
Speech recognition for NAO

Tim Groot, Cornelis Boon, Amir Alnomani, Joris Timmer
University of Amsterdam

Science Park 1098 XH Amsterdam

June 27, 2014

1



Abstract

A NAO robot is a humanoid robot, mostly used for robot soccer.
The emphasis of this research is to let the robot execute certain mo-
tions associated with the verbal command accordingly. This was done
by differentiating between the different commands by using speech
recognition. The Nao-robot is very convenient for tasks related to this
one, which is why the Nao was chosen over other robots, as well as that
it’s relatively easy to program. Another advantage of the NAO is that it
can also be controlled remotely using an internet connection, which is
very convenient as it’s not necessary to update the NAO software, be-
cause any updates get uploaded directly to the robot. The application
called Choregraphe, provided by Aldebran Robotics, is used to de-
velop complex behaviours for the robots without having to write any
code, but its also possible to use python or c++ to develop behaviours.
In this experiment a NAO was used to recognize speech and act ac-
cordingly to the commands it was given.

Introduction
The NAO is a humanoid robot meant as a fully programmable companion for humans.
The NAO has been an important step for the advancement of companion robots. NAO
robots can be very useful as they can be made fully autonomous. This way the robot
can be programmed to simulate a human being. The aim of this research is to find out
how to make NAO react to different commands and execute different behaviours as-
sociated with those commands. Therefore, the research question is: How can a NAO
efficiently execute different motion commands to its relative speech activation? As this
question suggests, this experiment strives to create different tasks that can be executed
by certain corresponding commands. The hypothesis states that multiple different com-
mands should be able to work side by side. Starting off with just a single one, we will
continue to add more layers gradually, all experimenting with speech- and soundstim-
uli as input. Once a speech to text algorithm is implemented, it should be easy to add
more commands/tasks. Therefore, the main problem we are facing here is making an
algorithm which can convert a sound file to a string of text or another form of data that
can be analysed easily, such as a numerical value.

Materials and Method
The main tool we used for programming the NAO was the Choregraphe application
version 1.14.5 part of NAOqi with which it’s possible to create behaviours using a
specific graphical interface. Its also possible to use python scripts within Choregraphe
for more specific behaviours.

First we implemented the command animations using Choregraphe, the commands
include: bow, push-ups, head bang and salute. The bow animation makes the NAO bow,
and say ”yes, sir”. See the image below.

1



Figure 1: The ’bow’ animation as seen in the Choregraphe interface

The push-ups are a combination of animations which first makes the NAO move
to the ground with his arms forward, following an arm motion which looks like actual
push-ups. The ’head bang’ animation moves the right arm of the NAO upward and the
head joint move forward and backward eight times. Finally, the salute motion makes
the Nao salute like a soldier by raising its arm near the head and then quickly moving
it aside. All implemented motions have matching sound files. For example: When the
Nao starts doing push-ups, it shouts: ’Yes, Drill Sergeant!’.

As for speech recognition, the first thing that was worked on was sound localiza-
tion. Taking inspiration from the built-in box called ’sound loc.’, we derived a new box
that would allow for the NAO to turn towards sound. Sound loc. makes the robot turn
its head towards incoming sound, so we edited the box’s script in order to try to relo-
cate its body, instead of the head. Of course, turning a whole body is more complicated
than just the head, which one can modify using just one variable, called angles. It was
soon decided to move on and focus on speech recoginition instead.
The built-in speech recognition box in Choregraphe was used in a manner where every
separate motion had its own speech recognition box. All those boxes were simultane-
ously connected from the input, resulting in moves that would initialize at the same
time and the Nao wouldn’t listen properly for to all the commands. The problem here
was that the built-in speech recognition box isn’t actually a check for sounds, like an
if-statement. The box always initializes, meaning all commands would play as soon as
one of the speech recognition states succeeds. A possible fix to this problem was to
store every motion with its recognition box into a layer separately. After finding out
that it’s possible to have multiple simultaneous layers of behaviours we tried using this
together with the build in speech recognition, but to no avail.
Another attempt was trying to integrate Googles speech to text to Choregraphe which
could be used to return a string of any speech and then use this together with a switch
statement box to execute the commands. The crg file we got from Aldebaran’s commu-
nity site claiming to implement this functionality didn’t do anything, the NAO would
not recognize anything that was said. Whether this was due to the noisy workspace or
anything else, remains unclear. After finding out that its possible to have multiple sim-
ulataneous layers of behaviours we tried using this together with the build in speech
recognition but to no avail.
Lastly, for speech recognition, we have also tried to write some code that would record
speech into a .wav file, put the recorded sound from the .wav file through a fourier

2



Figure 2: A demonstration of the push-up position in action

transform algorithm called the Fast Fourier TransformCooley and Tukey (1965), and
then use the frequencies that would be most occurring to discern between a few com-
mands. However, due to inexperience with the Python language, writing scripts for the
Nao and lack of time, we were unable to produce any scripts that wouldn’t conflict any
other existing boxes.

Results
For as far as this 4-day lasting research goes, it is easy to conclude that the hypothesis
has been rejected, since the implementation wasn’t able to consider all five motions si-
multaneously. All the motions, including their activation commands ended up working
separately and can be demonstrated by enabling the layer of the desired motion and
disabling all the rest. Combined, they caused too many problems to use this final im-
plementation. Every movement/motion separately, including its sound file, works, and
can be called upon by enabling the right layer and offering the right keywords in the
form of speech to the NAO. The push-up animation stands out from the other motions,
because the animation can also be cancelled whilst playing. This is done by, in this
case, saying ’stop’ or ’enough’ to the robot.

Conclusion & Discussion
Returning to the initial research question: How can a NAO efficiently execute different
motion commands to its relative speech activation, we can conclude that this can be
done by creating the movements and binding them to a speech recognition box rela-
tively easily. However, the real challenge involves being able to take more than one
possible command into consideration and this is an issue this research cannot resolve
yet.
To make multiple commands work together simultaneously, there needs to be an other
way coverting speech to text, in order to work with this text as a string of letters in-
stead. Another improvement would lie in the NAO’s wifi connection. We’ve encoun-
tered some practical issues, like the fact that the NAO’s connection was not always
stable, which delayed our progress immensely. Also, the room we were working in was

3



very noisy, which caused the NAO’s microphone to overload and disfunction, making
the speech recognition harder. We could not change rooms due to being restricted to a
specific access point whose signal barely reached neighbouring rooms.

Suggestions
Future students that would be interested in the subject of speech and sound recognition,
using NAOs, should first get acquainted with Python (or C++), as well as how to work
with and write code for the NAO’s, prior to starting on this project. Four days are not
enough to execute a similar project, without having the needed resources and skills.
Working in Choregraphe only, was not enough for this project.

Appendix
• Choregraphe v.1.14.5 (Including Naoqi)

• Toshiba i5 Laptop (Windows 7)

• Dutch Nao Team wifi connection (RoboLab, Science Park, Amsterdam)

• Aldebaran NaO (red)

References
Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the machine calculation of

complex fourier series. Math. of Comp. 19:297–301.

Dominey, P. F.; Van Der Zant, T.; Lallee, S.; Jouen, A.-l.; Hinaut, X.; Weitzenfeld, A.;
Van Hoof, H.; and Chacón, J. D. Cooperative human robot interaction with the nao
humanoid: Technical description paper for the radical dudes.

• Aldebaran Robotics, Softbank Group 2014. NAO animation, ’how to’.
Available from: https://community.aldebaran-robotics.com/resources/tutorial/nao-
animation-how-to/

4


	Introduction
	Materials and Method
	Results
	Conclusion & Discussion
	Suggestions
	Appendix

