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Simultaneous Localization and Mapping 

A robot acquires a map while localizing itself relative to this map. 

 

Online SLAM problem   Full SLAM problem 

 

 

 

 

 

 

 

 

 

Estimate map m and current position xt         Estimate map m and driven path x1:t  
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Graph SLAM 

GraphSLAM extends the state vector y with the path x0:t 

 

 

 

 

 

 

 

Example: Groundhog in abandoned mine: 

every 5 meters a local map 
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State estimate 

GraphSLAM requires inference to estimate the state 

 

 

 

 

 

 

 

 

The state is estimated from the information matrix Ω and vector ,  
the canonical representation of the covariance and mean. 

 

Benefits: 

 Uncertainty is easy represented (Ω=0) 

 Information can be integrated by addition, without direct inference 

 

The state estimated μt requires inversion of the information matrix Ω, 
which is done off-line 
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Acquisition of the information matrix 

The observation of a landmark m1 introduces an constraint:  
 

 

 

 

 

 

 

 

The constraint is of the type: 

 

 

 

Where h(xt,mj) is the measurement model and Qt the covariance of the 

measurement noise. 
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Acquisition of the information matrix 

The movement of the robot from x1 to x2 also introduces an constraint:  
 

 

 

 

 

 

 

 

The constraint is of the type: 

 

 

 

Where g(ut,xj-1) is the motion model and Rt the covariance of 

 the motion noise. 
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Acquisition of the information matrix 

After several steps, a dependence graph appears with several 

constraints:  
 

 

 

 

 

 

 

 

The resulting information matrix is quite sparse. 

The sum of all constraints  

in the graph has the form: 
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Simplifying acquisition 

 By a Taylor expansion of the motion and measurement 

model, the equations can be approximated: 
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Reducing the dependence graph 

Removal of the observation of a landmark m1 changes the constraint 

between x1 to x2 :  
 

 

 

 

 

 

 

 

The constraint is changed by the following subtraction: 

 

 

 

This is a form of variable elimination algorithm for matrix inversion 
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Reducing the dependence graph 

Removal of the observation of a landmark m2 introduces a new 

constraint between x2 to x4:  
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Reducing the dependence graph 

The final result:  

 

 

 

 

 

 

 

 

 

The resulting information matrix is much smaller.  

This reduction can be done in time linear in size N 
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Updating the full state estimate from the path 

There is now an estimate of the path robot 
 

 

 

 

 

 

 

This requires to solve a system of linear equations,  

which is not linear in size t due to cycles (loop closures!).  

When found, the map can be recovered. For each landmark mj: 

 

 

 

In addition, an estimate of the covariance Σ0:t over the robot path is 

known (but not over the full state y) 
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Full Algorithm 

The previous steps should be iterated to get a reliable state estimate μ:  
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Full Algorithm 

The algorithm can be extended for unknown correspondences:  
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Correspondence test 

Based on the probability that mj corresponds to mk:  
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GroundHog in abandoned mine 

A robot deployed in a previous flooded coal mine: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Thrun et al., Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and 

Automation Magazine 11(4), 2005.  
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GroundHog in abandoned mine 

A robot created a 3D model of the coal mine: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Thrun et al., Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and 

Automation Magazine 11(4), 2005.  
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GroundHog in abandoned mine 

Correspondences are discovered: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Thrun et al., Autonomous Exploration and Mapping of Abandoned Mines, IEEE Robotics and 

Automation Magazine 11(4), 2005.  
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GroundHog in abandoned mine 

Correspondences are propagated and dissolved: 
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GroundHog in abandoned mine 

Iterations stops when data associations induce no further 

changes: 
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Segway RMP at Stanford 

Segway exploring outdoors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Thrun and Micheal Montemerlo, The Graph SLAM Algorithm with Applications to Large-Scale Mapping 

of Urban Structures, International Journal on Robotics Research 25(5/6), p. 403-430, 2005  
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Segway RMP at Stanford 

Segway with vertically mounted laserscanner: 

 

 

 

 

 

 

 

 

 

 

Green is ground, red obstacles, white structures above the robot 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Thrun and Micheal Montemerlo, The Graph SLAM Algorithm with Applications to Large-Scale Mapping 

of Urban Structures, International Journal on Robotics Research 25(5/6), p. 403-430, 2005  
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Segway RMP at Stanford 

3D map of the Stanford campus: 
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Segway RMP at Stanford 

Color coded 3D map of the Stanford campus: 
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Segway RMP at Stanford 

Top view of 3D map of the Stanford campus: 
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Segway RMP at Stanford 

Effect of GPS on indoor mapping: 
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Resumé 

Use a graph to represent the problem: 

  Every node in the graph corresponds to a pose or  

an observation of the robot during mapping 

  Every edge between two nodes corresponds to the spatial 

constraints between them 
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Conclusion 

GraphSLAM: 

 Solves the Full SLAM problem as post-processing step 

 Creates a graph of soft constraints from the data-set 

 By minimizing the sum of all constraints the maximum likelihood 

estimate of both the map and the robot path is found 

 The algorithm works in iterating three steps: 

construction, reduction, solving remaining equations 
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