Probabilistic Robotics
Graph SLAM

MSc course Artificial Intelligence 2018
https://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

Arnoud Visser
Intelligent Robotics Lab
Informatics Institute
Universiteit van Amsterdam
A.Visser@uva.nl

Images courtesy of Sebastian Thrun, Wolfram Burghard, Dieter Fox, Michael Montemerlo, Dick Hähnel, Pieter Abbeel and others.
Simultaneous Localization and Mapping

A robot acquires a map while localizing itself relative to this map.

Online SLAM problem

\[p(x_t, m \mid z_{1:t}, u_{1:t}) \]

Estimate map \(m \) and current position \(x_t \)

Full SLAM problem

\[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]

Estimate map \(m \) and driven path \(x_{1:t} \)
Graph SLAM

GraphSLAM extends the state vector y with the path $x_{0:t}$

$$y_{0:t} = \left(x_0 x_1 \cdots x_t m_{1, x} m_{1, y} s_1 \cdots m_{N, x} m_{N, y} s_N \right)^T$$

Example: Groundhog in abandoned mine:
every 5 meters a local map
State estimate

GraphSLAM requires inference to estimate the state

\[\tilde{\mu}_{0:t} = \tilde{\Omega}^{-1} \tilde{\xi} \]

The state is estimated from the information matrix \(\Omega \) and vector \(\xi \), the canonical representation of the covariance and mean.

Benefits:
- Uncertainty is easy represented (\(\Omega = 0 \))
- Information can be integrated by addition, without direct inference

The state estimated \(\mu_t \) requires inversion of the information matrix \(\Omega \), which is done off-line.
Acquisition of the *information matrix*

The observation of a landmark m_1 introduces an constraint:

$$ (z_t^i - h(x_t, m_j))^T Q_t^{-1} (z_t^i - h(x_t, m_j)) $$

Where $h(x_t, m_j)$ is the measurement model and Q_t the covariance of the measurement noise.
Acquisition of the *information matrix*

The movement of the robot from x_1 to x_2 also introduces an constraint:

\[
(x_t - g(u_t, x_{t-1}))^T R_t^{-1} (x_t - g(u_t, x_{t-1}))
\]

Where $g(u_t, x_{j-1})$ is the motion model and R_t the covariance of the motion noise.
Acquisition of the *information matrix*

After several steps, a dependence graph appears with several constraints:

The resulting *information matrix* is quite sparse.

The sum of all constraints in the graph has the form:

\[
J_{\text{GraphSLAM}} = x_0^T \Omega_0 x_0 + \sum_t (x_t - g(u_t, x_{t-1}))^T R_t^{-1} (x_t - g(u_t, x_{t-1})) + \sum_t \sum_i (z_t^i - h(y_t, c_t^i, i))^T Q_t^{-1} (z_t^i - h(y_t, c_t^i, i))
\]
Simplifying acquisition

By a Taylor expansion of the motion and measurement model, the equations can be approximated:

\[\Omega \leftarrow \Omega + \left(\begin{array}{c} 1 \\ -G_t \end{array} \right) R_t^{-1} (1 - G_t) \]

\[\xi \leftarrow \xi + \left(\begin{array}{c} 1 \\ -G_t \end{array} \right) R_t^{-1} [g(u_t, \mu_{t-1}) + G_t \mu_{t-1}] \]

\[\Omega \leftarrow \Omega + H_t^{iT} Q_t^{-1} H_t^i \]

\[\xi \leftarrow \xi + H_t^{iT} Q_t^{-1} [z_t^i - h(\mu_t, c_t^i, i) - H_t^i \mu_t] \]
Reducing the dependence graph

Removal of the observation of a landmark m_1 changes the constraint between x_1 to x_2:

The constraint is changed by the following subtraction:

$$\tilde{\Omega} = \Omega_{x_0:t, x_0:t} - \sum_j \Omega_{x_0:t, j} \Omega_{j, j}^{-1} \sum_j \Omega_{j, x_0:t}$$

This is a form of variable elimination algorithm for matrix inversion.
Reducing the dependence graph

Removal of the observation of a landmark m_2 introduces a new constraint between x_2 to x_4:
Reducing the dependence graph

The final result:

The resulting *information matrix* is much smaller.
This reduction can be done in time linear in size N
Updating the full state estimate from the path

There is now an estimate of the path robot

\[\tilde{\mu}_{0:t} = \tilde{\Omega}_{0:t}^{-1} \tilde{\xi} \]

This requires to solve a system of linear equations, which is not linear in size \(t \) due to cycles (loop closures!). When found, the map can be recovered. For each landmark \(m_j \):

\[\mu_j = \Omega_{j,j}^{-1} (\xi_j + \Omega_{j,0:t} \tilde{\mu}_{0:t}) \]

In addition, an estimate of the covariance \(\Sigma_{0:t} \) over the robot path is known (but not over the full state \(y \))
Full Algorithm

The previous steps should be iterated to get a reliable state estimate μ:

```
1: Algorithm GraphSLAM_known_correspondence($u_{1:t}$, $z_{1:t}$, $c_{1:t}$):
2:    $\mu_{0:t} = \text{GraphSLAM\_initialize}(u_{1:t})$
3:    repeat
4:       $\Omega, \xi = \text{GraphSLAM\_linearize}(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t})$
5:       $\tilde{\Omega}, \tilde{\xi} = \text{GraphSLAM\_reduce}(\Omega, \xi)$
6:       $\mu, \Sigma_{0:t} = \text{GraphSLAM\_solve}(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi)$
7:    until convergence
8:    return $\mu$
```
Full Algorithm

The algorithm can be extended for unknown correspondences:

Algorithm GraphSLAM\((u_{1:t}, z_{1:t})\):

1. initialize all \(c_i^j \) with a unique value
2. \(\mu_{0:t} = \text{GraphSLAM}_{\text{initialize}}(u_{1:t}) \)
3. \(\Omega, \xi = \text{GraphSLAM}_{\text{linearize}}(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t}) \)
4. \(\tilde{\Omega}, \tilde{\xi} = \text{GraphSLAM}_{\text{reduce}}(\Omega, \xi) \)
5. \(\mu, \Sigma_{0:t} = \text{GraphSLAM}_{\text{solve}}(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi) \)
6. repeat
7. for each pair of non-corresponding features \(m_j, m_k \) do
8. \(\pi_{j=k} = \text{GraphSLAM}_{\text{correspondence test}}(\Omega, \xi, \mu, \Sigma_{0:t}, j, k) \)
9. if \(\pi_{j=k} > \chi \) then
10. for all \(c_i^j = k \) set \(c_i^j = j \)
11. \(\Omega, \xi = \text{GraphSLAM}_{\text{linearize}}(u_{1:t}, z_{1:t}, c_{1:t}, \mu_{0:t}) \)
12. \(\tilde{\Omega}, \tilde{\xi} = \text{GraphSLAM}_{\text{reduce}}(\Omega, \xi) \)
13. \(\mu, \Sigma_{0:t} = \text{GraphSLAM}_{\text{solve}}(\tilde{\Omega}, \tilde{\xi}, \Omega, \xi) \)
14. endif
15. endfor
16. until no more pair \(m_j, m_k \) found with \(\pi_{j-k} < \chi \)
17. return \(\mu \)
Correspondence test

Based on the probability that m_j corresponds to m_k:

```
1: Algorithm GraphSLAM_correspondence_test($\Omega$, $\xi$, $\mu$, $\Sigma_{0:t}$, $j$, $k$):
2:     $\Omega_{[j,k]} = \Omega_{j,k,j,k} - \Omega_{j,k,\tau(j,k)} \Sigma_{\tau(j,k),\tau(j,k)} \Omega_{\tau(j,k),j,k}$
3:     $\xi_{[j,k]} = \Omega_{[j,k]} \mu_{j,k}$
4:     $\Omega_{\Delta j,k} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^T \Omega_{[j,k]} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
5:     $\xi_{\Delta j,k} = \Omega_{\Delta j,k}^{-1} \xi_{[j,k]}$
6:     $\mu_{\Delta j,k} = \Omega_{\Delta j,k}^{-1} \xi_{\Delta j,k}$
7:     return $|2\pi \| \Omega_{\Delta j,k}^{-1} |^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \mu_{\Delta j,k}^T \Omega_{\Delta j,k}^{-1} \mu_{\Delta j,k} \right\}$
```
GroundHog in abandoned mine

A robot deployed in a previous flooded coal mine:

GroundHog in abandoned mine

A robot created a 3D model of the coal mine:

The Carnegie Mellon
Robotic Mine Mapping Project

Sebastian Thrun, Michael Montemerlo, Dirk Haehnel,
Rudolph Triebel, Wolfram Burgard, Red Whittaker

sponsored by: DARPA IPTC (MARS)

GroundHog in abandoned mine

Correspondences are discovered:

GroundHog in abandoned mine

Correspondences are propagated and dissolved:
GroundHog in abandoned mine

Iterations stops when data associations induce no further changes:
Segway RMP at Stanford

Segway exploring outdoors:

Segway RMP at Stanford

Segway with vertically mounted lasercaner:

Green is ground, red obstacles, white structures above the robot

Segway RMP at Stanford

3D map of the Stanford campus:
Segway RMP at Stanford

Color coded 3D map of the Stanford campus:
Segway RMP at Stanford

Top view of 3D map of the Stanford campus:
Segway RMP at Stanford

Effect of GPS on indoor mapping:
Resumé

Use a **graph** to represent the problem:

- **Every node** in the graph **corresponds to a pose** or an **observation** of the robot during mapping.
- **Every edge** between two nodes **corresponds to the spatial constraints** between them.
Conclusion

GraphSLAM:
- Solves the Full SLAM problem as post-processing step
- Creates a graph of soft constraints from the data-set
- By minimizing the sum of all constraints the maximum likelihood estimate of both the map and the robot path is found
- The algorithm works in iterating three steps: construction, reduction, solving remaining equations

$$p(x_{1:t}, m | z_{1:t}, u_{1:t})$$