Probabilistic Robotics (BaIPrg, Autumn 2008) Examination: Basics \& Markov localization

Assigned: Week 43, Due: Week 46 (Monday November 10th, 15:00)

Arnoud Visser

October 21, 2008

The solutions have to be mailed individually to Arnoud Visser A.Visser@uva.nl.

Question 1

Assume the following 1-D lineair dynamic system, with a simple motion model:

$$
\begin{equation*}
x_{t}=x_{t-1}+u_{t}+\epsilon_{t} \tag{1}
\end{equation*}
$$

and a simple measurement model:

$$
\begin{equation*}
y_{t}=x_{t}+\delta_{t} \tag{2}
\end{equation*}
$$

The terms ϵ_{t} and δ_{t} represent respectively the control and measurement error, a random number from a Gaussian distribution $\mathcal{N}\left(x ; 0, Q_{t}\right)$ and $\mathcal{N}\left(y ; 0, R_{t}\right)$. For the moment you can assume that the variance $Q_{t}=0$ and $R_{t}=1$, which means that you have perfect control over the dynamic system (ϵ_{t} can be ignored). For all timesteps, the same input is given ($u_{t}=0.5$). The initial estimate is represented with a Gaussian distribution $\mathcal{N}\left(x ; \mu_{0}, \Sigma_{0}\right)$ with $\mu_{0}=5$ and $\Sigma_{0}=10$.
You receive the following measurements ($y_{1}=0.0, y_{2}=2.1, y_{3}=5.6$).
(a) Use the measurements $\left(y_{1}, y_{2}, y_{3}\right)$ to estimate $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$. For this lineair system you can use a traditional Kalman Filter, as described in section 3.2 of the book. This will be a two step approach, a prediction and an update step. The result of the prediction step will be a Gaussian distribution $\mathcal{N}\left(x ; \bar{\mu}_{0}, \bar{\Sigma}_{t}\right)$. In the update step you can shift and narrow this distribution to $\mathcal{N}\left(x ; \mu_{t}, \Sigma_{t}\right)$ making use of the measurements and the following precalculated Kalman gain $\left(K_{1}=\frac{10}{11}, K_{2}=\frac{10}{21}, K_{3}=\frac{10}{31}, K_{4}=\frac{10}{41}, K_{5}=\frac{10}{51}\right)$.
(b) Explain why the Kalman Gain decreases for every time step.
(c) Lets drop the assumption of perfect control, and reintroduce the control noise ϵ_{t} modelled with a Gaussian distribution $\mathcal{N}(x ; 0,1)$. Recalculate $\left(K_{1}, K_{2}, K_{3}, K_{4}, K_{5}\right)$ for the given variance $Q_{t}=1$. Explain the observed pattern in the time series of the Kalman Gain K_{t}.
(d) Make a new estimate of $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ based on the recalculated Kalman Gain K_{t}.

Question 2

Consider a wheeled robot which moves over a flat surface. Each wheel has an y-axis. When a rolling motion occurs, all y-axis overlap at a point; the instantaneous Center of Curvature. Consider the case that the Instantaneous Center of Curvature is outside the robot, and the robot moves from point $(0,0)$ to (x, y) (see figure 1).

Figure 1: Turning to point (x, y)
A natural way to represent the movement as an circular movement with a radius R an the sector angle $\phi .(x, y)$ is a point on the circle, which means

$$
\left\{\begin{array} { l }
{ x = R \operatorname { s i n } \phi } \\
{ y = R (1 - \operatorname { c o s } \phi) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
R=\frac{x^{2}+y^{2}}{2 y} \\
\phi=\operatorname{atan}\left(\frac{2 x y}{x^{2}-y^{2}}\right)
\end{array}\right.\right.
$$

This representation has disadvantage that for small y (straight ahead!), a small change in (x, y) may cause a big change in parameter R. You can verify this with by computing the Jacobian; you should get:

$$
\binom{d R}{d \phi}=\left(\begin{array}{cc}
\frac{x}{y} & \frac{y^{2}-x^{2}}{2 y^{2}} \\
\frac{-2 y}{x^{2}+y^{2}} & \frac{2 x}{x^{2}+y^{2}}
\end{array}\right)\binom{d x}{d y}
$$

For this reason it is much better to characterize the path by the curvature $\kappa \equiv 1 / R$, which changes smoothly around the forward direction.

Now, compute the Jacobian for the (κ, ϕ) representation and show that it changes more smoothly.

Question 3

Solve exercise 6.10.1 from the Probabilistic Robotics book.

