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Simultaneous Localization and Mapping

A robot acquires a map while localizing itself relative to this map.

Online SLAM problem Full SLAM problem
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Estimate map m and current position x,  Estimate map m and driven path X,
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SEIF SLAM

SEIF SLAM reduces the state vector y again to the current position X;
= i
Yi = Xtml,xml,ysl"'mN,me,ySN

This is the same state vector y as EKF SLAM
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State estimate

SEIF SLAM requires every timestep inference to estimate the state
~ é_l -
H=L27°¢

The state estimated is also done by GraphSLAM,
as a post-processing step.
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Sparseness of Information Matrix

After a while, all landmarks are correlated in EKF’s correlation matrix
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The normalized information matrix is naturally sparse; most elements are
close to zero (but none is zero).
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Acquisition of the information matrix

The observation of a landmark m, introduces a constraint:

X, m,m, m, X,
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The constraint is of the type:
T~ -1
Ht Qt Ht

Where h(x,,m) is the measurement model and Q, the covariance of the
measurement noise.
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Acquisition of the information matrix

The observation of a landmark m, introduces another constraint:
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The information vector increases with the term:

HtTQt_l(Zti —h(z) +H )

Probabilistic Robotics Course at the Universiteit van Amsterdam



Acquisition of the information matrix

The movement of the robot from X, to X, also introduces an constraint:

X My m, my B
x new link lr:,—-é:'
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The constraint is now between the landmarks m; and m,
(and not between the path x, ; to X,):

5t — [GtQt_—lthT + I:xT Rt Fx]_l

Which can be simplified to
Q=P —x
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Acquisition of the information matrix

The information matrix can become really sparse by applying a
sparsification step:

X, m m, m, ¥
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This is done by partition the set of features into three disjoint subsets:

m=m"+m’°+m"-

Where m- is the set of passive features and m* N m@is the set of active
features. The number of features that are allowed to remain active
(set m*) is thresholded to guarantee efficiency.
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Network of features

O Approximate the sparse information matrix with the
argument that not all features are strongly connected:

robot features

link active passive

normalized information matrix ;'_ e
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Updating the current state estimate

The current state estimate 4 is needed every timestep:
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Hy = Qt_lé

Yet, from the current state estimate only subset is needed:
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l.e. the robot position x, and the locations of the active landmarks m*:

This can be done with an iterative hill climbing algorithm:
Hi < (FiQFiT )_1 Fl&—Qu+QF Fu]

Where F,is a projection matrix to extract element i from matrix Q.
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Full Algorithm

The algorithm combines the four steps;
two updates and two approximations:

Algorithm SEIF_SLAM_known_correspondences(&,;,€2, ;,44.1,U,,Z;,C,)

gt , Q. i, = SEIF_motion_update(&,,,&2,;44.1,U;)

=SEIF _update_state_estimate(&,, Q,, 1z,)
;,Q = SEIF_measurement_update(&,,Q, z,.Z,,C,)
;,Q = SEIF_sparsification(&,,Q,)

return ft ,Qt U,
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SEIF _measurement_update

for all observed features z! = (v} ¢! si)

Calculate 2}, H!
endfor

— T _ . .
fo= &+ ) H Q7 [ak 2+ Hip
L

Qr = Q¢ + Z Hf:T Q. 'H}
i

return &, Q¢
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SEIF_sparsification

Calculate Q,=Q! — Q% +Q} with
Ol = p(xt;m+|m_ =0, Zl:tlul:trcl:t)
& =&+ Uy (-Qt )
Q% = p(m+|m_ = O, Zl:t'ul:thl:t)
return gtvﬁt Q} = p(m*,m°, m™ |21, uq.t, C1t)
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SEIF _motion_update

Qt ®t
e = Pe—q T FxT5

&= &1+ (A - Ke)peo1 Qe Fy

return &, Q, fi;
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SEIF update state estimate

For most map features m™
Hit = it

For a few features mJ;
i = (FiQF") Fil& — Qeite + Q. F Fifie]

For the pose ) .
T\ — —
Hxt = (FthFx ) F;C[Et — Qe + Qi Fy Fx#t]

return U

Probabilistic Robotics Course at the Universiteit van Amsterdam

16



he effect of sparsification

The computation requires ‘constant’ time:
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he effect of sparsification

The memory scales linearly:
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he effect of sparsification

The prize is less accuracy, due to the approximation:
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he degree of sparseness

By choosing the number of active features,

accuracy can be traded against efficiency :
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Effect of approximation

The effect of sparsification is less links between landmarks,
more confidence, but nearly same information matrix:

-Sparse EIF
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Full Algorithm

To extend the algorithm for unknown correspondences,
an estimate for the correspondence is needed:

6t = argmax p(zt | Zl:t—l’ulzt’élzt—l’ct)

Ct

¢, =argmax | p(z, | Y, €) P(Y; | Zu g Uy, €)Y,

ét = argmax jj p(zt | Xt’ yct ’Ct) p(xt’ yct | Zl:t—l’ u1:t d él:t—l)dxtdyct
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Estimating the correspondence

To probability p(x., Ye, | 2, 4, Uy, 611_1) can be approximated by
the Markov blanket of all landmarks connected to robot pose x;
and landmark y..
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Correspondence test

Based on the probability that m; corresponds to my:

Algorithm SEIF_correspondence_test(€2,&,.,m;,C, )
B=B(j)uB(k)
2p = (FBQFBT)_l
Mg =2ZgFg6
2, = (FAQB FAT )_1
Hy =2,F\Sp

return det(27Z,) * exp{-; t, =3 1}
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Results

MIT building (multiple loops):

(a) Robot path

(b) Incremental ML (map inconsistent on left)

"" START

S AT &

i

B F. |

[, \

” | v
1) !
END | i

]
" \
A g L e
| I
:"-\__

SECOND LOOP CLOSURE = \1

i -'l,
FIRST,LOOP CLOSURE

Probabilistic Robotics Course at the Universiteit van Amsterdam

25



Results

MIT building (multiple loops):

(c) FastSLAM (see next Chapter) (d) SEIFs with branch-and-bound data association
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Results

MIT building (multiple loops):

UVA approach Q-WSM (b) Incremental ML (map inconsistent on left)
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Conclusion

The Sparse Extended Information Filter:
O Solves the Online SLAM problem efficiently.

O Where EKF spread the information of each measurement over the full
map, SEIF limits the spread to ‘active features’.

O All information in the stored in the canonical parameterization. Yet, an
estimate of the mean £, is still needed. This estimate is found with a
hill climbing algorithm (and not a inversion of the information matrix).

O The accuracy and efficiency can be balanced by selecting an
appropriate number of ‘active features’.
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