Robot Paradigms

Slide credits: Sebastian Thrun, Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others
Robotics: General Background

- Autonomous, automaton
 - self-willed (Greek, auto+matos)

- Robot
 - Karel Capek in 1923 play R.U.R. (Rossum’s Universal Robots)
 - labor (Czech or Polish, robota)
 - workman (Czech or Polish, robotnik)
Asimov’s Three Laws of Robotics

1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings except when such orders would conflict with the first law.

3. A robot must protect its own existence as long as such protection does not conflict with the first or second law.

[Runaround, 1942]
Trends in Robotics Research

Classical Robotics (mid-70’s)
- exact models
- no sensing necessary

Reactive Paradigm (mid-80’s)
- no models
- relies heavily on good sensing

Hybrids (since 90’s)
- model-based at higher levels
- reactive at lower levels

Probabilistic Robotics (since mid-90’s)
- seamless integration of models and sensing
- inaccurate models, inaccurate sensors
AI View on Mobile Robotics

- World model
- Control system
- Sensor data
- Actions
Classical / Hierarchical Paradigm

- 70’s
- Focus on automated reasoning and knowledge representation
- STRIPS (Stanford Research Institute Problem Solver): Perfect world model, closed world assumption
- Find boxes and move them to designated position
Shakey ‘69

Stanford Research Institute
Stanford CART ‘73

Stanford AI Laboratory / CMU (Moravec)
Classical Paradigm
Stanford Cart

1. Take nine images of the environment, identify interesting points in one image, and use other images to obtain depth estimates.
2. Integrate information into global world model.
3. Correlate images with previous image set to estimate robot motion.
4. On basis of desired motion, estimated motion, and current estimate of environment, determine direction in which to move.
5. Execute the motion.
Trends in Robotics Research

Classical Robotics (mid-70’s)
- exact models
- no sensing necessary

Reactive Paradigm (mid-80’s)
- no models
- relies heavily on good sensing

Hybrids (since 90’s)
- model-based at higher levels
- reactive at lower levels

Probabilistic Robotics (since mid-90’s)
- seamless integration of models and sensing
- inaccurate models, inaccurate sensors
Reactive / Behavior-based Paradigm

- No models: The world is its own, best model
- Easy successes, but also limitations
- Investigate biological systems
- Best-known advocate: Rodney Brooks (MIT)
Classical Paradigm as Horizontal/Functional Decomposition

Perception → Model → Plan → Execute → Motor Control

- Sensing
- Environment
- Action
Reactive Paradigm as Vertical Decomposition

Build map
Explore
Wander
Avoid obstacles

Sensing

Environment

Action
Characteristics of Reactive Paradigm

• **Situated** agent, robot is integral part of the world.

• **No memory**, controlled by what is happening in the world.

• **Tight coupling** between perception and action via behaviors.

• Only local, behavior-specific sensing is permitted (**ego-centric** representation).
Behaviors

• ... are a direct mapping of sensory inputs to a pattern of motor actions that are then used to achieve a task.

• ... serve as the basic building block for robotics actions, and the overall behavior of the robot is emergent.

• ... support good software design principles due to modularity.
Subsumption Architecture

- Introduced by Rodney Brooks ’86.
- Behaviors are networks of sensing and acting modules (augmented finite state machines AFSM).
- Modules are grouped into layers of competence.
- Layers can subsume lower layers.
- No internal state!
Level 0: Avoid

Polar plot of sonars

- Sonar
 - Feel force
 - Collide

- Run away
 - Force
 - Heading

- Turn
 - Heading
 - Encoders

- Forward
 - Halt
Level 1: Wander

- Wander
- Collide
- Feel force
- Run away
- Forward
- Sonar
- Polar plot
- Modified heading
- Heading encoders
- Halt
Level 2: Follow Corridor

- **Look** → **Stay in middle**
 - distance, direction traveled to middle
 - heading to middle

- **Wander** → **Avoid**
 - force

- **Feel force** → **Run away**
 - modified heading

- **Sonar**
 - polar plot
 - heading encoders

- **Collide** → **Forward**
 - halt
Potential Field Methodologies

- Treat robot as particle acting under the influence of a potential field
- Robot travels along the derivative of the potential
- Field depends on obstacles, desired travel directions and targets
- Resulting field (vector) is given by the summation of primitive fields
- Strength of field may change with distance to obstacle/target
Primitive Potential Fields

- **Uniform**
- **Perpendicular**
- **Attractive**
- **Repulsive**
- **Tangential**
Corridor following with Potential Fields

- **Level 0** (collision avoidance) is done by the repulsive fields of detected obstacles.
- **Level 1** (wander) adds a uniform field.
- **Level 2** (corridor following) replaces the wander field by three fields (two perpendicular, one uniform).
Characteristics of Potential Fields

- Suffer from local minima
 - Backtracking
 - Random motion to escape local minimum
 - Procedural planner s.a. wall following
 - Increase potential of visited regions
 - Avoid local minima by harmonic functions

Goal
Characteristics of Potential Fields

- No preference among layers
- Easy to visualize
- Easy to combine different fields
- High update rates necessary
- Parameter tuning important
Reactive Paradigm

• Representations?
• Good software engineering principles?
• Easy to program?
• Robustness?
• Scalability?
Discussion

• Imagine you want your robot to perform navigation tasks, which approach would you choose?

• What are the benefits of the reactive (behavior-based) paradigm? How about the deliberate (planning) paradigm?

• Which approaches will win in the long run?
Trends in Robotics Research

Classical Robotics (mid-70’s)
• exact models
• no sensing necessary

Reactive Paradigm (mid-80’s)
• no models
• relies heavily on good sensing

Hybrids (since 90’s)
• model-based at higher levels
• reactive at lower levels

Probabilistic Robotics (since mid-90’s)
• seamless integration of models and sensing
• inaccurate models, inaccurate sensors
Hybrid Deliberative/reactive Paradigm

- Combines advantages of previous paradigms
 - World model used for planning
 - Closed loop, reactive control
Probabilistic Robotics