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 SLAM stands for simultaneous localization and 
mapping 
 The task of building a map while estimating  

the pose of the robot relative to this map 
 
 Why is SLAM hard? 

Chicken-or-egg problem:  
 a map is needed to localize the robot and  

a pose estimate is needed to build a map 

The SLAM Problem 



 Given: 
 The robot’s 

controls 
 Observations of 

nearby features 

 Estimate: 
 Map of features 
 Path of the robot 

The SLAM Problem 
A robot moving though an unknown, static environment 



 Typical models are: 
 Feature maps 
 Grid maps (occupancy or reflection 

                 probability maps) 

  

Map Representations 



Why is SLAM a hard problem? 

SLAM: robot path and map are both unknown  

Robot path error correlates errors in the map 



Why is SLAM a hard problem? 

 In the real world, the mapping between 
observations and landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences 

 Pose error correlates data associations 

Robot pose 
uncertainty 
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 Represent belief by random samples 
 Estimation of non-Gaussian, nonlinear processes 

 
 Sampling Importance Resampling (SIR) principle 
 Draw the new generation of particles 
 Assign an importance weight to each particle 
 Resampling  

 
 Typical application scenarios are tracking,  

localization, … 

Particle Filters 















 A particle filter can be used to solve both problems 
 Localization: state space < x, y, θ> 
 SLAM: state space < x, y, θ, map>  
 for landmark maps = < l1, l2, …, lm> 
 for grid maps = < c11, c12, …, c1n, c21, …, cnm> 

 
 Problem: The number of particles needed to 

represent a posterior grows exponentially with  
the dimension of the state space! 
 

Localization vs. SLAM 



 Is there a dependency between the dimensions of 
the state space? 
 If so, can we use the dependency to solve the 

problem more efficiently? 
 

 

Dependencies  



 Is there a dependency between the dimensions of 
the state space? 
 If so, can we use the dependency to solve the 

problem more efficiently? 
 
 In the SLAM context 
 The map depends on the poses of the robot. 
 We know how to build a map given the position 

of the sensor is known. 
 
 

Dependencies 





Factorization first introduced by Kevin Murphy at NIPS’99 













Knowledge of the robot’s true path renders 
landmark positions conditionally independent 

Mapping using Landmarks 

. . . 

Landmark 1 

observations 

Robot poses 

controls 

x1 x2 xt 

u1  ut-1 

l2 

l1 

z1 

z2 

x3 

u
1 

z3 

zt 

Landmark 2 

x0 

u0  







Factored Posterior 

Robot path posterior 
(localization problem) Conditionally 

independent  
landmark positions 



Rao-Blackwellization for SLAM 

 Given that the second term can be computed 
efficiently, particle filtering becomes possible! 



FastSLAM 
 Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002] 
 Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 
 Each particle therefore has to maintain M EKFs 

Landmark 1 Landmark 2 Landmark M … x, y, θ 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#1 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#2 

Particle 
N 

…
 



FastSLAM – Action Update 

Particle #1 

Particle #2 

Particle #3 

Landmark #1 
Filter 

Landmark #2 
Filter 



FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Landmark #1 
Filter 

Landmark #2 
Filter 



FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Weight = 0.8 

Weight = 0.4 

Weight = 0.1 



FastSLAM  -  Video 

Michael Montemerlo et al. "Fastslam: A factored solution to the 
simultaneous localization and mapping problem." In Proceedings of the 

AAAI National Conference on Artificial Intelligence. 2002. 



FastSLAM  Complexity 

 Update robot particles 
based on control ut-1 

 Incorporate observation zt 
into Kalman filters 

 Resample particle set 

N = Number of particles 
M = Number of map features 



FastSLAM  Complexity - Naive  

 Update robot particles 
based on control ut-1 

 Incorporate observation zt 
into Kalman filters 

 Resample particle set 

N = Number of particles 
M = Number of map features 

O(N) 
Constant time per particle 

O(N) 

O(N•M) 

O(N•M) 



FastSLAM  Complexity – binary tree 

 Update robot particles 
based on control ut-1 

 Incorporate observation zt 
into Kalman filters 

 Resample particle set 

N = Number of particles 
M = Number of map features 

O(N) 
Constant time per particle 

O(N•log(M)) 
Log time per particle 

O(N) 

O(N•log(M)) 
Log time per particle 

Constant time per particle 



Log(M) Algorithm 

µ8,Σ8 µ7,Σ7 

k ≤ 7 ? 

F T 

µ6,Σ6 µ5,Σ5 

k ≤ 5 ? 

F T 

µ4,Σ4 µ3,Σ3 

k ≤ 3 ? 

F T 

µ2,Σ2 µ1,Σ1 

k ≤ 1 ? 

F T 

k ≤ 6 ? 

F T 

k ≤ 2 ? 

F T 

k ≤ 4 ? 
F T 

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 

Represent particle as tree of Kalman Filters 

Courtesy Michael Montemerlo. 



Log(M) Algorithm 

µ8,Σ8 µ7,Σ7 

k ≤ 3 ? 

F T 

µ6,Σ6 µ5,Σ5 

k ≤ 1 ? 

F T 

µ4,Σ4 µ3,Σ3 

k ≤ 3 ? 

F T 

µ2,Σ2 µ1,Σ1 

k ≤ 1 ? 

F T 

k ≤ 6 ? 

F T 

k ≤ 2 ? 

F T 

k ≤ 4 ? 
F T 

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] µ8,Σ8 µ7,Σ7 

k ≤ 3 ? 

F T 

µ6,Σ6 µ5,Σ5 

k ≤ 1 ? 

F T 

µ4,Σ4 µ3,Σ3 

k ≤ 3 ? 

F T 

µ2,Σ2 µ1,Σ1 

k ≤ 1 ? 

F T 

k ≤ 6 ? 

F T 

k ≤ 2 ? 

F T 

k ≤ 4 ? 
F T 

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 

µ3,Σ3 

k ≤ 3 ? 

F T 

k ≤ 2 ? 
F T 

k ≤ 4 ? 

F 
T 

[m] [m] 

new particle 

old particle 

Only update 
branches that 
change during 

resampling 
phase 



The importance of scaling 

O(N2) 

O(logN) 



Data Association Problem 

 A robust SLAM must consider possible data 
associations  

 Potential data associations depend also  
on the pose of the robot  
 
 

 Which observation belongs to which landmark? 



Multi-Hypothesis Data Association 

 Data association is 
done on a per-particle 
basis 
 

 Robot pose error is 
factored out of data 
association decisions 



Per-Particle Data Association 

Was the observation 
generated by the red 
or the blue landmark? 

P(observation|red) = 0.3 P(observation|blue) = 0.7 

 Two options for per-particle data association 
 Pick the most probable match 
 Pick an random association weighted by  

the observation likelihoods 
 If the probability is too low, generate a new 

landmark 

 



Results – Victoria Park 

 4 km traverse 
 < 5 m RMS 

position error 
 100 particles 

Dataset courtesy of University of Sydney 

Blue = GPS 
Yellow = FastSLAM 



Results – Data Association 





FastSLAM with Grid Maps 

 Idea: Replace EKF Landmark map 
with occupancy grid map 
 Q: Is this valid? 



Mapping Abandoned Coal Mines 



Mapping Abandoned Coal Mines 



Particles in Mine Mapping 





The Importance of Particle 
raw data without particles with particles 



FastSLAM with Grid Maps 

map of particle 1 map of particle 2 

map of particle 3 

3 particles 



Quality of 2D Maps 

112 m 



Outdoor Campus Map 
 30 particles 
 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 

 30 particles 
 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 



FastSLAM Summary 

 FastSLAM factors the SLAM posterior into 
low-dimensional estimation problems 
 Scales to problems with over 1 million features 

 FastSLAM factors robot pose uncertainty 
out of the data association problem 
 Robust to significant ambiguity in data 

association 
 Allows data association decisions to be delayed 

until unambiguous evidence is collected 
 Advantages compared to the classical EKF 

approach 
 Update Complexity of O(N logM) 
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