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Question 1
A company likes to use automatic driving vehicles to guarantee that the rental cars are at the place where it
will be the most probable that they will be hired.

Their business case starts with a rental point at Schiphol, combined with at the surrounding sub-
urbs Hoofddorp, Badhoevedorp, Amstelveen and Aalsmeer. Based on the number of inhabitants, the
company has made about the probability pk that a vehicle is used for a transition to Schiphol (resp.
pk = 0.76, 0.12, 0.89, 0.31), as illustrated in Fig. 1. This are the probabilities that an inhabitant of this
town reserves the vehicle for that a certain hour t in the morning under the condition that a vehicle is
available. For the afternoon the company expects other transition probabilities.

Figure 1: The probabilities of a transition to and from Schiphol from a number of surrounding towns (in the
morning).

(a) What is the chance that there is still a vehicle available after 6 hours in Badhoevedorp, assuming that
there was one available in this town initially? For the moment you may ignore the 1% chance that a
vehicle is driven back to Badhoevedorp.

Answer 46.4% = (0.88)6

Now assume that you decide to maintain your belief of the location of the vehicle in a 2D-grid. This is
a simple 3× 3 grid, with Schiphol in the center and the four towns at Manhattan locations west, north, east
and south of Schiphol. And while in question (a) you assumed the vehicle was initially in Badhoevedorp
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(prior pa), you can now indicate that the vehicle is initially in one of the four towns (prior pb), with an
uniform distribution of the chance over the four towns.

pa =

0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

 pb =

 0.0 0.25 0.0
0.25 0.0 0.25
0.0 0.25 0.0


(b) Calculate the chance that there is a vehicle at the central location Schiphol after a time-step of one

hour.

Answer: 52% <= 0.25 ∗ (0.89 + 0.76 + 0.31 + 0.12) = 2.08 ∗ 0.25 = 0.52

For the autonomous vehicle this transition table describes how the state x evolves from t to t-1 without
any control ut, because the customers are here modelled as a non-deterministic force of nature. Yet, the
autonomous vehicle can be given controls (at an high level) ut, for instance by giving it the command
to drive autonomously back from Schiphol to Amstelveen (which should increase the chance on another
customer with a successful reservation). If such a command is given in the second hour (so the prior
distribution is the situation after question b), the probability p(1,2) of a vehicle at the eastern grid-position
(1, 2) (equivalent with topical location Amstelveen) consist of three terms:

1. A customer that has reserved a vehicle and drives it to Schiphol

2. A customer who returns with a morning flight and drives a vehicle back to Amstelveen

3. A self-driving vehicle which executes the command ut and drives autonomously back to Amstelveen

It is now your task to come up with a probabilistic formulation of the motion model.

(c) Formulate an equation for the posterior probability for a vehicle which takes those three terms into
account. Take into account that the probability of a success for a command is not 100%, there is a
probability pf that the vehicle is not able to reach the destination Amstelveen.

Answer:
If xAt indicates that the vehicle is at Amstelveen at time t, and xSt−1 indicates that the vehicle
was at Schiphol at time t− 1, then

xAt = (1−P (xSt |xAt−1))P (xAt−1)+P (xAt |xSt−1)P (xSt−1)+P (xAt |xSt−1 , ut)(1−pf )P (xSt−1)

Now, assume that the companies vehicle has a crude compass on board, which gives an indication of
the quadrant the vehicle can be found. This measurements can be matched with the following map:

m =

′NW ′ ′N ′ ′NE′
′W ′ ′C ′ ′E′
′SW ′ ′S′ ′SE′

 p(z = ′E′|m,x) =

0.0 0.0 0.333
0.0 0.0 0.333
0.0 0.0 0.333


(d) Do you now have enough information to implement line 4 of Table 8.1? If the measurement model

returns the value q, indicated how this q is calculated.

Answer:
The grid localization algorithm of Table 8.1 already loops over all grid cells and takes the normaliza-
tion η in account. The measurement model only has to multiply the p(z = ′E′|m,x) with the proba-
bility p(x), as already indicated line 4 of the book correction on the 2nd edition1. So p(z = ′E′|m,x)
contains all information to return q:

q = p(z = ′E′|x = mean(xk),m)

(e) On line 4 of Table 8.1 you see the symbol η. What does this symbol mean? What does that mean for
your implementation?

Answer:
η indicates the normalizer constant, already introduced in Table 2.1, which ensures that the belief
is a probability, i.e. guarantees that the sum of all beliefs for each grid cell is 1.0 (

∑
k pk,t = 1).

1href=http://probabilistic-robotics.informatik.uni-freiburg.de/corrections1/pg238.pdf
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Question 2
Suppose that a robot is equipped with a sensor measuring range and bearing to a landmark, including the
landmarks identity (the identity sensor is noise free). We want to perform global localization with EKFs.
When seeing a single landmark, the posterior is usually poorly approximated by a Gaussian.

(a) Explain the shape what shape of posterior you could expect from a single range and bearing measure-
ment. Sketch your shape.

Answer:
There is both uncertainty in the range and the bearing. The uncertainty in the range is a band, the
uncertainty in the bearing is an arc, together you expect a banana shaped distribution:

Figure 2: The true uncertainty distribution: a banana shape.

Now imagine the situation that you have two measurements from two locations l1 and l2 at two timesteps;
both observations of the same landmark with a known identity. Yet, now you have only range measurements
r1 and r2, no estimate of the bearing to this landmark. You can model this with two circles with radii r1
and r2 and centers l1 and l2, which intersect at two locations. The location of those intersection are known.
If d = ||l2 − l1|| is the distance between the locations, then is a = r21−r

2
2+d2

2d the distance between the
two intersections. So for each observation there are two possible bearings. The uncertainty on this bearing
estimate is approximated with a Gaussian, with 10 times as high uncertainty in the bearing (νt = 10× νr)
than the uncertainty in the range νr, by defining the covariance matrix C with the formula:

C = Φ
[
νr 0
0 10× νr

]
ΦT with Φ =

[
cos θ − sin θ
sin θ cos θ

]
with θ the possible bearing of the observation (see Fig. 3 left). The two overlapping Gaussians at the

intersection are multiplied, which results in another Gaussian (see Fig. 3 right).

Figure 3: Gaussian approximation of the uncertainty of a range measurement with bearing θ, which can be
combined for two measurements (Courtesy [3] and [4]).
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(b) Is the resulting Gaussian as approximation of the combination of the two observations a good ap-
proximation? Make a more detailed sketch (more detailed compared to Fig. 3 right) the two original
distributions and the resulting distribution.

Answer:

Figure 4: Two orthogonal banana shape distributions combine to diamond shape with slightly curved edges.

When two elongated, slightly curved distributions are combined, the result is concentrated peak at the
crossing, which can be quite well approximated with the elliptical (nearly round) shape of a Gaussian
distribution.

Combining two observations to two hypothesis is a good approach, although in practice one receives
multiple observations when driving along a landmark. One could spawn for each observation a full circle of
hypotheses of the bearing, and rely on later observations to separate the more probable observations from
the less probable observations (See Fig. 5).

Figure 5: Combination of multiple observations at multiple timesteps t1 · · · t4 (Courtesy [1]).

To separate the more probable observations from the less probable observations one need to weight
the probability of each hypothesis. This can be done iteratively by updating each of weights wkt of each
hypothesis k with the formula:

wkt ∝ wkt−1N (zt;hkt , σ
k2

t )

where the mean hkt = h(x[i]
t , m̂

k
t ) is computed using the sensor model h(·), based on hypothesis i of

the robot location x[i]
t and the hypothesis on the landmark position m̂k

t .
The variance σk

2

t includes the sensor noise σs and the projection of the beacon uncertainty:

σk
2

t = HΣktH
T + σ2

s

(c) What is actually the mathematical definition of h(·) (equivalent with Eq. 7.12 from the book) for
the range-only observation zlt = (rlt, s

l
t)
T of landmark with signature slt equal to the identy of the

landmark clt?
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Answer:

h(·) = zlt =
[
rlt
slt

]
=

[√
(m̂k

x − x[i])2 + (m̂k
y − y[i])2

m̂k
s

]
+N (0, Qt)

With k the identity l of the signature m̂k
s = clt of the landmark.

(d) Also give the corresponding Jacobian H l
t of h(·).

Answer:

H l
t =

∂h(x[i]
t , l, m̂t)

∂x
[i]
t

=

 ∂rlt
∂x[i]

∂rlt
∂y[i]

∂rlt
∂θ[i]

∂slt
∂x[i]

∂slt
∂y[i]

∂slt
∂θ[i]

 =

[
− (m̂kx−x

[i])√
q − (m̂ky−y

[i])
√
q 0

0 0 0

]

With q = (m̂k
x − x[i])2 + (m̂k

y − y[i])2

(e) Explain for t4 in Fig. 5 why only a single Gaussian is left.

Answer:
Although Fig. 5 is quite small, it can be seen that the path for timestep t2 and t3 is still straight
to the right. With range-only observations both symmatrical nodes in t3 are equivalent probable (be-
cause they are always as far from the straight path). At t4 the robot takes a sharp turn to the left which
results that two remaining hypotheses k result in different prediction of the range hk4 and correspond-
ing probabilityN (z4;hk4 , σ

k2

t ) of the measured range z4 for both ks, which results in different values
for wk4 (one big and one small).

Question 3
For this question you have to rely on a distance-only sensor. You try to locate your friend using her cell-
phone signals. Your friend is either at home or at Science Park. Suppose that on the map of Amsterdam,
the Science Park is located at m0 = (10, 8)T , and your friend’s home is situated at m1 = (6, 3)T . You
have access to the data received by two cell towers. You have access to the data received by two cell towers,
which are located at the positions x0 = (12, 4)T and x1 = (5, 7)T , respectively. The distance between
your friend’s phone and the towers can be computed from the intensities of your friend’s cell phone signals.
The distance measurements are distributed by white Gaussian noise with variances σ2

0 = 1 for tower 0 and
σ2

1 = 1.5 for tower 1. You receive the distance measurements d0 = 3.9 and d1 = 4.5 from the two towers.

(a) Make a drawing of the situation.

Answer:
As can be seen, m0 is located in both variance bands, while m1 is outside the band from tower
x0.

(b) At which of the two places is your friend more likely to be? Explain your calculations.

Answer:
When your friend is at m0 (i.e at university), you would expect the distance
δ0,0 =

√
(m0,x − x0,x)2 + (m0,y − x0,y)2 =

√
(10− 12)2 + (8− 4)2 = 4.47 to tower x0 and

δ0,1 =
√

(m0,x − x1,x)2 + (m0,y − x1,y)2 =
√

(10− 5)2 + (8− 7)2 = 5.09 to tower x1. When
your friend is atm1, you would expect expect the distance δ1,0 =

√
(m1,x − x0,x)2 + (m1,y − x0,y)2 =√

(6− 12)2 + (3− 4)2 = 6.08 to tower x0 and δ1,1 =
√

(m1,x − x1,x)2 + (m1,y − x1,y)2 =√
(6− 5)2 + (3− 7)2 = 4.12 to tower x1. These distances δ0,0 = 4.47 and δ1,0 = 6.08 should

be compared with d0 = 3.9 and the distances δ0,1 = 5.09 and δ1,1 = 4.12 should be compared with
d1 = 4.5. The measurements are modelled with a Gaussian and the measurements are not correlated
(so can be multiplied).
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Figure 6: The two possible locations m0 and m1 and the two landmarks x0 and x1, including the band of
the distance d0 and d1 measured (with of band equavalent with σ1 and σ2).

So if z is the combined observation (d0, d1)T . Then p(z|at university) ≈ N (δ0,0 − d0, σ
2
0) ·

N (δ0,1 − d1, σ
2
1) and p(z|at home) ≈ N (δ1,0 − d0, σ

2
0) · N (δ1,1 − d1, σ

2
1). One should compare

p(at university) ≈ ε−
1

2σ0
(δ0,0−d0)2 ·ε−

1
2σ1

(δ0,1−d1)2 ≈ ε−(0.57)2/2·ε−(0.59)2/3 versus p(at home) ≈
ε−

1
2σ0

(δ1,0−d0)2 · ε−
1

2σ1
(δ1,1−d1)2 ≈ ε−(2.18)2/2 · ε−(0.38)2/3. The smallest term isN (δ1,0−d0, σ

2
0) ≈

ε−(2.18)2/2 = 0.09, all other terms are a factor 10 larger. So p(z|at university) > p(z|at home).

(c) Now, suppose you have prior knowledge about your friend’s habits which suggest that your friend is
currently is at home with probability P (at home) = 0.7, at the university with P (at university) =
0.3 and at any other place with P (other) = 0. Use this prior knowledge to recalculate the posterior
of b).

Answer:
So with the prior P (at home), the posterior is P (at home|z) ' P (z|at home)P (at home). With
P (z|at home) ' 0.093·0.953, P (at home|z) ' 0.093·0.953·0.7 = 0.062, while P (at home|z) '
0.845 · 0.890 · 0.3 = 0.226, so your friend is still at the university (m0). That is not strange, because
the prior makes it a factor 2 more probable, while the term N (δ1,0 − d0, σ

2
0) was a factor 10 smaller

than the other terms.
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Question 4
Consider a robot that resides in a circular world consisting of ten different locations that are numbered
counterclockwise. The robot is unable to sense the number of its present location directly. However, places
0, 3, and 6 contain a distinct landmark, whereas all other places do not. All three of these landmarks look
alike. The likelihood that the robot observes the landmark given it is in one of these places is 0.8. For
all other places, the likelihood of observing the landmark is 0.4. For each place on the circle compute
the probability that the robot is in that place given that the following sequence of actions is carried out
deterministically and the following sequence of observations is obtained:

• the robot detects a landmark,

• moves 4 grid cells counterclockwise and detects a landmark,

• moves 4 grid cells counterclockwise and finally perceives no landmark.

Answer:
Lets first draw a sketch of the situation.

Figure 7: A circular world with three distinct landmarks.

Yet, it is easier to keep track of the beliefs in an array, as long as we remember that is a circular array.
In the situation above are three measurement updates and two control updates (see Table 2.1). In
principle normalization is possible after each timestep, but in this case normalization is only applied
after the last observation.

location 0 1 2 3 4 5 6 7 8 9
landmark 1 0 0 1 0 0 1 0 0 0

prior b̄el(x0) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
p(z0|x0) 0.8 0.4 0.4 0.8 0.4 0.4 0.8 0.4 0.4 0.4

bel(x0) = ηp(z0|x0)b̄el(x0) 0.08 0.04 0.04 0.08 0.04 0.04 0.08 0.04 0.04 0.04
b̄el(x1) =

∫
p(x1|u1, x0)bel(x0) 0.08 0.04 0.04 0.04 0.08 0.04 0.04 0.08 0.04 0.04
p(z1|x1) 0.8 0.4 0.4 0.8 0.4 0.4 0.8 0.4 0.4 0.4

bel(x1) = ηp(z1|x1)b̄el(x1) 0.064 0.016 0.016 0.032 0.032 0.016 0.032 0.032 0.016 0.016
b̄el(x2) =

∫
p(x2|u2, x1)bel(x1) 0.032 0.032 0.016 0.016 0.064 0.016 0.016 0.032 0.032 0.016
p(z2|x2) 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.6

bel(x2) = ηp(z2|x2)b̄el(x2) 0.0064 0.0192 0.0096 0.0032 0.0384 0.0096 0.0032 0.0192 0.0192 0.0096

The sum of all p(z2|x2)b̄el(x2) is 0.1376, so the normalizer η = 1/0.1376 = 7.27. So, the probabil-
ity, in percentage will be

location 0 1 2 3 4 5 6 7 8 9
4.7% 14.0% 7.0% 2.3% 27.9% 7.0% 2.3% 14.0% 14.0% 7.0%
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Question 5
Compare the sparseness in GraphSLAM with the sparseness in SEIFs: what are the advantages and disad-
vantages of each? Provide conditions under which either would be clearly preferable. The more concise
your reasoning the better.

Answer:

Both GraphSLAM and SEIF create information matrices Ω to store the correlatons between the land-
marks and the robot path. The information matrix contain many elements where no or nearly no information
is available, which makes it a sparse matrix. Yet, GraphSLAM and SEIF make different use of the sparse-
ness. GraphSLAM uses an factorization trick to aggregate a number of soft constraints related to features
in a smaller set of stronger constraints on the robot path. SEIF does precisely the opposite, and aggregates
all information on the robot path in the latest robot location and constraints between landmarks. To keep
this computational feasable, the update is not performed for all features but a limited set of active features.

The obvious criterion to select GraphSLAM or SEIF is if one needs an full SLAM or online SLAM. Both
algorithm are based on information matrices, which mean that they are a good choice when information has
to be combined (local submaps and multi-robot applications). SEIF has the benefit to add new information
locally, which is a benefit if there are many possible correlations (a forest). GraphSLAM integrates the
information in the path, so benefits if the map can be reduced to a skeleton (streets, corridors).

Question 6
Imagine you are modelling the location of a robot with linear Kalman filters. Due to a circuit error, some-
times the measurement variance is a few orders of magnitude larger than expected. This happens with a
small failure rate pf .

(a) Explain what happens to your estimates.

Answer:
Your estimates will erratically move/bounce over the field, because the gaussian measurements are
taken too precise. Gaussian estimates are very sensitive to outliers.

(b) Improve the filter, such that it fixes the above mentioned problem.

Answer:
Use validation gate. Reject all measurements for which the innovation factor exceeds a threshold.

(c) Consider that pf goes to 1, suggest an alternative improvement to the filter.

Answer:
Increase variance of measurement model (i.e. Q) to reflect the few order larger variance. The Kalman
filter automatically will rely more on the motion model.

Success!
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