o n between whee ls and body
DisableContacts .Add( ( Part1=FLWheel , Part2=kukabody ) )
DisableContacts .Add( ( Part1=FRWheel , Part2=kukabody ) )
DisableContacts .Add( ( Part1=BLWheel , Part2=kukabody ) )
DisableContacts .Add( ( Part1=BRWheel , Part2=kukabody ) )

// Co l l i s i o n between whee ls and r o l l e r s
DisableContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=FLWheel , Part2=FLWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=FRWheel , Part2=FRWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=BLWheel , Part2=BLWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=BRWheel , Part2=BRWheel Roller 6 ) )

// Co l l i s i o n between body and r o l l e r s
DisableContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FLWheel Roller 6 ) )
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DisableContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=FRWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BLWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=kukabody , Part2=BRWheel Roller 6 ) )

// Co l l i s i o n between r o l l e r s
DisableContacts .Add( ( Part1=FLWheel Roller 6 , Part2=FLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=FLWheel Roller 1 , Part2=FLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=FLWheel Roller 2 , Part2=FLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=FLWheel Roller 3 , Part2=FLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=FLWheel Roller 4 , Part2=FLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=FLWheel Roller 5 , Part2=FLWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=FRWheel Roller 6 , Part2=FRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=FRWheel Roller 1 , Part2=FRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=FRWheel Roller 2 , Part2=FRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=FRWheel Roller 3 , Part2=FRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=FRWheel Roller 4 , Part2=FRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=FRWheel Roller 5 , Part2=FRWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=BLWheel Roller 6 , Part2=BLWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=BLWheel Roller 1 , Part2=BLWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=BLWheel Roller 2 , Part2=BLWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=BLWheel Roller 3 , Part2=BLWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=BLWheel Roller 4 , Part2=BLWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=BLWheel Roller 5 , Part2=BLWheel Roller 6 ) )

Disab leContacts .Add( ( Part1=BRWheel Roller 6 , Part2=BRWheel Roller 1 ) )
Disab leContacts .Add( ( Part1=BRWheel Roller 1 , Part2=BRWheel Roller 2 ) )
Disab leContacts .Add( ( Part1=BRWheel Roller 2 , Part2=BRWheel Roller 3 ) )
Disab leContacts .Add( ( Part1=BRWheel Roller 3 , Part2=BRWheel Roller 4 ) )
Disab leContacts .Add( ( Part1=BRWheel Roller 4 , Part2=BRWheel Roller 5 ) )
Disab leContacts .Add( ( Part1=BRWheel Roller 5 , Part2=BRWheel Roller 6 ) )

//Create wheel j o i n t s
‘ Create whee lJo int ( FLWheelRoll , FLWheel , SIDE Front Left , ‘WheelX , −‘WheelY , ‘

WheelZ , ‘ p i ha lve , 0 , 0)
‘ Create whee lJo int (FRWheelRoll , FRWheel , SIDE Front Right , ‘WheelX , ‘WheelY , ‘

WheelZ , ‘ p i ha lve , 0 , 0)
‘ Create whee lJo int (BLWheelRoll , BLWheel , SIDE Back Left , −‘WheelX , −‘WheelY , ‘

WheelZ , ‘ p i ha lve , 0 , 0)
‘ Create whee lJo int (BRWheelRoll , BRWheel , SIDE Back Right , −‘WheelX , ‘WheelY , ‘

WheelZ , ‘ p i ha lve , 0 , 0)

‘ Crea t e connec t i onJo in t (Conn , ArmJoint 1 , 0 , 0 , 0)
‘ Crea t e connec t i onJo in t (Conn2 , ArmJoint 2 , 0 , 0 , 0)
‘ Crea t e connec t i onJo in t (Conn3 , ArmJoint 3 , 0 , 0 , 0)
‘ Crea t e connec t i onJo in t (Conn6 , ArmBase , 0 , 0 , 0)
‘ Crea t e connec t i onJo in t (Conn10 , Plate , 0 , 0 , 0)

//Create r o l l e r j o i n t s
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 001 , FLWheel , FLWheel Roller 1 , ‘ r o l l e r 1 x , 0 ,

‘ r o l l e r 1 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 1 , 0)
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 002 , FLWheel , FLWheel Roller 2 , ‘ r o l l e r 2 x , 0 ,
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‘ r o l l e r 2 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 2 , 0)
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 003 , FLWheel , FLWheel Roller 3 , ‘ r o l l e r 3 x , 0 ,

‘ r o l l e r 3 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 3 , 0)
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 004 , FLWheel , FLWheel Roller 4 , ‘ r o l l e r 4 x , 0 ,

‘ r o l l e r 4 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 4 , 0)
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 005 , FLWheel , FLWheel Roller 5 , ‘ r o l l e r 5 x , 0 ,

‘ r o l l e r 5 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 5 , 0)
‘ C r e a t e r o l l e r J o i n t ( FLWheelRoller 006 , FLWheel , FLWheel Roller 6 , ‘ r o l l e r 6 x , 0 ,

‘ r o l l e r 6 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 6 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 001 , FRWheel , FRWheel Roller 1 , ‘ r o l l e r 1 x , 0 ,
‘ r o l l e r 1 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 1 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 002 , FRWheel , FRWheel Roller 2 , ‘ r o l l e r 2 x , 0 ,
‘ r o l l e r 2 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 2 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 003 , FRWheel , FRWheel Roller 3 , ‘ r o l l e r 3 x , 0 ,
‘ r o l l e r 3 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 3 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 004 , FRWheel , FRWheel Roller 4 , ‘ r o l l e r 4 x , 0 ,
‘ r o l l e r 4 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 4 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 005 , FRWheel , FRWheel Roller 5 , ‘ r o l l e r 5 x , 0 ,
‘ r o l l e r 5 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 5 , 0)

‘ C r e a t e r o l l e r J o i n t ( FRWheelRoller 006 , FRWheel , FRWheel Roller 6 , ‘ r o l l e r 6 x , 0 ,
‘ r o l l e r 6 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 6 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 001 , BLWheel , BLWheel Roller 1 , ‘ r o l l e r 1 x , 0 ,
‘ r o l l e r 1 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 1 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 002 , BLWheel , BLWheel Roller 2 , ‘ r o l l e r 2 x , 0 ,
‘ r o l l e r 2 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 2 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 003 , BLWheel , BLWheel Roller 3 , ‘ r o l l e r 3 x , 0 ,
‘ r o l l e r 3 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 3 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 004 , BLWheel , BLWheel Roller 4 , ‘ r o l l e r 4 x , 0 ,
‘ r o l l e r 4 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 4 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 005 , BLWheel , BLWheel Roller 5 , ‘ r o l l e r 5 x , 0 ,
‘ r o l l e r 5 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 5 , 0)

‘ C r e a t e r o l l e r J o i n t ( BLWheelRoller 006 , BLWheel , BLWheel Roller 6 , ‘ r o l l e r 6 x , 0 ,
‘ r o l l e r 6 z , −‘ p i f ou r th , ‘ r o l l e r d i r y 6 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 001 , BRWheel , BRWheel Roller 1 , ‘ r o l l e r 1 x , 0 ,
‘ r o l l e r 1 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 1 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 002 , BRWheel , BRWheel Roller 2 , ‘ r o l l e r 2 x , 0 ,
‘ r o l l e r 2 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 2 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 003 , BRWheel , BRWheel Roller 3 , ‘ r o l l e r 3 x , 0 ,
‘ r o l l e r 3 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 3 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 004 , BRWheel , BRWheel Roller 4 , ‘ r o l l e r 4 x , 0 ,
‘ r o l l e r 4 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 4 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 005 , BRWheel , BRWheel Roller 5 , ‘ r o l l e r 5 x , 0 ,
‘ r o l l e r 5 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 5 , 0)

‘ C r e a t e r o l l e r J o i n t ( BRWheelRoller 006 , BRWheel , BRWheel Roller 6 , ‘ r o l l e r 6 x , 0 ,
‘ r o l l e r 6 z , ‘ p i f ou r th , ‘ r o l l e r d i r y 6 , 0)

WheelRadius=0.09
}
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APPENDIX B

Parameter optimization

The friction value chosen for the experiments was 0.90. These were the compared frictions.
Friction 0.70 seemed pretty good but had one out-lier. Friction 1.00 had too much variance.
Friction 0.80 had one more error in the wrong direction than friction 0.90. All in all friction 0.90
was chosen with just one sample in the wrong error direction, which was at a late time step.

Figure B.1: Forward movement on different surfaces
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Figure B.2: Forward movement on different surfaces

Figure B.3: Forward movement on different surfaces
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APPENDIX C

Result with a incorrect center of gravity

These are the old simulation results compared to the new one. The old results had an incorrect
center of gravity because part of the weight of the chassis was assigned to the robot arm. In
the Figures below the old results are shown with a ”with arm” label. The main movement did
slightly suffer because of the incorrect center of gravity seen in Figures (C.1), (C.3), (C.5) and
(C.7). However, the error movement was exponential for all side movement, seen in Figures (C.6)
and (C.8)

Figure C.1: Vertical movement for forward experiment on different surfaces
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Figure C.2: Horizontal movement for forward experiment on different surfaces

Figure C.3: Vertical movement for forward experiment on different elevations
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Figure C.4: Horizontal movement for forward experiment on different elevations

Figure C.5: Horizontal movement for left experiment on different surfaces
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Figure C.6: Vertical movement for left experiment on different surfaces

Figure C.7: Horizontal movement for left experiment on different elevations
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Figure C.8: Vertical movement for left experiment on different elevations
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APPENDIX D

Notions

D.1 Open Source

An open source project is a project, which has the development model of universal access via
a free license to a product’s design or blueprint, and universal redistribution of that design
or blueprint, including subsequent improvements to it by anyone. An open source project is an
ongoing evolution of the project’s first distribution. When a project is open source, contributions
to the source code can come from the community supporting the project. When a project is
proprietary only the developers can contribute to the project’s source code. In simulators, being
open source is beneficial for the development of the simulator since contributions can come from
the community.
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