Probabilistic Robotics
 BAIPR6, Fall 2009
 Exercise: Motion and Sensor Model
 Assigned: Week 40, Due: Week 41
 Friday October 9th, 17:00

Arnoud Visser

September 30, 2009

Question 1

We have a robot equipped with wheel encoders and on-board software that combines the measurements from the multiple encoders in a tuple of time-discrete odometry measurements $\left(\delta_{\text {rot1 }} \delta_{\text {trans }} \delta_{\text {rot2 }}\right)^{T}$.
(a) Let the robot start at pose $(x y \theta)^{T}=\left(0 m, 0 m, 0^{o}\right)^{T}$ and obtain the following subsequent odometry measurements: $\left(\delta_{\text {rot } 1}^{1} \delta_{\text {trans }}^{1} \delta_{\text {rot } 2}^{1}\right)^{T}=\left(10^{\circ}, 3 m, 10^{0}\right)^{T}$ and $\left(\delta_{\text {rot } 1}^{2} \delta_{\text {trans }}^{2} \delta_{\text {rot } 2}^{2}\right)^{T}=\left(-20^{\circ}, 10 \mathrm{~m},-10^{0}\right)^{T}$.
Please assume perfect measurements and calculate the exact poses $\left(x^{1} y^{1} \theta^{1}\right)^{T}$ and $\left(x^{2} y^{2} \theta^{2}\right)^{T}$ with equation (5.40) from the book.
(b) How would your pose estimate look for first movement $\left(\delta_{\text {rot } 1}^{1} \delta_{\text {trans }}^{1} \delta_{\text {rot } 2}^{1}\right)^{T}=\left(10^{o}, 3 m, 10^{0}\right)^{T}$ under the following simple uniform error model? Please draw the extremes of the pose estimates into into a a diagram.

$$
\begin{aligned}
\hat{\delta}_{\text {rot } 1} & =\delta_{\text {rot } 1} \pm \epsilon_{\text {rot1 }} \\
\hat{\delta}_{\text {trans }} & =\delta_{\text {trans }} \pm \epsilon_{\text {trans }} \\
\hat{\delta}_{\text {rot2 }} & =\delta_{\text {rot2 } 2} \pm \epsilon_{\text {rot2 }}
\end{aligned}
$$

with $\left(\epsilon_{\text {rot } 1} \epsilon_{\text {trans }} \epsilon_{\text {rot } 2}\right)^{T}=\left(5^{o}, 0.5 m, 10^{0}\right)^{T}$.
(c) Apply the same error model again on the n extreme poses of the previous question. This would result in $n \times n$ poses. Please draw the $\frac{n \times n}{2}$ positions of the extremes of this motion estimate (i.e. without final orientation) after the second movement.

Figure 1: Accurate map of a corridor with three rooms

Question 2

A robot is moving along the middle of a corridor with a given accurate map, as depicted in figure 1.
At some of the given locations x_{i} the robot takes a measurement of the distance z_{k}, using a laser beam. Every measurement is corrupted only with additive Gaussian noise $\mathcal{N}(\mu, \sigma)$ with $\mu=0 m$ and $\sigma=1 m$. The scanner range is 80 m . The measured distances are $z_{1}=1.0 \mathrm{~m}, z_{2}=2.0 \mathrm{~m}, z_{3}=5.4 \mathrm{~m}, z_{4}=8.6 \mathrm{~m}, z_{5}=9.4 \mathrm{~m}$. The correspondence between z_{k} and x_{i} is unknown.
(a) For each measurement, determine the most likely robot pose by calculating the probabilities for each position given the measurement using Bayes' rule. Assume an uniform distributed prior. The evidence term (denominator) can be neglected, but the probabilities should be scaled such that $\sum_{i=1}^{4} P\left(x_{i} \mid z\right)=1$.
(b) The robot believes that taking measurements at the positions x_{2} an $\mathrm{d} x_{3}$ is in general three times as likely as doing so at x_{1} and x_{4}. Use this prior information to recalculate the probabilities of (a).
(c) Because people are present in the corridor, a faulty measurement of $z=1 \mathrm{~m}$ can occur in 50% of the cases, no matter the actual distance. How does this change the results of (a) and (b).

Hand-In

When you have completed the assignment, you will mail one file: yourname_answer_MotionSensorModel. pdf.

Acknowledgements

This assignment is equivalent with an assignment from the Albert-Ludwigs-Universität Freiburg, and is originally written by Wolfram Burgard, Jürgen Sturm and Boris Lau. The second question was used in the previous course in one of the exams.

