Probabilistic Robotics (BaIPR6, Fall 2010) Examination: Basics \& Localization

Assigned: Week 42, Due: Week 44 (Wednesday November 3rd, 10:00)

Arnoud Visser

October 15, 2010

The solutions have to be mailed individually to Arnoud Visser A.Visser@uva.nl.

Question 1

Consider a robot that can be in any of 10 possible states $(x=1, \ldots, x=10)$. The robot is equipped with a sensor that indicates the state x the robot is in. This sensor, however, is not perfect and indicates the correct state only 90% of the cases. In 10% of the cases, the sensor indicates an incorrect state with equal probability.
(a) Compute the probability $P(x=5 \mid z=5)$ for the robot of being in state 5 given that the sensor indicates that the robot is in state 5 , if the robot could be in any state before the first sensor indication. What is the probability $P(x=4 \mid z=5)$ for the robot of being in state 4 ?
(b) Assuming that a second indication $z=5$ is obtained, what would be the probability of being in state 5?
(c) What is the belief state (the probability $P(x)$ for all possible values of x) for the sequence of sensor indications: $z_{1}=4, z_{2}=5, a n d z_{3}=5$, if the robot could be in any state before the first sensor indication.

Question 2

Assume the following 1-D lineair dynamic system, with a simple motion model:

$$
\begin{equation*}
x_{t}=x_{t-1}+u_{t}+\epsilon_{t} \tag{1}
\end{equation*}
$$

and a simple measurement model:

$$
\begin{equation*}
y_{t}=x_{t}+\delta_{t} \tag{2}
\end{equation*}
$$

The terms ϵ_{t} and δ_{t} represent respectively the control and measurement error, a random number from a Gaussian distribution $\mathcal{N}\left(x ; 0, R_{t}\right)$ and $\mathcal{N}\left(y ; 0, Q_{t}\right)$. For the moment you can assume that the variance $R_{t}=0$ and $Q_{t}=1$, which means that you have perfect control over the dynamic system (ϵ_{t} can be ignored). For all timesteps, the same input is given ($u_{t}=0.5$). The initial estimate is represented with a Gaussian distribution $\mathcal{N}\left(x ; \mu_{0}, \Sigma_{0}\right)$ with $\mu_{0}=5$ and $\Sigma_{0}=10$.
You receive the following measurements ($y_{1}=0.0, y_{2}=2.1, y_{3}=5.6$).
(a) Use the measurements $\left(y_{1}, y_{2}, y_{3}\right)$ to estimate $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$. For this lineair system you can use a traditional Kalman Filter, as described in section 3.2 of the book. This will be a two step approach, a prediction and an update step. The result of the prediction step will be a Gaussian distribution $\mathcal{N}\left(x ; \bar{\mu}_{0}, \bar{\Sigma}_{t}\right)$. In the update step you can shift and narrow this distribution to $\mathcal{N}\left(x ; \mu_{t}, \Sigma_{t}\right)$ making use of the measurements and the following precalculated Kalman gain $\left(K_{1}=\frac{10}{11}, K_{2}=\frac{10}{21}, K_{3}=\frac{10}{31}, K_{4}=\frac{10}{41}, K_{5}=\frac{10}{51}\right)$.
(b) Explain why the Kalman Gain decreases for every time step.
(c) Lets drop the assumption of perfect control, and reintroduce the control noise ϵ_{t} modelled with a Gaussian distribution $\mathcal{N}(x ; 0,1)$. Recalculate ($K_{1}, K_{2}, K_{3}, K_{4}, K_{5}$) for the given variance $Q_{t}=1$. Explain the observed pattern in the Kalman Gain K_{t}.
(d) Make a new estimate of $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ based on the recalculated Kalman Gain K_{t}.

Question 3

Solve exercise 7.11.4 from the Probabilistic Robotics book. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Question 1 originates from the course 'Introduction to Mobile Robotics' at the Albert-Ludwigs-Universität Freiburg. Question 2 originates from the course 'Design and Organization of Autonomous Systems' from the Universiteit van Amsterdam.

