Search, Navigate, and Actuate

Overview

Objectives

- Integrate the knowledge and skills acquired in the 1th year
- Initiate skills to plan, manage, execute and report a software project
- Introduce the knowledge needed for robotics

Program

1th Week: Search
Find the next move for a chess playing robot

2nd Week: Navigate
Translate the move to movements of a piece

3rd Week: Actuate
Translate the piece movements to arm
movements

4rd Week: Play
Do something nobody has done before

Schedule

10.00-12.30: Practicum

Assistant will introduce the new assignment

13.00-15.00: Lecture

Knowledge needed for the task

15.30-17.00: Project

Work together on the assignment

Grade

- 1th Week: Programming skills
 Olaf Booij will grade your implementation of the chess endgame
- 2nd Week: Knowledge
 Leo Dorst will test your understanding of the syllabus
- 3rd Week: Practical skills
 Olaf Booij will grade your demonstration and report of the chess playing robot
- 4rd Week: Experimental skills
 Arnoud Visser will grade your demonstration and labbook of your survey

Classical problem in Al

The chess-playing Turk defeated Napoleon in 1769

Many famous researcher contributed

- Norbert Wiener (1948) introduced a design for a chess program including minimax
- Alan Turing (1951) wrote first full chess program
- John McCarthy (1956) conceived alpha-beta search

Al has 'solved' the problem

Deep Blue wins with $3\frac{1}{2}$ - $2\frac{1}{2}$ in 1997

Now it is your turn:

Have fun!

