Probabilistic Robotics
The Sparse Extended Information Filter

MSc course Artificial Intelligence 2017
https://staff.fnwi.uva.nl/a.visser/education/ProbabilisticRobotics/

Arnoud Visser
Intelligent Robotics Lab
Informatics Institute
Universiteit van Amsterdam
A.Visser@uva.nl

Images courtesy of Sebastian Thrun, Wolfram Burghard, Dieter Fox, Michael Montemerlo, Dick Hähnel, Pieter Abbeel and others.
Simultaneous Localization and Mapping

A robot acquires a map while localizing itself relative to this map.

Online SLAM problem

\[p(x_t, m \mid z_{1:t}, u_{1:t}) \]

Estimate map \(m \) and current position \(x_t \)

Full SLAM problem

\[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]

Estimate map \(m \) and driven path \(x_{1:t} \)
SEIF SLAM

SEIF SLAM reduces the state vector y again to the current position x_t

$$y_t = \begin{pmatrix} x_t, m_{1,x}, m_{1,y}, s_1, \ldots, m_{N,x}, m_{N,y}, s_N \end{pmatrix}^T$$

This is the same state vector y as EKF SLAM
State estimate

SEIF SLAM requires every timestep inference to estimate the state

$$\tilde{\mu}_t = \tilde{\Omega}^{-1} \tilde{\xi}$$

The state estimated is also done by GraphSLAM, as a post-processing step.
Sparseness of *Information Matrix*

After a while, all landmarks are correlated in EKF’s correlation matrix.

The normalized information matrix is naturally sparse; most elements are close to zero (but none is zero).
Acquisition of the *information matrix*

The observation of a landmark m_1 introduces a constraint:

The constraint is of the type:

\[H_t^T Q_t^{-1} H_t \]

Where $h(x_t, m_j)$ is the measurement model and Q_t the covariance of the measurement noise.
Acquisition of the information matrix

The observation of a landmark m_2 introduces another constraint:

The information vector increases with the term:

$$H_t^T Q_t^{-1} (z^i_t - h(\bar{\mu}_t) + H_t \mu_t)$$
Acquisition of the *information matrix*

The movement of the robot from x_1 to x_2 also introduces an constraint:

The constraint is now between the landmarks m_1 and m_2 (and not between the path x_{t-1} to x_t):

\[
\Omega_t = [G_t \Omega_t^{-1} G_t^T + F_x^T R_t F_x]^{-1}
\]

Which can be simplified to

\[
\Omega_t = \Phi_t - \kappa_t
\]
Acquisition of the *information matrix*

The *information matrix* can become really sparse by applying a *sparsification step*:

\[
m = m^+ + m^0 + m^-
\]

This is done by partition the set of features into three disjoint subsets:

Where \(m^- \) is the set of passive features and \(m^+ \cap m^0 \) is the set of active features. The number of features that are allowed to remain active (set \(m^+ \)) is thresholded to guarantee efficiency.
Network of features

- Approximate the sparse information matrix with the argument that not all features are strongly connected:
Updating the current state estimate

The current state estimate $\hat{\mu}_t$ is needed every timestep:

$$\hat{\mu}_t = \tilde{\Omega}_t^{-1} \tilde{\xi}$$

Yet, from the current state estimate only subset is needed:

$$y_t = \begin{pmatrix} x_t \cdots m^+_1 x \cdots m^+_2 m^+_1 \cdots m^+_2 \cdots \end{pmatrix}^T$$

i.e. the robot position x_t and the locations of the active landmarks m^+. This can be done with an iterative hill climbing algorithm:

$$\mu_i \leftarrow \left(F_i \Omega F_i^T \right)^{-1} F_i \left[\xi - \Omega \mu + \Omega F_i^T F_i \mu \right]$$

Where F_i is a projection matrix to extract element i from matrix Ω.

Probabilistic Robotics Course at the Universiteit van Amsterdam
Full Algorithm

The algorithm combines the four steps; two updates and two approximations:

Algorithm SEIF_SLAM_known_correspondences($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t, c_t$)

\[
\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \text{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t) \\
\tilde{\mu}_t = \text{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t) \\
\check{\xi}_t, \check{\Omega}_t = \text{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \tilde{\mu}_t, z_t, c_t) \\
\tilde{\xi}_t, \tilde{\Omega}_t = \text{SEIF_sparsification}(\check{\xi}_t, \check{\Omega}_t) \\
\text{return } \tilde{\xi}_t, \tilde{\Omega}_t, \tilde{\mu}_t
\]
The effect of sparsification

The computation requires ‘constant’ time:

![Graph showing the effect of sparsification on CPU time vs. number of landmarks](image)
The effect of sparsification

The memory scales linearly:
The effect of sparsification

The prize is less accuracy, due to the approximation:
The degree of sparseness

By choosing the number of active features, accuracy can be traded against efficiency:
Effect of approximation

The effect of sparsification is less links between landmarks, more confidence, but nearly same information matrix:
Full Algorithm

To extend the algorithm for unknown correspondences, an estimate for the correspondence is needed:

\[
\hat{c}_t = \arg\max_{c_t} p(z_t \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}, c_t)
\]

\[
\hat{c}_t = \arg\max_{c_t} \int p(z_t \mid y_t, c_t) p(y_t \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1})dy_t
\]

\[
\hat{c}_t = \arg\max_{c_t} \int \int p(z_t \mid x_t, y_{c_t}, c_t) p(x_t, y_{c_t} \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1})dx_t dy_{c_t}
\]
Estimating the correspondence

To probability \(p(x_t, y_c \mid z_{1:t-1}, u_{1:t}, \hat{c}_{1:t-1}) \) can be approximated by the Markov blanket of all landmarks connected to robot pose \(x_t \) and landmark \(y_c \).
Correspondence test

Based on the probability that \(m_j \) corresponds to \(m_k \):

Algorithm SEIF_correspondence_test(\(\Omega, \xi, \mu, m_j, c_k \))

\[
B = B(j) \cup B(k)
\]

\[
\Sigma_B = (F_B \Omega F_B^T)^{-1}
\]

\[
\mu_B = \Sigma_B F_B \xi
\]

\[
\Sigma_\Delta = (F_\Delta \Omega B F_\Delta^T)^{-1}
\]

\[
\mu_\Delta = \Sigma_\Delta F_\Delta \xi_B
\]

return \(\det(2\pi \Sigma_\Delta)^{\frac{1}{2}} \exp\left\{ -\frac{1}{2} \mu_\Delta^T \Sigma_\Delta^{-1} \mu_\Delta \right\} \)
Results

MIT building (multiple loops):
Results

MIT building (multiple loops):

(c) FastSLAM (see next Chapter)

(d) SEIFs with branch-and-bound data association
Results

MIT building (multiple loops):

UvA approach Q-WSM
Conclusion

The Sparse Extended Information Filter:

- Solves the Online SLAM problem efficiently.
- Where EKF spread the information of each measurement over the full map, SEIF limits the spread to ‘active features’.
- All information in the stored in the canonical parameterization. Yet, an estimate of the mean \(\hat{\mu}_t \) is still needed. This estimate is found with a hill climbing algorithm (and not a inversion of the information matrix).
- The accuracy and efficiency can be balanced by selecting an appropriate number of ‘active features’.

\[
p(x_t, m | z_{1:t}, u_{1:t})
\]