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Simultaneous Localization and Mapping 

A robot acquires a map while localizing itself relative to this map. 

 

Online SLAM problem   Full SLAM problem 

 

 

 

 

 

 

 

 

 

Estimate map m and current position xt         Estimate map m and driven path x1:t  
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SEIF SLAM 

SEIF SLAM reduces the state vector y again to the current position xt 

 

 

 

 

 

 

 

This is the same state vector y as EKF SLAM 
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State estimate 

SEIF SLAM requires every timestep inference to estimate the state 

 

 

 

 

 

 

 

 

The state estimated is also done by GraphSLAM,  

as a post-processing step. 
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Sparseness of  Information Matrix 

After a while, all landmarks are correlated in EKF’s correlation matrix  
 

 

 

 

 

 

 

 

 

 

 

 

The normalized information matrix is naturally sparse; most elements are 

close to zero (but none is zero). 

)),(()),((
1

jt

i

tt

T

jt

i

t mxhzQmxhz 




Probabilistic Robotics Course at the Universiteit van Amsterdam 6 

Acquisition of the information matrix 

The observation of a landmark m1 introduces a constraint:  
 

 

 

 

 

 

 

 

The constraint is of the type: 

 

 

 

Where h(xt,mj) is the measurement model and Qt the covariance of the 

measurement noise. 
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Acquisition of the information matrix 

The observation of a landmark m2 introduces another constraint:  
 

 

 

 

 

 

 

 

 

 

The information vector increases with the term: 
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Acquisition of the information matrix 

The movement of the robot from x1 to x2 also introduces an constraint:  
 

 

 

 

 

 

 

 

The constraint is now between the landmarks m1 and m2  

(and not between the path xt-1 to xt): 

 

 

 

Which can be simplified to  
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Acquisition of the information matrix 

The information matrix can become really sparse by applying a 

sparsification step:  
 

 

 

 

 

 

 

 

This is done by partition the set of features into three disjoint subsets: 

 

 

 

Where m- is the set of passive features and m+ ∩ m0 is the set of active 

features. The number of features that are allowed to remain active 

(set m+) is thresholded to guarantee efficiency. 
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Network of features 

 Approximate the sparse information matrix with the 

argument that not all features are strongly connected: 



Probabilistic Robotics Course at the Universiteit van Amsterdam 11 

Updating the current state estimate 

The current state estimate     is needed every timestep: 
 

 

 

 

 

 

Yet, from the current state estimate only subset is needed: 

 

 

i.e. the robot position xt  and the locations of the active landmarks m+. 

 

This can be done with an iterative hill climbing algorithm: 

 

 

Where Fi is a projection matrix to extract element i from matrix Ω. 
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Full Algorithm 

The algorithm combines the four steps; 

 two updates and two approximations:  
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The effect of sparsification 

The computation requires ‘constant’ time: 
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The effect of sparsification 

The memory scales linearly: 
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The effect of sparsification 

The prize is less accuracy, due to the approximation: 
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The degree of sparseness 

By choosing the number of active features,  

accuracy can be traded against efficiency : 
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Effect of approximation 

The effect of sparsification is less links between landmarks, 

 more confidence, but nearly same information matrix: 
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Full Algorithm 

To extend the algorithm for unknown correspondences,  

an estimate for the correspondence is needed:  
 

 

 

 

 

 

 

 

 

 

 

 

 

),ˆ,,|( argmaxˆ
1:1:11:1 ttttt

c
t ccuzzpc

t



tttttttt
c

t dycuzypcyzpc
t

  )ˆ,,|(),|( argmaxˆ
1:1:11:1

ttt

t

cttttcttctt
c

t dydxcuzyxpcyxzpc    )ˆ,,|,(),,|( argmaxˆ
1:1:11:1



Probabilistic Robotics Course at the Universiteit van Amsterdam 19 

Estimating the correspondence 

To probability                                                can be approximated by 

the Markov blanket of all landmarks connected to robot pose xt 

and landmark yct 
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Correspondence test 

Based on the probability that mj corresponds to mk:  
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Results 

MIT building (multiple loops): 
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Results 

MIT building (multiple loops): 
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Results 

MIT building (multiple loops): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UvA approach Q-WSM 
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Conclusion 

 The Sparse Extended Information Filter: 

 Solves the Online SLAM problem efficiently. 

 Where EKF spread the information of each measurement over the full 

map, SEIF limits the spread to ‘active features’. 

 All information in the stored in the canonical parameterization. Yet, an 

estimate of the mean    is still needed. This estimate is found with a 

hill climbing algorithm (and not a inversion of the information matrix). 

 The accuracy and efficiency can be balanced by selecting an 

appropriate number of ‘active features’. 
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