
Mid-Term report
A ROS 2 Interface

for the UMI-RTX robotic arm

Guillaume GARDE and Théo MASSA
Under the supervision of Arnoud Visser

Intelligent Robotics Lab, Universiteit van Amsterdam, The Netherlands
ENSTA Bretagne, France

June 28, 2023

Abstract

The aim of this project is to work with an old robotic arm called the UMI-RTX (created
in the 1980’s) and make it grab objects on a plane with its gripper. Some work has
already been done on this robot by students, but mainly with old tools. The idea of our
project is to implement a new way of making it work and to use more recent tools. More
specifically, our goal is to set up a ROS 2 environment and build an interface that will
allow us to perform image analysis, trajectory planning, and target grabbing.

We have chosen a plush banana as a target. With the computer vision library OpenCV,
we managed to detect this banana with our camera, in a dedicated ROS 2 node, and to get
the coordinates of its centroid. Besides, we managed to calibrate our stereo camera, the
ZED M module, and begin the depth estimation needed to locate the target in a 3D space.

Once this is done, this information is sent into our ROS 2 architecture, more specifi-
cally to a node dedicated to inverse kinematics. In this node, the joints’ states required
to reach the aimed pose are processed and sent both to a simulation and the real arm.
For this, we have two nodes, each dedicated to its own part, one for the simulation, the
other for the real arm.

Finally, we designed a custom Graphic User Interface (GUI) in which the simulation
and the processed image are integrated, and in which we are able to choose between
automatic control of the arm and a manual mode, where we can choose our own target’s
position.

Contents

1 Introduction 2
1.1 Context . 2
1.2 Objectives . 2

2 Arm manipulation 3
2.1 Description . 3
2.2 URDF description . 4
2.3 Communication with the arm . 6
2.4 Inverse kinematics . 8

3 Computer vision 11
3.1 Detection of the target in a horizontal plane 11
3.2 Generating depth with stereo vision . 13

3.2.1 A bit of geometry . 14
3.2.2 Parameters . 14
3.2.3 Calibrating the stereo camera . 14
3.2.4 Stereo rectification parameters computation 16
3.2.5 Stereo rectification . 16
3.2.6 Disparity map computation . 17

4 ROS 2 Interface 19
4.1 Configuration and ROS 2 presentation . 19
4.2 ROS 2 Architecture . 20
4.3 Simulation . 21
4.4 Custom GUI . 21

5 Conclusion 24

1

Chapter 1

Introduction

1.1 Context

This project is led in an internship context, mainly for educational purposes. We worked
on an old industrial arm, the UMI-RTX, which was created in the 1980s. Despite his age,
the arm is still compatible with recent software and hardware, so it is interesting to work
on it. Its educational appeal is obvious when we consider that a lot of work has already
been done on it, especially by Dooms [4] and Van Der Borght [2] who worked on a ROS
interface in order to control it.

1.2 Objectives

Our objectives are plural. First, it is to learn new knowledge. As students, this kind
of internship is strong in apprenticeships, and this is a good opportunity. But more
importantly, we have the objective of creating a ROS 2 interface in order to be able to
control the arm. The robot should be able to detect a recognisable object, a yellow banana
plush in our case, move to this object, and take it. To this extent, we have to rely on
previous works and obviously create, from not much except drivers, a full ROS 2 interface.

2

Chapter 2

Arm manipulation

2.1 Description

This project uses the UMI-RTX arm, which is quite simple in its composition. Indeed, it
is composed of an axis to translate on the z-axis and a three-part arm, where each part
is connected to another through revolute joints. Those joints can be controlled through
both position and velocity, but in this project, we only control them through position, as
it is more adequate to our project, which is to grab a target, a mission that requires to
go to a specific position. Our method is also more adapted to a position control. Each
motor has encoders that allow it to be controlled and know its state.

Figure 2.1: Model of the arm

3

4

As we can see in the Figure, this arm can be compared to a human arm, at least in a
conception way. Joint 1 corresponds to the shoulder, joint 2 to the elbow, and ensembles
3-4-5 to the wrist. For the rest of this document, they will be referred to as we can see in
the following table:

Table 2.1: Description of the joints ID

Joint number Joint ID
0 ZED
1 SHOULDER
2 ELBOW
3 YAW

One characteristic of this arm is how the roll and pitch of the hand work. They are
not controlled separately but together by two motors, one on each side. A view of this
system can be seen in the following Figure:

Figure 2.2: Wrist system

This particular system has to be taken into account when controlling the arm, and
the two motors will be referred to as WRIST1 and WRIST2.
The only part that we haven’t managed to control yet is the grip.
Once we have understood how this arm is assembled and what joints to handle, we are
able to begin manipulating it.

2.2 URDF description

For practical purposes, it is really useful, even mandatory, to have a digital twin of the
arm. To this extend, it seems appropriate to use an URDF description of the arm. This
URDF (Unified Robotics Description Format) allows one to manipulate virtually the arm
and previsualize what effects the commands would have on the arm. Particularly in

5

robotics, having a virtual clone of our system is always something important, and each
time it is more researched.

This description consists of a description of every part and joint, describing the geom-
etry of the blocks, the joints between them, their type, limits, etc. One can see below an
extract of the description of the arm. The entire description can be found in the annex.

Listing 2.1: URDF Description of the arm
<robot name="umi-rtx">

<link name="base_link">
<visual>
<geometry>
<box size="1.252 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 1.57" xyz="0 -0.0455 0"/>
<material name="blue">
<color rgba="0 0 .8 1"/>

</material>
</visual>

</link>

<joint name="shoulder_updown" type="prismatic">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin xyz="0 0.0445 -0.3" rpy="0 0 1.57"/>
<!-- xyz="0.0445 0 0.134" -->
<axis xyz="0 0 1"/>
<limit lower="0.033" upper="0.948" effort="1" velocity="1"/>

</joint>

<link name="shoulder_link">
<visual>
<geometry>
<box size="0.278 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 1 1 1"/>

</material>
</visual>

</link>

This description will be particularly useful when it comes to seeing the virtual model in
our simulation and processing the inverse kinematics (see 2.4).

There is only one main difference between this description and reality, which is the
wrist, particularly the pitch and roll. In this description, there are two independent joints
dedicated to pitch and roll, whereas in reality, we saw before that two motors worked
together to handle those angles. Therefore, we have to be careful when converting this

6

description into reality. We have:

WRIST1 =
roll + pitch

2

WRIST2 =
pitch− roll

2

Figure 2.3: Virtual model of the arm

On this model, every frames is attached to its part and represented in red, green and
blue, for the x, y and z axis.

2.3 Communication with the arm

As the arm is old, the communication is not direct. The documentation is limited, and
there are no ready-to-use drivers or software furnished by the creator of the arm. It is
necessary to use a TCP/IP connection through the RS232 bus between the computer and
the arm to send commands or acquire data from the arm. Doing this is already a lot
of work, but thanksfully, we had drivers developed by previous students at our disposal.
Thanks to our supervisor A. Visser, we have a fully developed driver that communicates
with the arm, that was furnished by him.

One particularity of the arm, is that the motors are controlled by two 8031 chips, IPs1

called. Each IP ensures the proper operation of a selection of motors. Table 2.2 shows
1Intelligent Peripheral

7

Figure 2.4: Communication between the arm and the computer

which motors there are with their corresponding IP. So, for example, to move the arm up
and down (zed), it must first be switched to IP1. Once switched, the new command of
the motor can be entered [4]. IPC stands for Intelligent Peripheral Communication, and
it uses three possible ways of communication, relying on a request from the computer and
a response from the arm (see Figure 2.5).

ZED SHOULDER ELBOW YAW WRIST1 WRIST2 GRIPPER
IP1 IP1 IP1 IP1 IP0 IP0 IP1

Table 2.2: Overview of motors with corresponding IP

Figure 2.5: 3 ways of communication

However, this driver is one that allows to control the arm only via the terminal, when
we want to build an interface that does not just happen via the terminal. For this, we had
to look into the source code of the drivers, understand how they manage to communicate
with the arm, and reuse their functions in our own code.

8

In order to use the arm, we have to follow a precise procedure. First, we have to
start communication with the arm by launching the daemon created by Dooms and Van
Der Borght and specifying which USB port is used by the arm. Then, in our codes, we
have to initialise the communications by sending a certain code to the arm, and every
time we use the arm, an initialization procedure has to be processed for the arm to know
where the encoder’s limits are. Indeed, there is no real memory of the encoders’ limits
and parameters, so those have to be initialised before every use of the arm. Fortunately,
the drivers contain everything necessary to do so.

Now, we have everything ready to command the arm. To do so, we first have to write
in the arm what we want to do, then tell it to go in the state written before.

2.4 Inverse kinematics

Inverse kinematics is one of the main parts of this project. It consists of processing the
state of each joint given the desired pose of the end-effector. Unlike forward kinematics,
where we process the end-point pose given the state of every joint, we do the opposite
here.

Figure 2.6: Inverse and forward kinematics

The inverse kinematics process is way more complicated than forward kinematics be-
cause there are none, one, or multiple solutions, and the difficulty increases with the
number of joints or degrees of freedom. Fortunately, each joint has only one degree of
freedom, so computing is a bit simplified.

To compute those inverse kinematics, we chose to use a C++ library named Pinocchio
[3], which allows us to create algorithms that will process the inverse kinematics. This
library was selected due to its versatility and efficiency, but also and mainly because of
its integration into ROS 2 packages.

To process the inverse kinematics, we use a method called CLIK, for Closed-Loop
Inverse Kinematics [5], using methods and object from Pinocchio library. This iterative
algorithm allows us to find the best state of each joint in order to be as close as possible
to an objective defined by a position (x, y, z) and an orientation (yaw, pitch, roll).

Let’s explain this algorithm:

9

Let be (x, y, z) the desired position and (ϕ, θ ψ) = (yaw, pitch, roll) the desired orien-
tation.
We define the different rotation matrices by :

Rϕ =

cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


Rθ =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


Rψ =

0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)
1 0 0


And the desired rotation matrix by :

R = Rϕ.Rθ.Rψ

Finally, the desired pose lies in SE3 space, defined by the desired position and R, the
desired rotation.

Then we define q, a vector defining the initial state of the arm. Each value of q cor-
responds to a joint "value". For example, the joint value for ZED will be in metres,
whereas SHOULDER, ELBOW... are in radians.

q =


q0
q1
q2
q3
q4
q5

 =


ZED

SHOULDER
ELBOW
Y AW
PITCH
ROLL


This vector is initialised, whether at the neutral position of the arm or at the last

known state. Initialising this vector at the last state known allows a sort of continuity in
the solutions, because of the iterative method that is used after that.
Once we have all that, we can initiate the iterative process.

• First, we compute the forward kinematics with the current configuration defined by
the vector q

• Then, we get the transformation T ∈ SE3 between the current pose and the desired
one and the logarithmic error defined by :

err = log(T)

• if ||err|| ≤ ϵ with ϵ a defined coefficient that characterises the precision we want, or
if we did a certain amount of iteration, we stop the iterative process

• Else, we compute the Jacobian J of the current configuration.

10

• We define the vector v thanks to the damped pseudo-inverse of J in order to avoid
problems at singularities:

v = −JT (JJT + λ.I)−1.e

v can be considered the speed vector that will get the configuration closer to the
desired one.

• Then we can integrate q = q + v.dt and reiterate this process.

Once this iterative process is over, we have the required configuration stored in q in order
to reach the desired pose. Finally, we transform our angles from [0, 2π] to [−180, 180]
for practical purposes and send the required state on the corresponding ROS topic /mo-
tor_commands.

Figure 2.7: Evolution of the error ac-
cording to iterations

Figure 2.8: Evolution of the number of
iterations according to epsilon in loga-
rithmic scale

As we can see in the two Figures above, this method is quite efficient as the error
decreases exponentially. It also confirms the fact that our algorithm converges towards a
solution. On the other side of the coin, the smaller the epsilon, the greater the number
of iterations required, up to a point where it is no longer possible to converge within a
reasonable time or even to converge at all.
Look forward to Chapter 4 to see how the inverse kinematic calculation is integrated into
our project.

Chapter 3

Computer vision

To make the robotic arm grab the target, one has to rely on one key element: computer
vision. This element is a set of several techniques to see the scene of interest with an
optical device and extract valuable information from it. In this project, these techniques
are used to detect the target and get its 3D position in the camera’s frame. The language
of programming that will be used here is C++, and the OpenCV1 methods that will be
cited here will be written accordingly with the C++ syntax.

3.1 Detection of the target in a horizontal plane

The target is a yellow banana plush. It will be put on a dark horizontal plane on which
the UMI-RTX is fixed.

Figure 3.1: The banana plush on the dark horizontal plane that supports the arm

The first task of the computer vision part is to detect this banana. The banana was
chosen because it is a convenient target. It is a standard object easy to find on Ikea; its
colour is convenient to detect; its softness makes it easy for a gripper to grab it; and it

1OpenCV documentation: https://docs.opencv.org/4.7.0/

11

https://docs.opencv.org/4.7.0/

12

is coherent with the fact that most objects are not rectangular but have curves, therefore
the approach is more general. The image process is made with OpenCV which includes
build in methods for computer vision. To extract the banana from the scene, one works
in a specific colour space: the HSV colour space (Hue, Saturation, Value) [10]. It is more
common to hear about the RGB [10] colour space (Red, Green, Blue), in which each colour
is represented by a set of three values between 0 and 255 corresponding to a proportion of
the associated colour. This is the colour space used to associate a colour to screen’s pixels.
However, the HSV space is an appropriate colour space to perform colour detection. Each
colour is represented by a triplet of values between 0 and 255 corresponding to its values
of hue, saturation, and value [10].

Figure 3.2: Representation of the RGB and HSV colour spaces

The extraction of an object from an image is based on contour detection once the image
has been binarized according to a specific strategy. In this case, two HSV thresholds have
been selected, (20,100,100) and (60,255,255), to extract objects in between. These values
have been chosen to binarize the image with cv::inRange() and extract yellow objects that
have similar HSV values. The result is a binarized image with white objects on a black
background. Then one can perform contour detection on these objects. A hypothesis
made for the project is that the only visible yellow object in the scene would be the
banana target. This ensures that when performing contour detection, only the contour of
the banana is found. The method cv::findContours() gathers all the contours detected, in
this case only the contour of the target. Then one can access the moments of the contour
with cv::moments() and compute the coordinates of its centroid in the reference frame of
the image.

Figure 3.3: Example of detected banana and its contour with OpenCV

https://en.wikipedia.org/wiki/RGB_color_spaces
https://docs.opencv.org/3.4/da/d97/tutorial_threshold_inRange.html

13

With the coordinates of the centroid, one can locate the banana in the horizontal
plane. The next step is to access its depth with respect to the camera, to grab it with
the UMI-RTX’s gripper.

3.2 Generating depth with stereo vision

To allow the arm to grab the target, it needs to know where it is. The first step of
detecting the banana in a horizontal plane can be done with a single camera, but getting
its depth is more complex and requires a second one [8]. This is called stereo vision. The
stereo device used in this project is the ZED M camera device from StereoLabs.

Figure 3.4: The ZED M stereo device

Note that this is a specific type of device. Both lenses are on the same support and
have parallel optical axes and coplanar image planes. Some stereo installations use two
distinct cameras that can be separated from each other according to need.

Figure 3.5: Vision of an object (on the right) with a stereo camera (on the left). O1 and
O2 are the optical centers and B the distance between the optical axes. [10]

The main idea behind stereo vision is to reproduce human vision [11]. One will use
the difference in perception of the scene to extract depth information. OpenCV provides
methods and algorithms to get to that point step by step [1]. The theory behind these

https://www.stereolabs.com/zed-mini/

14

methods belongs to computer science and vision. The calculations made to extract in-
formation from the views fall within the framework of projective geometry and epipolar
geometry [6][8].

3.2.1 A bit of geometry

Projective space is an extension of Euclidean space where parallel lines meet at infinity
[8]. To work in projective space, one has to use homogeneous coordinates [11][8]. These
coordinates are used to characterise changes in space and allow to consider points at
infinity and to calculate with points that are not at infinity with matrices as in Euclidean
space. Projective geometry is used in computer science to manipulate coordinates, but it
is not the only one used. The other mathematical aspect is epipolar geometry. It describes
the relationship between two views of the same object [11].

Figure 3.6: Representation of the epipolar plane [11]

Characterising the links and differences between the two views of a stereo device is
essential to performing any type of scene reconstruction.

3.2.2 Parameters

One needs to know some parameters associated with the scene and the camera in order
to access depth information. The first type of parameter is the intrinsic parameters [11],
which are internal to the camera, such as the focal length f or the baseline B, which
is the distance between the optical axes. The second type of parameter is the extrinsic
parameters [11], which are a rotation matrix R that links the scene reference frame to
that of the camera and a vector T corresponding to a translation that links one reference
frame to the other. The third type of parameter is the fundamental matrix F [8] [11] that
contains all the epipolar information of the views, and the camera matrices that describe
the mapping of 3D points in the world to 2D points in the images. Accessing depth
information can only be done through the determination of these parameters, thanks to
a well-thought-out strategy.

3.2.3 Calibrating the stereo camera

The first step of the process is to calibrate the ZED M device in order to compute the
extrinsic parameters, the fundamental matrix and the camera matrices [8][11]. To do

15

so, one has to use stereo images with easy-to-detect points and apply correspondence
algorithms to compute the results. In this project, a black and white chessboard was
photographed five times2 in different poses.

Figure 3.7: One of the views of the chessboard used to calibrate the ZED M device

One has to declare the inner pattern that will be searched by the algorithm. In this
case, it is the inner part of the chessboard that has 7 by 5 corners3. It is also important
to provide the algorithm with the size of a square (3.1 cm here). Then, for each pair of
images, one has to use cv::findChessboardCorners() for the left and the right views. This
method will detect the declared pattern in the images and the associated corners. Then
one has to use cv::cornerSubPix() to refine the positions of the detected corners.

Figure 3.8: Detected corners on the precedent left view, associated to the declared pattern

Once this is done, the 2D positions of the corners in the left and right images are saved
in associated vectors, and, for each pair of images, the 3D coordinates4 of the corners5

with respect to the top left corner are saved in a dedicated vector. Which means that
one has a vector whose five components are the same and two other vectors whose com-
ponents are relative to the images. Finally, one uses cv::stereoCalibrate() to compute the
following parameters: calibration RMS6 error, left camera matrix, right camera matrix,
left distortion coefficients, right distortion coefficients, rotation matrix, translation vector,

2To guarantee robustness.
3It is very important to correctly count the inner corners for the algorithm to work.
4With third coordinate set to 0 for now.
5Using real dimensions.
6Root-Mean-Squarre.

16

essential matrix, and fundamental matrix. The algorithm that summarises the process is
in the annex.

3.2.4 Stereo rectification parameters computation

After calibrating, one must rectify some things. The goal here is to "compute the rotation
matrices for each camera that (virtually) make both camera image planes the same plane.
Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo
correspondence problem". For this part, one uses the camera matrices and distortion co-
efficients that were computed during the previous step. One must use cv::stereoRectify(),
and it will compute rectification transforms (rotation matrices) for the cameras, projection
matrices in the new rectified coordinate systems for the cameras, and a disparity-to-depth
mapping matrix.

3.2.5 Stereo rectification

The next part is to "computes the joint undistortion and rectification transformation and
represent the result in the form of maps for remap" by using cv::initUndistortRectifyMap()
To do so, one must use the parameters found during the previous step. Then one can
remap the images to be rectified (in this case, the work scene) with cv::remap(). This
must be applied once for each view. On the following images is an example of an image
taken by the left camera and its associated rectified image.

Figure 3.9: An example of the left view and the rectified image

17

It is complex to say why the second image is better to use by just looking at it, but it
is the result of the rectification process, and now everything is set to work on disparity.

3.2.6 Disparity map computation

Stereo vision reproduces human vision [11][8]. Each camera of the stereo device will per-
ceive the scene in its own way, just like the human eye. Therefore, the scene seems to
be shifted to the right or left, depending on the considered view. This is where in-depth
information can be found. Between the views, there will be a difference in horizontal
positioning for each object. This difference can be measured in pixels, for instance, and
is called disparity [11][8]. The principle is, then, simple. When considering an object in
a stereo image of a scene, the bigger the disparity, the closer the object. Computing dis-
parity for every object in the scene allows for the creation of a disparity map. Moreover,
considering that depth (Z) and disparity (d) are proportionate following the equation
Z = fB

d
, one can access a depth map with a disparity map.

OpenCV provides two algorithms to compute disparity between two stereo-associated
views: cv::stereoBM() and cv::stereoSGBM(), which is a modified version of the first
one. These two algorithms perform horizontal block matching between the views. One
has to set some parameters7 of the constructor before computing the disparity map.
Each parameter has a precise influence on the results, and it may be difficult to set
them correctly. A brief description can be found in the annex. One thing important to
remember, though, is that these algorithms are sensitive to texture. A lack of texture
in the images can result in poor results. In this project, many configurations (different
images and parameter values) have been tried and given various results. On the following
pictures, one can see an example of a "common perception image"8 and the associated
disparity map.

Figure 3.10: The "common perception image".

7http://wiki.ros.org/stereo_image_proc/Tutorials/ChoosingGoodStereoParameters
8An extraction from the left view, on which were kept objects that are seen by both cameras.

http://wiki.ros.org/stereo_image_proc/Tutorials/ChoosingGoodStereoParameters

18

Figure 3.11: The associated disparity map.

On the disparity map, one notices that there are many levels of grey. The brighter,
the closer. This map is still noisy, but it is one of the cleanest made during the project.
One has to keep in mind that finding convenient parameter values is difficult and that
it is possible to scale down the disparity or normalise it. To easily get better results,
the disparity map has been adjusted with trackbars linked to each parameter. However,
changing one parameter often strongly disturbs the harmony of the map, making it difficult
to get a good result. The depth map associated with this image is not very good yet.

Figure 3.12: The associated depth map.

Chapter 4

ROS 2 Interface

4.1 Configuration and ROS 2 presentation

For this project, we work on Ubuntu 20.04 and are using ROS 2 Foxy.

Figure 4.1: ROS 2 Foxy Fitzroy

ROS 2 (Robot Operating System 2) is an open-source framework designed for build-
ing and controlling robotic systems [7]. It is the successor to ROS 1 and offers several
improvements and new features to enhance the development and deployment of robotics
applications. With its modular and distributed architecture, ROS 2 provides a flexible
and scalable platform for creating advanced robot systems.

Utilising a pub-sub messaging model, ROS 2 enables efficient communication between
different components of a robot system, facilitating the exchange of data and commands.
It supports multiple programming languages and provides a variety of tools and libraries
that simplify the development process. ROS 2 also focuses on real-time and embedded
systems, making it suitable for a wide range of robotic applications, from small embedded

19

20

devices to large-scale distributed systems [7].

ROS 2 brings several key benefits to developers and roboticists. It offers improved
performance and reliability thanks to its optimised middleware, which enables faster and
more efficient communication between nodes. This enhanced performance is particularly
beneficial for applications requiring real-time or low-latency operations. ROS 2 also em-
phasises security and safety with features such as authentication and fine-grained access
control, making it more suitable for sensitive applications and environments [7].

ROS 2 communications are based on two principal concepts: nodes and topics. Nodes
are individual software modules that perform a specific task within a robotic system.
Nodes are the fundamental building blocks of a ROS application, and they communicate
with each other by passing messages. On the other side of the coin, topics are the com-
munication channels used by nodes to exchange messages in ROS. A topic is a named
bus where nodes can publish messages or subscribe to receive messages. It follows the
publish-subscribe communication pattern, where nodes that generate data publish mes-
sages to a topic, and nodes interested in that data subscribe to the topic to receive the
messages [7].

4.2 ROS 2 Architecture

When running only the simulation, here are the interactions between every ROS node:

Figure 4.2: Node graph when running only the simulation

Here, the main node is /qt_window. This node is the one where the GUI is executed.
It sends the targeted position, roll and pitch to the /inverse_kinematics node that will
process the inverse kinematcs in order to get and send the required joints’ state that
will make the arm reach its target, through the /motor_commands topic. The /simula-
tion node subscribes to this topic and, through /robot_state_publisher, sends the robot
description to the integrated simulation panel in our GUI that will be described in 4.4.

We can see here that there are no topics dedicated to sending a targeted yaw. This is
because for now, yaw stays equal to arctan2(y, x) where x and y are the targeted position.
In fact, this configuration is the easiest to manage because, for the real arm, the yaw is
equal to 0 when it is in reality equal to this value. To be clearer, in simulation, the
yaw origin is the y-axis, whereas for the encoders, the yaw origin and neutral point are
following the axis between the zed-axis and the wrist.

It is also important to note that, as of yet, there is no camera node. This is because
this node is not finished yet, so we didn’t include it. However, the data coming from this
node—a point message and potentially the angles too—will be sent to the /qt_window,
which is an intermediary between the camera and simulation/arm.

21

Figure 4.3: Node graph when running real arm

For the real arm, the node graph is a bit more complicated with the use of the arm
node. This node also subscribes to the targeted pose to be aware of when the target
changes. By doing so, we can avoid useless calculations. Indeed, if we send commands
to the arm only when the target changes, it will cost less resources than trying to send
commands at every loop, and it will also be more reactive to any changes.

Every topic distributes its own type of message among the standard messages that
exist in ROS 2. Below are the message types associated with every topic of our ROS
architecture.

Table 4.1: Messages description

Topics Messages Purpose
/joint_states sensor_msgs/msg/JointState State of the simulation

/motor_commands sensor_msgs/msg/JointState Configuration required
to reach the target

/robot_description std_msgs/msg/String Description of the robot
to visualize it in the simulation

/target_position geometry_msgs/msg/Point Position to reach
/target_pitch std_msgs/msg/Float32 Pitch to reach
/target_roll std_msgs/msg/Float32 Roll to reach

4.3 Simulation

Simulation takes place thanks to RViz2, a ROS 2 visualisation tool, in which every frame
is well defined thanks to the inverse kinematics and the TF included in ROS 2. A TF (for
Transformed Frame) is a tool that allows you to define the position of a frame relative to
another one. It simplifies a lot the dispositions of the frames in the simulation. Those TF
are obtained thanks to the URDF file that initiates them, and then they are actualized
thanks to the inverse kinematics algorithm that gives the positions of each joint. The
render of this simulation and how we process it are explained in the following part of our
GUI description.

4.4 Custom GUI

Thanks to Qt5, we designed a custom GUI (for Graphic User Interface) that allows us to
define the desired pose if we want to manually control the arm, see the simulation thanks

22

to the integration of RViz2 into the GUI, and check the processed image as well (for
now this is just the integrated camera of our computer). This interface is an all-in-one
interface, allowing us to control the arm as we want.

There were some aspects of this interface that required more work due to their higher
difficulty to implement. Integrating RViz2 into this custom interface necessitated a lot
of introspection into RViz’s API. Unfortunately, the documentation was sparse, so it was
challenging to understand which functions, classes, and concepts to use.

To explain quickly how RViz works, it is based on Qt (which facilitates a bit of the
integration in our own GUI) and relies on what’s called a render_panel. It is sort of
the "frame" in which everything happens. It will be this object that will be integrated
into our interface. However, this render_panel by itself is not sufficient to have every-
thing printed. We have to instantiate what is called a VisualizationManager, a tool that
allows us to add specific displays to our panel. Thanks to this tool, we are able to
add RViz default displays that will allow us to see our arm and the TF, more precisely
rviz_default_plugins/RobotModel and rviz_default_plugins/TF. However, if we do only
that, we will just see the different frames defined by the TFs and not the model. This
is because the RobotModel display needs to subscribe to a ROS 2 topic dedicated to pro-
viding the description of the robot. Then we use display’s property that allows us to
subscribe to the topic /robot_description, which is such a topic.

Finally, we just have to add the tool necessary to be able to move the camera into
this panel, and we have a fully custom and customizable RViz2 integration in our interface.

Figure 4.4: Current version of our custom GUI

The particularity of this custom GUI is that it is linked to a ROS node. This is
necessary because, as explained above, this interface allows you to interact with the
targeted pose. For this, it is necessary to have a connection with the node that handles
the publication of this targeted pose, even more so when we consider that we have to
choose if we want the arm to be controlled manually or automatically. To do so, a switch
button was included in the interface that modifies a public Boolean of the node. This
Boolean defines what type of commands we want for our system.

23

For now, the automated control makes the arm follow Lissajou’s curve by keeping it in his
range, as we can see in the figure below. This trajectory is just an example; we have to
keep in mind that ultimately, it will be the position calculated by the image processing.

Figure 4.5: Lissajou’s curve followed by the arm

Chapter 5

Conclusion

Our progress is interesting. The interface is working efficiently, and the arm responds
pretty well to the commands we send through it. More importantly, the simulation is also
efficient and well integrated into the GUI.

However, we still have to finish the image processing node; that is a great piece of
work and one of the most complex parts of this project. It is great that the detection of
the target (the banana plush) gives good results. The method is robust, and the dedi-
cated node is already written and ready to be used. On the other hand, reliably accessing
depth is not yet possible. It is good that we managed to write our own code and not use
the drivers, which are more complex. But the drawback is that setting the parameters
correctly is difficult [9] to understand their influence, and we can’t produce good disparity
maps, thus depth maps, yet. As examples of improvement points, we could cite: better
understanding the format and type of disparity data; correcting the normalisation if need
be; pre and/or post-filtering [?] the images; computing depth using the disparity-to-depth
matrix, computing depth using the ZED M built-in modules, which require working with
a strong GPU. Also, the code that has been written to compute depth needs to be written
as ROS 2 nodes. The calibration and disparity computation parts are currently in the
same code, which means that the camera is calibrated every time the code runs. This
is a waste of time, and the ROS 2 interface will have one node for calibration and one
node for disparity computation. We also have a code that splits the stereo images in
two, which will be added to the disparity computation node. This node will group all the
visualisation parts from target detection to depth computation.

Concerning the arm, efficiency can still be improved. When using automated mode,
the movement is very jerky due to the time the arm needs to reach a position; it doesn’t
follow the full trajectory. We have to see whether movement can be smoothed when the
target is in motion.

24

Bibliography

[1] Gary Bradksi Adrian Kaehler. "Learning OpenCV 3". O’reilly media edition, 2016.

[2] Sebastian Van Der Borght. "camera gebaseerde robotsturing". Master’s thesis, KU
Leuven, 2015-2016.

[3] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and
N. Mansard. "the Pinocchio C++ library – A fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives". In International
Symposium on System Integration (SII), 2019.

[4] Xavier Dooms. "camera gebaseerde robotstu-ring d.m.v. ros implementatie met
opencv". Master’s thesis, KU Leuven, 2014-2015.

[5] Dániel András Drexler. Solution of the closed-loop inverse kinematics algorithm using
the crank-nicolson method. In 2016 IEEE 14th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), pages 351–356, 2016.

[6] Stephen Mann Leo Dorst, Daniel Fontijne. "Geometric Algebra for Computer Science,
an object-oriented approach to geometry". Morgan Kaufmann, 2007. Chapter 12.

[7] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074, 2022.

[8] Andrew Zisserman Richard Hartley. "Multiple View Geometry in computer vision".
Cambridge, 2006. Chapters 9 to 12.

[9] Kaustubh Sadekar. "stereo camera depth estimation with opencv (python/c++)".
2021.

[10] Hélène Thomas. Traitement numérique des Images. Technical report, EN-
STA Bretagne, 2 rue François Verny, 29200 France, 2023. Send an email to
guillaume.garde@ensta-bretagne.org to access the document.

[11] Hélène Thomas. Vision par ordinateur. Technical report, ENSTA Bretagne, 2
rue François Verny, 29200 France, 2023. Send an email to guillaume.garde@ensta-
bretagne.org to access the document.

25

Annex

Stereo calibration algorithm

Stereo calibrating

Input: 5 pairs of stereo images showing different poses of the calibration chess-
board; rectified left and right views of the scene.

(i) Declaring vectors to save the corners’ coordinates: objectPoints (3D
coordinates of the corners with respect to the top left one for each pair of
images), cornersLeft (2D coordinates of the corners in the left views of each
pair of images), and cornersRight (same but for the right views).

(ii) Declaring pattern size and squarre size: here cv::Size patternSize(7,5) and
float squareSize = 3.1.

(iii) For each pair of images:

(a) Declare vectors to save 2D coordinates for the left and right view.

(b) Use cv::findChessboardCorners(), which returns true if the pattern was
found, for the left and right view.

(c) If corners are detected, use cv::cornersSubPix() to refine detection and save
the detected points in the associated vectors. Then push these vectors in
cornersLeft and cornersRight. Declare a vector of 3D coordinates (using
true dimensions) associated with the pattern with respect to the top left
corner and under the form (x,y,0). Push it inside ObjectPoint.

(iv) Declare output parameters and calibrate: use cv::stereoCalibrate().

Output: a cv::Mat disparity map.

26

27

A quick description of the stereo block matching algorithms’ pa-
rameters

Parameter Description
minDisparity minimum possible disparity value
numDisparities maximum disparity minus minimum disparity
blockSize matched block size
P1 first smoothness parameter for close neighbor pixels
P2 second smoothness parameter for further neighbor pixels

disp12MaxDiff maximum allowed difference (in integer pixel units) in the left-
right disparity check

uniquenessRatio
margin in percentage by which the best (minimum) computed
cost function value should "win" the second best value to con-
sider the found match correct

speckleWindowSize maximum size of smooth disparity regions to consider their
noise speckles and invalidate

speckleRange maximum disparity variation within each connected compo-
nent

These are the main parameters for the cv::stereoSGBM() constructor. The cv::stereoBM()
constructor only uses numDisparity1 and blockSize.

1Automatically computed with 0 as minimum value.

28

URDF description of the arm

Listing 5.1: URDF Description of the arm
<?xml version="1.0"?>
<robot name="umi-rtx">

<link name="base_link">
<visual>
<geometry>
<box size="1.252 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 1.57" xyz="0 -0.0455 0"/>
<material name="blue">
<color rgba="0 0 .8 1"/>

</material>
</visual>

</link>

<joint name="shoulder_updown" type="prismatic">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin xyz="0 0.0445 -0.3" rpy="0 0 1.57"/>
<!-- xyz="0.0445 0 0.134" -->
<axis xyz="0 0 1"/>
<limit lower="0.033" upper="0.948" effort="1" velocity="1"/>

</joint>

<link name="shoulder_link">
<visual>
<geometry>
<box size="0.278 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 1 1 1"/>

</material>
</visual>

</link>

<joint name="shoulder_joint" type="revolute">
<parent link="shoulder_link"/>
<child link="shoulder_to_elbow"/>
<origin xyz="-0.01 0 -0.09"/>
<axis xyz="0 0 1"/>
<limit lower="-1.57" upper="1.57" effort="1" velocity="1"/>

</joint>

<link name="shoulder_to_elbow">
<visual>
<geometry>
<box size="0.252 0.10 0.10"/>

29

</geometry>
<origin rpy="0 0 0" xyz="0.126 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="elbow" type="revolute">
<parent link="shoulder_to_elbow"/>
<child link="elbow_to_wrist"/>
<origin xyz="0.252 0 -0.07"/>
<axis xyz="0 0 1"/>
<limit lower="-3.14" upper="2.64" effort="1" velocity="1"/>

</joint>

<link name="elbow_to_wrist">
<visual>
<geometry>
<box size="0.252 0.10 0.07"/>

</geometry>
<origin rpy="0 0 0" xyz="0.126 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="wrist" type="revolute">
<parent link="elbow_to_wrist"/>
<child link="wrist_to_wrist_gripper_connection"/>
<origin xyz="0.252 0 -0.05"/>
<axis xyz="0 0 1"/>
<limit lower="-1.92" upper="1.92" effort="1" velocity="1"/>

</joint>

<link name="wrist_gripper_connection_to_gripper">
<visual>
<geometry>
<box size="0.10 0.10 0.05"/>

</geometry>
<origin rpy="0 0 0" xyz="0.05 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<link name="wrist_to_wrist_gripper_connection">
<visual>
<geometry>

30

<box size="0.075 0.10 0.05"/>
</geometry>
<origin rpy="0 0 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="wrist_gripper_connection_roll" type="revolute">
<parent link="wrist_to_wrist_gripper_connection"/>
<child link="virtual_link"/>
<origin xyz="0 0 0"/>
<axis xyz="-1 0 0"/>
<limit lower="-3.16" upper="2.3" effort="1" velocity="1"/>

</joint>

<link name="virtual_link"/>

<joint name="wrist_gripper_connection_pitch" type="revolute">
<parent link="virtual_link"/>
<child link="wrist_gripper_connection_to_gripper"/>
<origin xyz="0 0 0"/>
<axis xyz="0 -1 0"/>
<limit lower="-1.71" upper="0.07" effort="1" velocity="1"/>

</joint>

<joint name="wrist_gripper_connection" type="fixed">
<parent link="wrist_gripper_connection_to_gripper"/>
<child link="gripper_base"/>
<origin xyz="0 0 0"/>

</joint>

<link name="gripper_base">
<visual>
<geometry>
<box size="0.077 0.15 0.078"/>

</geometry>
<origin rpy="0 0 0" xyz="0.10 -0.02 0.012"/>
<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<link name="left_finger">
<visual>
<geometry>
<box size="0.07 0.015 0.025"/>

</geometry>
<origin rpy="0 0 0" xyz="0.06 -0.04 0"/>

31

<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<link name="right_finger">
<visual>
<geometry>
<box size="0.07 0.015 0.025"/>

</geometry>
<origin rpy="0 0 0" xyz="0.06 0.04 0"/>
<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<joint name="gripper_left" type="prismatic">
<parent link="gripper_base"/>
<child link="left_finger"/>
<origin rpy="0 0 0" xyz="0.12 0 0"/>
<axis xyz="0 1 0"/>
<limit lower="0" upper="0.05" effort="1" velocity="1"/>

</joint>

<joint name="gripper_right" type="prismatic">
<parent link="gripper_base"/>
<child link="right_finger"/>
<origin rpy="0 0 0" xyz="0.12 0 0"/>
<mimic joint="gripper_left" multiplier="-1" />
<axis xyz="0 1 0 "/>
<limit lower="-0.05" upper="0" effort="1" velocity="1"/>

</joint>
</robot>

	Introduction
	Context
	Objectives

	Arm manipulation
	Description
	URDF description
	Communication with the arm
	Inverse kinematics

	Computer vision
	Detection of the target in a horizontal plane
	Generating depth with stereo vision
	A bit of geometry
	Parameters
	Calibrating the stereo camera
	Stereo rectification parameters computation
	Stereo rectification
	Disparity map computation

	ROS 2 Interface
	Configuration and ROS 2 presentation
	ROS 2 Architecture
	Simulation
	Custom GUI

	Conclusion

