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Abstract

The aim of this project is to work with an old robotic arm called the UMI-RTX (created
in the 1980’s) and make it grab objects on a plane with its gripper. Some work has
already been done on this robot by students, but mainly with old tools. The idea of our
project is to implement a new way of making it work and to use more recent tools. More
specifically, our goal is to set up a ROS 2 environment and build an interface that will
allow us to perform image analysis, trajectory planning, and target grabbing.

We have chosen a plush banana as a target. With the computer vision library OpenCV
and the software development kit of Stereolabs (the manufacturer of our camera), we man-
aged, in a dedicated ROS 2 node, to detect the banana on the field and compute its 3D
position.

Once this is done, this information is sent to a node dedicated to inverse kinematics.
In this node, the joints’ states required to reach the aimed pose are processed and sent
both to a simulation and the real arm. For this, we have two nodes, each dedicated to its
own part, one for the simulation, the other for the real arm.

Finally, we designed a custom Graphic User Interface (GUI) in which the simulation,
processed image and the depthmap are integrated, and in which we are able to choose
between automatic control of the arm and a manual mode, where we can choose our own
target pose.

Thanks to this process, the arm is now able to follow and grab the banana. We can
display the result in our GUI and choose to manipulate the arm or let it go through the
automatic process.
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Chapter 1

Introduction

1.1 Context

This project is led in an internship context, mainly for educational purposes, at Lab42
in the University of Amsterdam, the Netherlands. The subject of this paper is an old
industrial arm, the UMI-RTX, which was created in the 1980s [9][10]. Despite his age,
the arm is still compatible with recent software and hardware. Its educational appeal is
obvious when we consider that a lot of work has already been done on it, especially by
Van Der Borght [1] and Dooms [3] who worked on a ROS 1 interface in order to control
it.

1.2 Objectives

The objectives of this project are plural. First, it is to improve our ROS 2 skills and learn
new knowledge. We have studied, on various levels, a wide scope of robotic disciplines like
computer vision, simulation, C++, network, and embedded Linux. Our goal, shared by
ENSTA Bretagne, our school, is to consolidate them. As students, this kind of internship
is strong in apprenticeships. Then, more importantly, the main objective of this project
is to create a ROS 2 interface in order to be able to control the arm. The robot should
be able to detect a recognizable object, a yellow banana plush in our case, move to this
object, and grab it. To this extent, we have to rely on previous works [1][3] and create,
from not much except the hardware drivers, a full ROS 2 interface.

1.3 Contribution

This project has been split in two. One part, handled by Théo MASSA, was to work on
the arm manipulation, make a simulation, and manage the ROS architecture. The other
part, handled by Guillaume GARDE, concerned computer vision. Both have worked
on building the Docker image for this project, and Théo challenged himself to create a
working custom GUI.
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Chapter 2

Arm manipulation

2.1 Description

This project uses the UMI-RTX arm, which is quite basic in its composition [9]. Indeed,
it is composed of an axis to translate on the z-axis and a three-part arm, where each part
is connected to another through revolute joints. Those joints can be controlled through
both position and velocity, but in this project, they are only controled through position,
as it is more adequate to our project, which is to grab a target, a mission that requires
to go to a specific position. Our method is also more adapted to a position control. Each
motor has encoders [9] that allow it to be controlled and know its state.

Figure 2.1: Model of the arm [3]

3
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As shown in Figure 2.1, this arm can be compared to a human arm. Joint 1 corre-
sponds to the shoulder, joint 2 to the elbow, and ensembles 3-4-5 to the wrist. For the
rest of this document, they will be referred to as in the following table:

Table 2.1: Description of the joints ID

Joint number Joint ID
0 ZED
1 SHOULDER
2 ELBOW
3 YAW

One typical characteristic of this arm is how the roll and pitch of the hand work. They
are not controlled separately but together by two motors, one on each side, causing two
rotation axis at the same origin. A view of this system can be seen in the following figure:

Figure 2.2: Wrist system [9]

This particular system has to be taken into account when controlling the arm, and
the two motors will be referred to as WRIST1 and WRIST2.

2.2 URDF description

For practical purposes, it is really useful, even mandatory, to have a digital twin of the
arm [6]. To this extend, it seems appropriate to use an URDF description of the arm.
This URDF (Unified Robotics Description Format) allows one to manipulate virtually
the arm and previsualize what effects the commands would have on the arm. Having
a virtual clone of our system is always something vital, and it is becoming increasingly
sought after, especially in robotics [6].

This description consists of a description of every part and joint, describing the geom-
etry of the blocks, the joints between them, their type, limits, etc. One can see below an
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extract of the description of the arm. The entire description can be found on Appendix
D 1.

Listing 2.1: URDF Description of the arm
<robot name="umi-rtx">

<link name="base_link">
<visual>
<geometry>
<box size="1.252 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 1.57" xyz="0 -0.0455 0"/>
<material name="blue">
<color rgba="0 0 .8 1"/>

</material>
</visual>

</link>

<joint name="shoulder_updown" type="prismatic">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin xyz="0 0.0445 -0.3" rpy="0 0 1.57"/>
<!-- xyz="0.0445 0 0.134" -->
<axis xyz="0 0 1"/>
<limit lower="0.033" upper="0.948" effort="1" velocity="1"/>

</joint>

<link name="shoulder_link">
<visual>
<geometry>
<box size="0.278 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 1 1 1"/>

</material>
</visual>

</link>

This description will be particularly useful when it comes to seeing the virtual model
in our simulation and processing the inverse kinematics (see section 2.4 ).

There is only one main difference between this description and reality, which is the
wrist, particularly the pitch and roll. In this description, there are two independent joints
dedicated to pitch and roll, whereas in reality, it was said before that two motors worked
together to handle those angles. Therefore, one have to be careful when converting this

1The URDF description comes from here :
https://github.com/LHSRobotics/hsrdp/blob/master/hsrdp_bridge/umi_rtx_100.urdf
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description into reality. The conversion formulas are:

WRIST1 =
roll + pitch

2

WRIST2 =
pitch− roll

2

Figure 2.3: Virtual model of the arm

On this model, every frames is attached to its part and represented in red, green and
blue, for the x, y and z axis.

2.3 Communication with the arm

As the arm is old, the communication is not direct. The documentation is limited [10][9],
and there are no ready-to-use drivers or software furnished by the creator of the arm. It
is necessary to use a TCP/IP connection through the RS232 bus between the computer
and the arm to send commands or acquire data from the arm. Doing this is already a lot
of work, but thanksfully, previously developed drivers were at our disposal. Thanks to
our supervisor A. Visser, a fully developed hardware driver that communicates with the
arm, furnished by him, is available.
However, this driver is one that allows to control the arm only via the terminal, when the
purpose is to build an interface that does not just happen via the terminal. The reason of
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this is that it is more intuitive to have a dedicated interface instead of controlling through
the terminal. See section 5.4 for more details. For this, one had to look into the source
code of the drivers, understand how they manage to communicate with the arm, and reuse
their functions in its own code.

Figure 2.4: Communication between the arm and the computer

One particularity of the arm, is that the motors are controlled by two 8031 chips, IPs2

called. Each IP ensures the proper operation of a selection of motors. Table 2.2 shows
which motors there are with their corresponding IP. So, for example, to move the arm up
and down (zed), it must first be switched to IP1. Once switched, the new command of
the motor can be entered [3]. IPC stands for Intelligent Peripheral Communication, and
it uses three possible ways of communication, relying on a request from the computer and
a response from the arm (see Figure 2.5).

ZED SHOULDER ELBOW YAW WRIST1 WRIST2 GRIPPER
IP1 IP1 IP1 IP1 IP0 IP0 IP1

Table 2.2: Overview of motors with corresponding IP

Figure 2.5: 3 ways of communication [3]

2Intelligent Peripheral
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In order to use the arm, a precise procedure have to be followed. First, one have to
start communication with the arm by launching the daemon and specifying which USB
port is used by the arm. Then, in our code, the communications are initialized by sending
a certain command to the arm, and every time the arm is used, an initialization procedure
has to be processed for the arm to know where the encoder’s limits are. Indeed, there
is no real memory of the encoders’ limits and parameters, so those have to be initialised
before every use of the arm. Fortunately, the drivers contain everything necessary to do
so.

After the initialization process, everything is ready to command the arm. All that’s
left is to use the predefined commands to set motors’ positions in memory and then go
to those position. It is indeed a two-step process to command the motors.

2.4 Inverse kinematics

Inverse kinematics is one of the main parts of this project. It consists of processing the
state of each joint given the desired pose of the end-effector. Unlike forward kinematics,
where the end-point pose given the state of every joint is processed, the opposite here is
done here.

Figure 2.6: Inverse and forward kinematics

The inverse kinematics process is way more complicated than forward kinematics be-
cause there are none, one, or multiple solutions, and the difficulty increases with the
number of joints or degrees of freedom. Fortunately, each joint has only one degree of
freedom, so computation is a bit simplified.

To compute those inverse kinematics, a C++ library named Pinocchio [2] was used,
which allows us to create algorithms that will process the inverse kinematics. This library
was selected due to its versatility and efficiency, but also and mainly because of its inte-
gration into ROS 2 packages.

To process the inverse kinematics, a method called CLIK, for Closed-Loop Inverse
Kinematics [5], was chosen, using methods and object from Pinocchio library. This iter-
ative algorithm allows us to find the best state of each joint in order to be as close as
possible to an objective defined by a position (x, y, z) and an orientation (yaw, pitch, roll).
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Let’s explain this algorithm:
Let be (x, y, z) the desired position and (ϕ, θ ψ) = (yaw, pitch, roll) the desired orien-

tation.
The different rotation matrices are defined by :

Rϕ =

cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


Rθ =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


Rψ =

0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)
1 0 0


And the desired rotation matrix by :

R = Rϕ.Rθ.Rψ

Finally, the desired pose lies in SE(3) space, defined by the desired position and R,
the desired rotation.

Then one can define q, a vector defining the initial state of the arm. Each value of q
corresponds to a joint "value". For example, the joint value for ZED will be in metres,
whereas SHOULDER, ELBOW... are in radians.

q =


q0
q1
q2
q3
q4
q5

 =


ZED

SHOULDER
ELBOW
Y AW
PITCH
ROLL


This vector is then initialised, whether at the neutral position of the arm or at the last

known state. Initialising this vector at the last state known allows a sort of continuity in
the solutions, because of the iterative method that is used after that.
Once all those parameters are set, the iterative process can begin.

• First, the forward kinematics with the current configuration defined by the vector
q is computed.

• Then, the transformation T ∈ SE(3) between the current pose and the desired one
is calculated and the logarithmic error computed, which is defined by :

err = log(T )

• if ||err|| ≤ ϵ with ϵ a defined coefficient that characterises the precision wanted, or
if a certain amount of iteration occurred, the iterative process is stopped

• Else, the Jacobian J of the current configuration is computed.
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• The vector v is defined thanks to the damped pseudo-inverse of J in order to avoid
problems at singularities:

v = −JT (JJT + λ.I)−1.e

v can be considered as the speed vector that will get the configuration closer to the
desired one.

• Then one can integrate q = q + v.dt and reiterate this process.

Once this iterative process is over, the required configuration is stored in q in order to reach
the desired pose. Finally, the angles needs to be transformed from [0, 2π] to [−180, 180]
for practical purposes and the required state is sent on the corresponding ROS topic
/motor_commands.

Figure 2.7: Evolution of the error according to iterations

Figure 2.8: Evolution of the number of iterations according to
ϵ in logarithmic scale

As one can see in the figures above, this method is quite efficient as the error decreases
exponentially. It also confirms the fact that our algorithm converges towards a solution.
On the other side of the coin, the smaller the ϵ, the greater the number of iterations
required, up to a point where it is no longer possible to converge within a reasonable time
or even to converge at all.
See Chapter 4 to see how the inverse kinematic calculation is integrated into our ROS 2
architecture.



Chapter 3

Computer vision

To make a robotic arm grab a target, a strong starting move is to rely on one key element:
computer vision [14]. This element is a set of several techniques to see the scene of interest
with an optical device and extract valuable information from it. In this project, these
techniques are used to detect a target and get its 3D position in the camera’s frame. The
language of programming that will be used here is C++, and the OpenCV1 methods that
will be cited here will be written accordingly with the C++ syntax.

3.1 Detection of the target in a horizontal plane

The target is a yellow banana plush. It will be put on a dark horizontal plane on which
the UMI-RTX is fixed.

Figure 3.1: The banana plush on the dark horizontal plane that supports the arm

The first task of the computer vision part is to detect this banana. The banana was
chosen because it is a convenient target. It is a standard object easy to find on Ikea; its
colour is convenient to detect; its softness makes it easy for a gripper to grab it; and it

1OpenCV documentation: https://docs.opencv.org/4.7.0/

11
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is coherent with the fact that most objects are not rectangular but have curves, therefore
the approach is more general.

The image process is made with OpenCV which includes build in methods for computer
vision. To extract the banana from the scene, one works in a specific colour space: the
HSV colour space (Hue, Saturation, Value) [15]. It is more common to hear about the
RGB [15] colour space (Red, Green, Blue), in which each colour is represented by a
set of three values between 0 and 255 corresponding to a proportion of the associated
colour. This is the colour space used to associate a colour to screen’s pixels. However,
the HSV space is an appropriate colour space to perform colour detection. Each colour is
represented by a triplet of values between 0 and 255 corresponding to its values of hue,
saturation, and value [15].

Figure 3.2: Representation of the RGB and HSV colour spaces [15]

The extraction of an object from an image is based on contour detection once the image
has been binarized according to a specific strategy. In this case, two HSV thresholds have
been selected, (20,100,100) and (60,255,255), to extract objects in between2. These values
have been chosen to binarize the image with cv::inRange() and extract yellow objects that
have similar HSV values. The result is a binarized image with white objects on a black
background. Then one can perform contour detection on these objects. A hypothesis
made for the project is that the only visible yellow object in the scene would be the
banana target. This ensures that when performing contour detection, only the contour of
the banana is found. The method cv::findContours() gathers all the contours detected, in
this case only the contour of the target. Then one can access the moments of the contour
with cv::moments() and compute the coordinates of its centroid in the reference frame of
the image.

2The saturation value range has been chosen wide to be sure to detect the target due to highly variable
light in Lab42 (natural and/or artificial light). These values can be adjusted

https://en.wikipedia.org/wiki/RGB_color_spaces
https://docs.opencv.org/3.4/da/d97/tutorial_threshold_inRange.html
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Figure 3.3: Example of detected banana and its contour with OpenCV

With the coordinates of the centroid, one can locate the banana in the horizontal
plane. The next step is to access its depth with respect to the camera, to grab it with
the UMI-RTX’s gripper.

3.2 Generating depth with stereo vision using OpenCV

To allow the arm to grab the target, it needs to know where it is. The first step of
detecting the banana in a horizontal plane can be done with a single camera, but getting
its depth is more complex and requires a second one [7]. This is called stereo vision. The
stereo device used in this project is the ZED Mini camera device from StereoLabs3.

Figure 3.4: The ZED Mini stereo device

On this type of device, both lenses are on the same support and have parallel optical
axes and coplanar image planes. Some stereo installations use two distinct cameras that
can be separated from each other according to need [7].

3https://www.stereolabs.com/zed-mini/

https://www.stereolabs.com/zed-mini/
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Figure 3.5: Vision of an object (on the right) with a stereo camera (on the left). O1 and
O2 are the optical centers and B the distance between the optical axes [15]

The main idea behind stereo vision is to reproduce human vision [16]. One will use
the difference in perception of the scene to extract depth information. OpenCV provides
methods and algorithms to get to that point step by step [8]. The theory behind these
methods belongs to computer science and vision. The calculations made to extract in-
formation from the views fall within the framework of projective geometry and epipolar
geometry [4][7].

3.2.1 A bit of geometry

Projective space is an extension of Euclidean space where parallel lines meet at infinity
[7]. To work in projective space, one has to use homogeneous coordinates [16][7]. These
coordinates are used to characterise changes in space and allow to consider points at
infinity and to calculate with points that are not at infinity with matrices as in Euclidean
space. Projective geometry is used in computer science to manipulate coordinates, but it
is not the only one used. The other mathematical aspect is epipolar geometry. It describes
the relationship between two views of the same object [16].

Figure 3.6: Representation of the epipolar plane [16]

Characterising the links and differences between the two views of a stereo device is
essential to performing any type of scene reconstruction.
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3.2.2 Parameters

One needs to know some parameters associated with the scene and the camera in order
to access depth information. The first type of parameter is the intrinsic parameters [16],
which are internal to the camera, such as the focal length f or the baseline B, which
is the distance between the optical axes. The second type of parameter is the extrinsic
parameters [16], which are a rotation matrix R that links the scene reference frame to
that of the camera and a vector T corresponding to a translation that links one reference
frame to the other. The third type of parameter is the fundamental matrix F [7] [16] that
contains all the epipolar information of the views, and the camera matrices that describe
the mapping of 3D points in the world to 2D points in the images. Accessing depth
information can only be done through the determination of these parameters, thanks to
a well-thought-out strategy.

3.2.3 Calibrating the stereo camera

The first step of the process is to calibrate the ZED Mini device in order to compute
the extrinsic parameters, the fundamental matrix and the camera matrices [7][16]. To
do so, one has to use stereo images with easy-to-detect points and apply correspondence
algorithms to compute the results. In this project, a black and white chessboard was
photographed five times in different poses to guarantee robustness.

Figure 3.7: One of the views of the chessboard used to calibrate the ZED Mini device

One has to declare the inner pattern that will be searched by the algorithm. In this
case, it is the inner part of the chessboard that has 7 by 5 corners. It is very important to
correctly count the inner corners for the algorithm to work. It is also necessary to provide
the algorithm with the size of a square (3.1 cm here). Then, for each pair of images, one
has to use cv::findChessboardCorners() for the left and the right views. This method will
detect the declared pattern in the images and the associated corners. Then one has to
use cv::cornerSubPix() to refine the positions of the detected corners.

Once this is done, the 2D positions of the corners in the left and right images are saved
in associated vectors, and, for each pair of images, the 3D coordinates of the corners with
respect to the top left corner, using real dimensions, with the third coordinate set to
0 for now, are saved in a dedicated vector. Which means that one has a vector whose
five components are the same and two other vectors whose components are relative to
the images. Finally, one uses cv::stereoCalibrate() to compute the following parameters:
calibration Root-Mean-Square (RMS) error, left camera matrix, right camera matrix, left
distortion coefficients, right distortion coefficients, rotation matrix, translation vector,
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essential matrix, and fundamental matrix. The algorithm that summarises the process is
in Appendix A.

Figure 3.8: Detected corners on the precedent left view, associated to the declared pattern

3.2.4 Stereo rectification parameters computation

After calibrating, one must rectify some things. The goal here is to make both camera
image planes the same by finding the right rotation matrices. This makes all the epipolar
lines parallel and simplifies the correspondence problem [7]. For this part, one uses the
camera matrices and distortion coefficients that were computed during the previous step.
One must use cv::stereoRectify(), and it will compute rectification transforms (rotation
matrices) for the cameras, projection matrices in the new rectified coordinate systems for
the cameras, and a disparity-to-depth mapping matrix.

3.2.5 Stereo rectification

The next part is to "computes the joint undistortion and rectification transformation and
represent the result in the form of maps for remap" by using cv::initUndistortRectifyMap()
To do so, one must use the parameters found during the previous step. Then one can
remap the images to be rectified (in this case, the work scene) with cv::remap(). This
must be applied once for each view. On the following images is an image of the work scene
taken by the left camera and its associated rectified image. One can see on the bottom
image that the curved lines have been corrected into straight lines, and now everything is
set to work on disparity.
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Figure 3.9: Work scene view and associated rectified image

3.2.6 Disparity map computation

Stereo vision reproduces human vision [16][7]. Each camera of the stereo device will per-
ceive the scene in its own way, just like the human eye. Therefore, the scene seems to
be shifted to the right or left, depending on the considered view. This is where in-depth
information can be found. Between the views, there will be a difference in horizontal
positioning for each object. This difference can be measured in pixels, for instance, and
is called disparity [16][7]. The principle is, then, simple. When considering an object in
a stereo image of a scene, the bigger the disparity, the closer the object. Computing dis-
parity for every object in the scene allows for the creation of a disparity map. Moreover,
considering that depth (Z) and disparity (d) are proportionate following the equation
Z = fB

d
, one can access a depth map with a disparity map.

OpenCV provides two algorithms to compute disparity between two stereo-associated
views: cv::stereoBM() and cv::stereoSGBM(), which is a modified version of the first one.
These two algorithms perform horizontal block matching between the views. One has
to set some parameters4 of the constructor before computing the disparity map. Each
parameter has a precise influence on the results, and it may be difficult to set them
correctly. A brief description can be found in the appendices. One thing important to
remember, though, is that these algorithms are sensitive to texture. A lack of texture in
the images can result in poor results. Hence it is necessary to make them as robust as
possible before testing above the planar support of the UMI-RTX. In this project, many

4http://wiki.ros.org/stereo_image_proc/Tutorials/ChoosingGoodStereoParameters

http://wiki.ros.org/stereo_image_proc/Tutorials/ChoosingGoodStereoParameters
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configurations (different images and parameter values) have been tried and given various
results. The following pictures illustrate the process. On the first one, one can see an
extraction from the rectified left view, on which were kept objects that are seen by both
cameras.

Figure 3.10: Left view of the scene

For this scene, here is the disparity map obtained:

Figure 3.11: The associated disparity map

On the disparity map, one notices that there are many levels of grey. The brighter,
the closer. This map is still noisy, but it is one of the cleanest disparity maps made during
the project. One has to keep in mind that finding convenient parameter values is difficult
and that it is possible to scale down the disparity or normalise it. To easily optimize the
settings, the disparity map can been adjusted using a GUI with trackbars linked to each
parameter5.

5See appendix C
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Figure 3.12: The associated depth map

However, changing one parameter often strongly disturbs the harmony of the map.
The depth map associated with this image is not very good yet.

3.3 Generating depth with Stereolabs’ SDK

The depth map obtained with OpenCV alone is too imprecise yet. The chosen process
is coherent, but adjusting parameters to get valuable and useful 3D information is too
complex. One has the opportunity to improve this system by using a far better solution.
Section 3.2 shows how to perform depth computing only by using OpenCV and letting
aside Stereolabs’ drivers. However, considering the fact that this project uses a Stereolabs’
device, one can choose to try and work with their software development kit (SDK). It has
built-in tools that enable the user to access trustworthy and quality information.

3.3.1 Stereolabs

Stereolabs is a French company based in Silicon Valley. It is a world leader in the use of
stereo vision and artificial intelligence to provide 3D depth and motion sensing solutions.
It sells stereo cameras, software, and embedded PCs for 3D perception and AI. This
project works with one of their cameras, the ZED Mini, initially designed for mixed
reality, and their software development kit.

3.3.2 Using Stereolabs’ software development kit

The SDK6 is a toolbox for creating software on a particular platform. It’s packed with
tools to build software, spot and solve issues, and often includes pre-made code that’s

6https://www.ibm.com/blog/sdk-vs-api/

https://www.ibm.com/blog/sdk-vs-api/
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perfect for that platform’s operating system. It allows the user to use built-in tools and
their associated graphic user interfaces, such as a simple stereo viewer or a depth viewer
with 3D scene reconstruction.

Figure 3.13: ZED_Explorer a simple tool to access the stereo vision of the ZED Mini -
view of LAB42

Figure 3.14: ZED_Depth_Viewer a simple tool to access the depth map of the scene and
a 3D reconstruction - view of LAB42

This project uses the latest release of the SDK, the ZED SDK 4.0. A choice of an SDK
was necessary considering that there is no general package provided for stereo cameras.
Stereolabs also provides a diagnosis service that analyzes the installation of the SDK, the
status of the ZED device, and the availability of the graphic drivers. Besides, it allows
the user to access valuable information with great precision, which could not be accessed
before by simply using the stereo device and OpenCV. Among the provided data are the



21

precise focal lengths (see Appendix C), which are needed to compute the (X, Y ) positions,
horizontal and vertical, in metric units from Z, the computed depth. In addition, these
tools allow the user to set the desired frame per second (FPS), video quality, and even the
depth mode. It means that one can choose the mode coherently with the performances
needed. For instance, in this project, one works with a highly performing mode. In
the context of this work, it suits perfectly, but one has to take into account that the
greater the performance, the heavier the calculations. There is even a final mode that
pushes performances further. It consists of adding artificial intelligence, which improves
the depth map by pertinently correcting the values. But it will not be used in this project.
The last release of the SDK (version 4.0) uses an NVIDIA library called CUDA to run AI
and computer vision tasks. Hence the necessity of having a computer with great graphic
processing capabilities. Even though one can easily download7 the SDK and access its
documentation8, having PCs that are not powerful enough to use its tools and do not have
graphic processing units (GPUs) will be a problem. This is why using the ZED SDK is
really a new step in this project compared to simple OpenCV-based stereo vision. From
here, it is necessary to start working with a very powerful computer that has everything
needed to continue the work.

3.3.3 Integration into the project

It is a good choice to use the SDK if one needs something precise and efficient to compute
depth. Using OpenCV alone has slowed this project down. The idea behind this choice
is to keep the structure of Section 3.2 and adapt it to the SDK’s tools. The advantage
of doing so is that the code is much lighter and clearer now. There is, indeed, no use for
a calibration or rectification part. Thanks to the SDK, one can use the stereo camera
nearly directly at full capacity. There are only a few adjustments to make. The initial
process for the vision code was:

(i) setting the stereo SGBM algorithm and its parameters

(ii) opening the camera and checking its availabilitywe

(iii) stereo calibrating

(iv) stereo rectifying

(v) entering the processing loop

(a) reading the stereo image of the scene

(b) splitting the image into left and right views

(c) detecting the banana’s position and orientation

(d) computing disparity

(e) computing depth

(f) publishing the resulting images and data

The advantage of this code is that one can really see and understand what is happening
to the images. It gets through the whole depth computation process. Whereas with the

7https://www.stereolabs.com/docs/installation/linux/
8https://www.stereolabs.com/docs/

https://www.stereolabs.com/docs/installation/linux/
https://www.stereolabs.com/docs/


22

SDK, the process is much lighter since there is no use for calibrating, rectifying the
views, or computing disparity. To use the SDK in this code, one has to specify in the
CMakeLists.txt the appropriate dependencies:

find_package(ZED 3 REQUIRED)
find_package(CUDA ${ZED_CUDA_VERSION} REQUIRED)

In the computer vision node’s header, one also has to write:

#include <sl/Camera.hpp>

The steps then are:

(i) setting camera parameters (resolution, fps, depth mode, units, distance range)

(ii) opening the camera and checking its availability

(iii) entering the processing loop

(a) getting the left view, the depth map and the 3D points cloud

(b) detecting the banana’s position and orientation

(c) getting the associated 3D coordinates

(d) publishing the resulting images and data

This work has been conducted with some specific parameters: a HD720 resolution,
15 fps, the ultra-depth mode, in millimeters, and a minimum computable distance
of 100 mm. Then with the methods zed.retrieveImage(), one has access to the left and
right views and to the depth map9. It is as simple as that. These images are published
on dedicated topics. One just needs to subscribe to them or use RQt10 to display them.

Figure 3.15: Left view with target detection on

9With zed.retrieveMeasure(), one has access, among others, to the 3D points cloud
10http://wiki.ros.org/rqt

http://wiki.ros.org/rqt


23

Figure 3.16: Depth map of the scene

Figure 3.13 and Figure 3.14 are useful to make a fair comparison with the images
from Section 3.2.6. On Figure 3.16 and Figure 3.17, one can see the project’s work space
with the robotic arm and the banana. On the first one, it is clear that the banana has
been detected and its contour drawn. On the second one, one can see the UMI-RTX,
brighter than the rest of the image, above its planar support (much darker). There lies
the banana target on a box. This helps gain insight into how the situation is evolving,
and one can easily figure out if something goes wrong.

However, the images obtained cannot yet be correctly seen or published on ROS 2
topics. They need to be converted from the format designed by Stereolabs to an OpenCV
format so that they can be published with ROS 2 (note that ROS 2 nodes are provided
by Stereolabs. However, in that case, one cannot integrate these functions into a custom
node of their project but can only use these unmodifiable nodes). To do so, one can
use two handmade methods provided by Stereolabs: slMat2cvMat() and getOCVtype().
These are not part of the SDK but use items from it. They can be found in the Appendix.
slMat2cvMat() creates a cv::Mat matrix from a sl::Mat by accessing its dimensions, the
OpenCV type given by getOCVtype() from the Stereolabs type, and a pointer to its values
in the memory. Once this is done, it is required to convert one last time from the BGRA
format to BGR. It is used in computer vision for alpha compositing. The idea is to
combine one image with a background to create a transparency effect [11]. Publishing
OpenCV images with ROS 2 is easily feasible by using:

sensor_msgs::msg::Image::SharedPtr X_msg = cv_bridge::CvImage(std_msgs::msg
::Header(),"X_format",X_source_image).toImageMsg()

Afterwards, the process is similar. The target detection is identical to Section 3.1, but
the acquisition of its orientation has been added to it (yaw, pitch, and roll). This is done
through the get_angles() method. The idea is to find a line that fits best the contour by
minimizing the distance to the edges. It can be done with cv::fitLine() [8]. Then, once
the contour of the banana and the fittest line have been found, one can find an orientation
for the target. At this point, one also has the coordinates of its centroid. This is where
the 3D point cloud comes in.
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Figure 3.17: 3D point cloud of the scene. Front and side view. On the bottom of the
front view, one can see the 3D model of the stereo camera

As one has the coordinates in pixels of the target’s centroid, one can find the cor-
responding metric (X, Y, Z) coordinates in the point cloud with the method getValue().
Then one has the 3D coordinates in millimeters of the banana. But they are in the ref-
erence frame of the left camera. Hence, it is necessary to add offsets with respect to the
origin of the world frame of the UMI-RTX. The origin is marked by the intersection of
the lines (see Figure 3.13 ). At this point, one just has to publish the processed and depth
images and the coordinates of the target. Nonetheless, this code has to be run with a
specific version of ROS 2 (Foxy). Therefore, one can use a Docker image that provides
everything required.

https://www.stereolabs.com/docs/api/
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Docker image

4.1 Docker

Docker 1 is a lightweight and open-source containerization platform that allows developers
to package applications and their dependencies into isolated, standardized units called
containers. These containers can then be easily transported between different systems,
ensuring consistent behavior across diverse environments, from development to production
[13].

4.2 Necessity of Docker

As described in Section 3.3, a powerful computer with a Nvidia GPU was needed to run
the application. This computer, kindly furnished by our supervisor, came with a Linux
installation. However, the version of Ubuntu installed wasn’t the same as the one we
worked with until now. This computer came with the Ubuntu 22.04 distribution, while
we worked on Ubuntu 20.04. This difference is important because the version of ROS 2
differs according to the Ubuntu distribution, as well as the way the code has to be done.
This means our work is not compatible with an Ubuntu 22.04 distribution, more precisely
with ROS 2 Humble.

To solve this issue, it was decided to create a Docker image of an Ubuntu 20.04 instal-
lation that would take advantage of the hardware of the computer. This containerization
allows anyone who has Docker to use our project. They don’t need a ROS installation
any more, just to install Docker. As a result, this makes our project really portable. The
only thing is that it requires a NVIDIA graphic card for the reasons explained in Section
3.3.

1https://www.docker.com/
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4.3 Building the bespoke project’s image

When it comes to creating a new Docker image, one has to understand an important
thing. There is a "bank" of basic distribution that can be downloaded and used as a
starting point for its own image. For example, any distribution of Ubuntu or Windows
can be used as the base, and any additional layers can be installed with a script and
commands.

For our image, there were two options. We could build an image from a fresh Ubuntu
20.04 distribution and install every driver, package, and other stuff manually, or we could
use a predefined distribution furnished by Stereolabs and build around it. Our first try
was to do it fully manually with the first option.

However, this decision was probably the wrong one because there was an issue when
the ZED SDK was added to our image. Files were missing, and drivers refused to work.
For that reason, it was decided to rely on an image furnished directly by Stereolabs, which
was an Ubuntu 20.04 distribution with the SDK already installed on it. Once it was done,
all that was left to do was install ROS2, download our project through Git, and follow the
procedure in order to install it correctly. Our installation script can be found in Appendix
E.

One particularity of this image is that the command to launch it is special. It needs
several privileged accesses to the computer hardware. It needs access to the GPU for image
processing and the screen to launch the GUI. For this, one has to give it privileged access
when launching with docker tags: –gpus all -it –privileged -e DISPLAY=$DISPLAY -v
/tmp/.X11-unix:/tmp/.X11-unix and also opening the screen to usage with xhost + in
the terminal.
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ROS 2 Interface

5.1 Configuration and ROS 2 presentation

For this project, Ubuntu 20.04 and ROS 2 Foxy were used

ROS 2 1 (Robot Operating System 2) is an open-source framework designed for build-
ing and controlling robotic systems [12]. It is the successor to ROS 1 and offers several
improvements and new features to enhance the development and deployment of robotics
applications. With its modular and distributed architecture, ROS 2 provides a flexible
and scalable platform for creating advanced robot systems.

Utilising a pub-sub messaging model, ROS 2 enables efficient communication between
different components of a robot system, facilitating the exchange of data and commands.
It supports multiple programming languages and provides a variety of tools and libraries
that simplify the development process. ROS 2 also focuses on real-time and embedded
systems, making it suitable for a wide range of robotic applications, from small embedded
devices to large-scale distributed systems [12].

ROS 2 brings several key benefits to developers and roboticists. It offers improved
performance and reliability thanks to its optimised middleware, which enables faster and
more efficient communication between nodes. This enhanced performance is particularly
beneficial for applications requiring real-time or low-latency operations. ROS 2 also em-
phasises security and safety with features such as authentication and fine-grained access
control, making it more suitable for sensitive applications and environments [12].

1https://docs.ros.org/en/foxy/index.html
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ROS 2 communications are based on two principal concepts: nodes and topics. Nodes
are individual software modules that perform a specific task within a robotic system.
Nodes are the fundamental building blocks of a ROS application, and they communicate
with each other by passing messages. On the other side of the coin, topics are the com-
munication channels used by nodes to exchange messages in ROS. A topic is a named
bus where nodes can publish messages or subscribe to receive messages. It follows the
publish-subscribe communication pattern, where nodes that generate data publish mes-
sages to a topic, and nodes interested in that data subscribe to the topic to receive the
messages [12].

5.2 ROS 2 Architecture

When running only the simulation, here are the interactions between every ROS node:

Figure 5.1: Node graph when running only the simulation

Here, the central node is /GUI. This node is the one where the GUI is executed and
where information is centralized. It sends the targeted pose to the /inverse_kinematics
node that will process the inverse kinematics in order to get and send the required joints’
state that will make the arm reach its target, through the /motor_commands topic. The
/simulation node subscribes to this topic and, through /robot_state_publisher, sends the
robot description to the integrated simulation panel in our GUI that will be described in
section 5.4. This closed loop allows to control the arm as wanted.

In this system, one has to be careful how he deals with the yaw. This is because for the
real arm, the yaw is equal to 0 when it is in reality equal to arctan2(y, x) where x and y
are the coordinates of the end-effector. To be clearer, in simulation, the yaw origin is the
y-axis, whereas for the encoders, the yaw origin and neutral point follow the axis between
the zed-axis and the wrist. Because of this, one has to be careful to avoid confusion with
the yaw value.

Concerning the node handling the stereovision, which is /camera_api, the ZED SDK
described earlier was used. Our working version of the interface fully uses the SDK, and
one can see that it sends lots of information, like the desired pose or two images, the depth
map, and an image where the object is surrounded. This data is sent to GUIw which is
the intermediary between the data and the simulation and/or the arm.
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Figure 5.2: Node graph when running real arm

For the real arm, the node graph is a bit more complicated due to the use of the arm
node. This node also subscribes to the targeted pose to be aware of when the target
changes. By doing so, useless calculations are avoided. Indeed, if commands are sent
to the arm only when the target changes, it will cost less resources than trying to send
commands at every loop, and it will also be more reactive to any changes.

Every topic distributes its own type of message among the standard messages that
exist in ROS 2. Below are the message types associated with every topic of our ROS
architecture.

Table 5.1: Messages description

Topics Messages Purpose
/joint_states sensor_msgs/msg/JointState State of the simulation

/motor_commands sensor_msgs/msg/JointState Configuration required
to reach the target

/robot_description std_msgs/msg/String Description of the robot
to visualize it in the simulation

/target_pose geometry_msgs/msg/Point Pose (position & orientation)
to reach

/target_grip std_msgs/msg/Float32 Grip to reach
/processed_pose geometry_msgs/msg/Point Pose processed by

the computer vision
/processed_image sensor_msgs/msg/Image Image where the object is shown

/depth_image sensor_msgs/msg/Image Depth map

5.3 Simulation

Simulation takes place thanks to RViz2, a ROS 2 visualization tool, in which every frame
is well defined thanks to the inverse kinematics and the TF included in ROS 2. A TF (for
Transformed Frame) provides a convenient way to manage the frames relative positions
by maintaining a tree-like structure of frames and managing the transformations between
them. It helps to seamlessly convert coordinates from one frame to another and handle
various operations involving transformations and coordinate systems. It simplifies a lot the
dispositions of the frames in the simulation. Those TF are obtained thanks to the URDF
file that initiates them, and then they are actualized thanks to the inverse kinematics
algorithm that gives the positions of each joint. The rendering of this simulation and how
it is processed are explained in the following part of our GUI description.
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5.4 Custom GUI

For the interface, several options were available. It could just have been a terminal-driven
interface, but this choice reduced the possibilities and was really not adapted to our goal
of fully controlling the arm. There was also the possibility of using external software like
Foxglove 2 that would be adapted to this interface.
However, building our own GUI was the preferred choice because it offered more control,
and it was quite interesting to build our own Graphic Interface. It was preferred to cen-
tralize all the information in one interface that is simple to use and autonomous.

Thanks to Qt5 3, a custom GUI (for Graphic User Interface) was designed, one that
allows us to define the desired pose if we want to manually control the arm, see the
simulation through to the integration of RViz2 into the GUI, and check the processed
image or the depth map as well. This interface is an all-in-one interface, allowing us to
control the arm as we want.

There were some aspects of this interface that required more work due to their higher
difficulty to implement. Integrating RViz2 into this custom interface necessitated a lot
of introspection into RViz’s API. Unfortunately, the documentation was sparse, so it was
challenging to understand which functions, classes, and concepts to use.

To quickly explain how RViz works, it is based on Qt (which facilitates the integration
into our own GUI) and relies on what’s called a render_panel. It is sort of the "frame" in
which everything happens. It will be this object that will be integrated into our interface.
However, this render_panel by itself is not sufficient to have everything printed. What is
called a VisualizationManager, a tool that allows us to add specific displays to our panel,
has to be instantiated. Thanks to this tool, one is able to add a RViz default displays that
will allow us to see our arm and the TF, more precisely rviz_default_plugins/RobotModel
and rviz_default_plugins/TF. However, if only this is done, only the different frames
defined by the TFs and not the model will be seen. This is because the RobotModel display
needs to subscribe to a ROS 2 topic dedicated to providing the description of the robot.
Then a display’s property that allows us to subscribe to the topic /robot_description,
which is such a topic, is used.

Finally, one just has to add the tool necessary to be able to move the camera into this
panel, and here is a fully custom and customizable RViz2 integration in our interface.

Figure 5.3: Current version of our custom GUI

2https://foxglove.dev/
3https://doc.qt.io/qt-5.15/
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The particularity of this custom GUI is that it is linked to a ROS node. This is nec-
essary because, as explained above, this interface allows you to interact with the targeted
pose. For this, it is necessary to have a connection with the node that handles the pub-
lication of this targeted pose, even more so when we consider that we have to choose if
the arm has to be controlled manually or automatically. To do so, a switch button was
included in the interface that modifies a public Boolean of the node. This Boolean defines
what type of commands are wanted for our system.
Thanks to "Manual mode", one can control the arm with the sliders displayed on our
interface. If the button is clicked, it switches to "Grab mode", in which the arm follows
a predefined procedure: it goes to where the object is, grabs it, displays the banana, and
then puts it at another place. The algorithm works, but there are still minor issues. Be-
cause of the lack of precision, sometimes the grip misses the banana, but it is always very
close. Despite that, the planned trajectory is well followed; one just has to be careful not
to plan the arm to move too fast because the system is really limited by the motors’ speed.

In order to prove this assumption, a series of tests have been conducted. The test was
to launch the automatic mode from a random position of the arm and of the target. The
only condition was that the arm had to be above the target. It resulted that 63% of the
attempts to realise our algorithm were successful and in most of the missed attempts, the
arm was close to the target and it missed by not much. More, when the arm grabbed the
target correctly, it was put correctly at its end pose (a predefined position) on 85% of the
tries. Those success rates can be considered sufficient for the time put on it.



Chapter 6

Conclusion

Our progress during this internship has been interesting. Our purpose was to create a
ROS 2 interface that could make the UMI-RTX grab a simple object using computer
vision and inverse kinematics. We are proud of the work accomplished during these past
few months. It was quite a challenge to gather state-of-the-art and classic technology.

That does not mean there is no work left to be done. Our interface can be improved.
Nonetheless, it works efficiently. We managed to get a strong computer vision process,
and the arm responds well to the commands we send through it. The simulation is also
efficient and well integrated into the GUI, which allows us to gather all the useful com-
mands and data. More concretely, we succeeded in using stereo vision to compute a depth
map of the scene and access the target’s 3D position with respect to the UMI-RTX’s world
frame; in converting these coordinates into orders for the arm to follow a calculated tra-
jectory; and in grabbing the target and lifting it to another location. In that aspect, we
can say that we have found a way to accomplish our mission.

However, there is still room for improvement. One of the major issues is the first
version of the computer vision part. This code only uses OpenCV, not the SDK. The
problem is that the depth map is not yet reliable. It is good that we managed to write
our own code and not use the drivers. But the drawback is that setting the parameters
correctly makes it difficult to understand their influence. As examples of improvement
points, we could cite: better understanding the format and type of disparity data; correct-
ing the normalization if need be; pre- and/or post-filtering the images; computing depth
using the disparity-to-depth matrix. It would have been smarter to write the SDK-based
node first to have some strong results to rely on and compare to. We lost a lot of time
trying to figure out what we were missing.

It is also important to mention the work we did with Docker. Creating a custom
Docker image was quite challenging, but we succeeded in doing it, making the project
way more accessible now. This custom image has several advantages. First, it allows ev-
eryone who has a Nvidia GPU and Docker installed to use the arm; Ubuntu and ROS are
no longer mandatory to do so. Secondly, it also allows us to compile and sum up in a file
what needs to be done in order to make the utilization successful. The only counterpart
is that we didn’t manage to do a fully self-built custom image. We had to use an image
furnished by Stereolabs where the SDK was already installed. But in the end, it works
really well, and we are quite satisfied with the work we did on it.
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As more general improvements, we could work on the threshold settings that enable
the code to detect the targeted banana. Depending on the light in the laboratory, there
can be some noise that makes the banana go undetected. Concerning the arm, efficiency
can still be improved. When using automated mode, the movement is quite jerky due
to the time the arm needs to reach a position. We have to see whether movement can
be smoothed when it tries to follow a trajectory. When we try to have a full view of
our work, it seems we have globally accomplished what we wanted to do, despite minor
aspects that still need some work.

We are also very satisfied with all that we have learned. We have consolidated our
ROS 2 skills, improved our Docker knowledge, and learned a lot about computer vision
and creating a custom GUI. We are grateful for all of this.
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Appendices

A. Stereo calibration algorithm

Stereo calibrating

Input: 5 pairs of stereo images showing different poses of the calibration chess-
board; rectified left and right views of the scene.

(i) Declaring vectors to save the corners’ coordinates: objectPoints (3D
coordinates of the corners with respect to the top left one for each pair of
images), cornersLeft (2D coordinates of the corners in the left views of each
pair of images), and cornersRight (same but for the right views).

(ii) Declaring pattern size and squarre size: here cv::Size patternSize(7,5) and
float squareSize = 3.1.

(iii) For each pair of images:

(a) Declare vectors to save 2D coordinates for the left and right view.

(b) Use cv::findChessboardCorners(), which returns true if the pattern was
found, for the left and right view.

(c) If corners are detected, use cv::cornersSubPix() to refine detection and save
the detected points in the associated vectors. Then push these vectors in
cornersLeft and cornersRight. Declare a vector of 3D coordinates (using
true dimensions) associated with the pattern with respect to the top left
corner and under the form (x,y,0). Push it inside ObjectPoint.

(iv) Declare output parameters and calibrate: use cv::stereoCalibrate().

Output: a cv::Mat disparity map.
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B. A quick description of the stereo block matching algorithms’
parameters

Parameter Description
minDisparity minimum possible disparity value
numDisparities maximum disparity minus minimum disparity
blockSize matched block size
P1 first smoothness parameter for close neighbor pixels
P2 second smoothness parameter for further neighbor pixels

disp12MaxDiff maximum allowed difference (in integer pixel units) in the left-
right disparity check

uniquenessRatio
margin in percentage by which the best (minimum) computed
cost function value should "win" the second best value to con-
sider the found match correct

speckleWindowSize maximum size of smooth disparity regions to consider their
noise speckles and invalidate

speckleRange maximum disparity variation within each connected compo-
nent

These are the main parameters for the cv::stereoSGBM() constructor. The cv::stereoBM()
constructor only uses numDisparity1 and blockSize.

1Automatically computed with 0 as minimum value.
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C. Customized simple GUI to set disparity parameters with track-
bars

This disparity map is bad. This illustrates the fact that even with trackbars to help set
the right values, it remains delicate to get reliable data this way.
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D. Some camera parameters given by the SDK
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E. Converting images from Stereolabs format to OpenCV format

Listing 6.1: format conversion method from Stereolabs to OpenCV
cv::Mat Camera_API::slMat2cvMat(sl::Mat& input){

return cv::Mat(input.getHeight(), input.getWidth(), getOCVtype(input.
getDataType()), input.getPtr<sl::uchar1>(sl::MEM::CPU), input.
getStepBytes(sl::MEM::CPU));

}

int Camera_API::getOCVtype(sl::MAT_TYPE type){
int cv_type = -1;
switch (type) {

case MAT_TYPE::F32_C1: cv_type = CV_32FC1; break;
case MAT_TYPE::F32_C2: cv_type = CV_32FC2; break;
case MAT_TYPE::F32_C3: cv_type = CV_32FC3; break;
case MAT_TYPE::F32_C4: cv_type = CV_32FC4; break;
case MAT_TYPE::U8_C1: cv_type = CV_8UC1; break;
case MAT_TYPE::U8_C2: cv_type = CV_8UC2; break;
case MAT_TYPE::U8_C3: cv_type = CV_8UC3; break;
case MAT_TYPE::U8_C4: cv_type = CV_8UC4; break;
default: break;

}
return cv_type;

}
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F. URDF description of the arm

Listing 6.2: URDF Description of the arm
<?xml version="1.0"?>
<robot name="umi-rtx">

<link name="base_link">
<visual>
<geometry>
<box size="1.252 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 1.57" xyz="0 -0.0455 0"/>
<material name="blue">
<color rgba="0 0 .8 1"/>

</material>
</visual>

</link>

<joint name="shoulder_updown" type="prismatic">
<parent link="base_link"/>
<child link="shoulder_link"/>
<origin xyz="0 0.0445 -0.3" rpy="0 0 1.57"/>
<!-- xyz="0.0445 0 0.134" -->
<axis xyz="0 0 1"/>
<limit lower="0.033" upper="0.948" effort="1" velocity="1"/>

</joint>

<link name="shoulder_link">
<visual>
<geometry>
<box size="0.278 0.132 0.091"/>

</geometry>
<origin rpy="0 -1.57 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 1 1 1"/>

</material>
</visual>

</link>

<joint name="shoulder_joint" type="revolute">
<parent link="shoulder_link"/>
<child link="shoulder_to_elbow"/>
<origin xyz="-0.01 0 -0.09"/>
<axis xyz="0 0 1"/>
<limit lower="-1.57" upper="1.57" effort="1" velocity="1"/>

</joint>

<link name="shoulder_to_elbow">
<visual>
<geometry>
<box size="0.252 0.10 0.10"/>
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</geometry>
<origin rpy="0 0 0" xyz="0.126 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="elbow" type="revolute">
<parent link="shoulder_to_elbow"/>
<child link="elbow_to_wrist"/>
<origin xyz="0.252 0 -0.07"/>
<axis xyz="0 0 1"/>
<limit lower="-3.14" upper="2.64" effort="1" velocity="1"/>

</joint>

<link name="elbow_to_wrist">
<visual>
<geometry>
<box size="0.252 0.10 0.07"/>

</geometry>
<origin rpy="0 0 0" xyz="0.126 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="wrist" type="revolute">
<parent link="elbow_to_wrist"/>
<child link="wrist_to_wrist_gripper_connection"/>
<origin xyz="0.252 0 -0.05"/>
<axis xyz="0 0 1"/>
<limit lower="-1.92" upper="1.92" effort="1" velocity="1"/>

</joint>

<link name="wrist_gripper_connection_to_gripper">
<visual>
<geometry>
<box size="0.10 0.10 0.05"/>

</geometry>
<origin rpy="0 0 0" xyz="0.05 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<link name="wrist_to_wrist_gripper_connection">
<visual>
<geometry>
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<box size="0.075 0.10 0.05"/>
</geometry>
<origin rpy="0 0 0" xyz="0 0 0"/>
<material name="white">
<color rgba="1 0 0 1"/>

</material>
</visual>

</link>

<joint name="wrist_gripper_connection_roll" type="revolute">
<parent link="wrist_to_wrist_gripper_connection"/>
<child link="virtual_link"/>
<origin xyz="0 0 0"/>
<axis xyz="-1 0 0"/>
<limit lower="-3.16" upper="2.3" effort="1" velocity="1"/>

</joint>

<link name="virtual_link"/>

<joint name="wrist_gripper_connection_pitch" type="revolute">
<parent link="virtual_link"/>
<child link="wrist_gripper_connection_to_gripper"/>
<origin xyz="0 0 0"/>
<axis xyz="0 -1 0"/>
<limit lower="-1.71" upper="0.07" effort="1" velocity="1"/>

</joint>

<joint name="wrist_gripper_connection" type="fixed">
<parent link="wrist_gripper_connection_to_gripper"/>
<child link="gripper_base"/>
<origin xyz="0 0 0"/>

</joint>

<link name="gripper_base">
<visual>
<geometry>
<box size="0.077 0.15 0.078"/>

</geometry>
<origin rpy="0 0 0" xyz="0.10 -0.02 0.012"/>
<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<link name="left_finger">
<visual>
<geometry>
<box size="0.07 0.015 0.025"/>

</geometry>
<origin rpy="0 0 0" xyz="0.06 -0.04 0"/>
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<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<link name="right_finger">
<visual>
<geometry>
<box size="0.07 0.015 0.025"/>

</geometry>
<origin rpy="0 0 0" xyz="0.06 0.04 0"/>
<material name="white">
<color rgba="0.5 0.5 0.5 1"/>

</material>
</visual>

</link>

<joint name="gripper_left" type="prismatic">
<parent link="gripper_base"/>
<child link="left_finger"/>
<origin rpy="0 0 0" xyz="0.12 0 0"/>
<axis xyz="0 1 0"/>
<limit lower="0" upper="0.05" effort="1" velocity="1"/>

</joint>

<joint name="gripper_right" type="prismatic">
<parent link="gripper_base"/>
<child link="right_finger"/>
<origin rpy="0 0 0" xyz="0.12 0 0"/>
<mimic joint="gripper_left" multiplier="-1" />
<axis xyz="0 1 0 "/>
<limit lower="-0.05" upper="0" effort="1" velocity="1"/>

</joint>
</robot>
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G. Dockerfile

Listing 6.3: Dockerfile of our image
FROM stereolabs/zed:4.0-gl-devel-cuda11.4-ubuntu20.04

ARG DEBIAN_FRONTEND=noninteractive
SHELL ["/bin/bash", "-c"]

ENV USER=root
# Setlocale
RUN apt update && apt install locales
RUN locale-gen en_US en_US.UTF-8
RUN update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
RUN export LANG=en_US.UTF-8
RUN apt install software-properties-common -y
RUN add-apt-repository universe

RUN apt update && apt install curl -y
RUN curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o

/usr/share/keyrings/ros-archive-keyring.gpg

RUN echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/
ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-
release && echo $UBUNTU_CODENAME) main" | tee /etc/apt/sources.list.d/ros2.
list > /dev/null

RUN apt update
RUN apt upgrade -y
RUN apt install ros-foxy-desktop python3-argcomplete -y

RUN echo "source /opt/ros/foxy/setup.bash" >> ~/.bashrc
RUN source /opt/ros/foxy/setup.bash
RUN source ~/.bashrc
RUN apt-get install git wget -y

WORKDIR /home/Stage
RUN git clone https://github.com/gardegu/LAB42_RTX_control.git
WORKDIR /home/Stage/LAB42_RTX_control
RUN ./install_dependencies.sh
RUN mkdir logs

RUN apt install python3-colcon-common-extensions -y
RUN echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ros/foxy/lib:/opt/ros/

foxy/opt/rviz_ogre_vendor:/opt/ros/foxy/opt/aml_cpp_vendor’ >> ~/.bashrc
RUN echo ’export PATH=$PATH:/opt/ros/foxy/bin’ >> ~/.bashrc
RUN echo ’export PYTHONPATH=$PYTHONPATH:/opt/ros/foxy/lib/python3.8/site-

packages’ >> ~/.bashrc

WORKDIR /home/Stage/LAB42_RTX_control
RUN apt install nano -y
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