Game Playing

Search the action space of 2 players

Russell & Norvig Chapter 5
Bratko Chapter 24
Game Playing

- ‘Games contribute to AI like Formula 1 racing contributes to automobile design.’
- ‘Games, like the real world, require the ability to make some decision, even when the optimal decision is infeasible.’
- ‘Games penalize inefficiency severely’.
Games vs. search problems

- "Unpredictable" opponent \Rightarrow specifying a move for every possible opponent reply
- Time limits \Rightarrow unlikely to find the solution, must approximate a solution
Game tree of tic-tac-toe (2-player, deterministic, turn-taking, zero sum)
Minimax

- Perfect play for deterministic games
- Idea: choose move to position with highest minimax value = best achievable payoff against perfect playing opponent
- E.g., 2-ply game:
Minimax algorithm

function MINIMAX-DECISION(state) returns an action
 \[v \leftarrow \text{MAX-VALUE}(state) \]
 return the action in SUCCESSORS(state) with value \(v \)

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return \(\text{UTILITY}(state) \)
 \[v \leftarrow -\infty \]
 for \(a, s \) in SUCCESSORS(state) do
 \[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s)) \]
 return \(v \)

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return \(\text{UTILITY}(state) \)
 \[v \leftarrow \infty \]
 for \(a, s \) in SUCCESSORS(state) do
 \[v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s)) \]
 return \(v \)
Minimax prolog implementation

minimax(Pos, BestSucc, Val) :-
 moves(Pos, PosList), !, % Legal moves in Pos
 best(PosList, BestSucc, Val) ;
 staticval(Pos, Val). % Terminal Pos has no successors

best([Pos], Pos, Val) :-
 minimax(Pos, _, Val), !.

best([Pos1 | PosList], BestPos, BestVal) :-
 minimax(Pos1, _, Val1),
 best(PosList, Pos2, Val2),
 betterof(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Val1, Pos0, Val0) :-
 min_to_move(Pos0), Val0 > Val1, ! % MAX prefers the greater value
 ;
 max_to_move(Pos0), Val0 < Val1, !. % MIN prefers the lesser value

betterof(Pos0, Val0, Pos1, Val1, Pos1, Val1).
% Otherwise Pos1 better than Pos0
Minimax Python implementation

```python
def minimax_decision(state, game):
    """Given a state in a game, calculate the best move by searching
    forward all the way to the terminal states. [Fig. 6.4]""
    player = game.to_move(state)

    def max_value(state):
        if game.terminal_test(state):
            return game.utility(state, player)
        v = -infinity
        for (a, s) in game.successors(state):
            v = max(v, min_value(s))
        return v

    def min_value(state):
        if game.terminal_test(state):
            return -game.utility(state, player)
        v = infinity
        for (a, s) in game.successors(state):
            v = min(v, max_value(s))
        return v

    # Body of minimax_decision starts here:
    action, state = argmax(game.successors(state),
                           lambda ((a, s)): min_value(s))
    return action
```

This pseudo code is provided by Russell & Norvig
Game interface

- Bratko’s implementation: [fig22_3.txt](#)
- The tic-tac-toe game interface is based on 4 relations:

  ```prolog
  moves( Pos, PosList)     % Legal moves in Pos, fails when Pos is terminal
  staticval( Pos, Val).    % value of a Terminal node (utility function)
  min_to_move( Pos )       % the opponents turn
  max_to_move( Pos )       % our turn
  ```

- Bratko’s terminal position are win (+1) or loose (-1),
Game interface

• Russell & Norovig implementation:
• The game interface is based on 4 functions:

```
game.successors(state)
game.utility(state, player)
game.to_move(state)
game.terminal_test(state)
```
Properties of minimax

- **Complete?** Yes (if tree is finite)
- **Optimal?** Yes (against an optimal opponent)
- **Time complexity?** $O(b^m)$
- **Space complexity?** $O(bm)$ (depth-first exploration)

- For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games → exact solution completely infeasible
\(\alpha-\beta\) pruning

- Efficient minimaxing
- Idea: once a move is clearly inferior to a previous move, it is not necessary to know exactly how much inferior.
- Introduce two bounds:
 - \(\text{Alpha} = \text{minimal value the MAX is guaranteed to achieve}\)
 - \(\text{Beta} = \text{maximal value the MAX can hope to achieve}\)
- Example:
α-β pruning

- Example:

\[
\begin{align*}
\text{MAX} & \quad \text{MIN} \\
3 & \quad 3 \\
3 & \quad 12 & \quad 8 & \quad 3 & \quad 12 & \quad 8 \\
3 & \quad 12 & \quad 8 & \quad 2 & \quad X & \quad X \\
3 & \quad 12 & \quad 8 & \quad 2 & \quad X & \quad X \\
3 & \quad 12 & \quad 8 & \quad 14 & \quad X & \quad X \\
\end{align*}
\]

\begin{align*}
\text{Alpha} & = 3 \\
\text{Val} & < \text{Alpha}, & \text{Val} & > \text{Alpha} \\
\text{Newbound}(\beta) & \\
\end{align*}
α-β pruning

- Example:

Val > α
Newbound(β)

Val < α
!
Properties of $\alpha-\beta$

- Pruning **does not** affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity $= O(b^{m/2})$ \rightarrow **doubles** depth of search
- A simple example of the value of reasoning about which computations are relevant (a form of **meta-reasoning**)

Arnoud Visser

Search, Navigate, and Actuate – Search through Game Trees
AlphaBeta prolog implementation

\begin{verbatim}
alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-
 moves(Pos, PosList), !, % Legal moves in Pos
 boundedbest(PosList, Alpha, Beta, GoodPos, Val)
 ;
 staticval(Pos, Val). % Terminal Pos has no successors

boundedbest([Pos | PosList], Alpha, Beta, GoodPos, GoodVal) :-
 alphabeta(Pos, Alpha, Beta, _, Val),
 goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal).
...

goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-
 min_to_move(Pos), Val > Beta, ! % MAX prefers the greater value
 ;
 max_to_move(Pos), Val < Alpha, !. % MIN prefers the lesser value

goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-
 newbounds(Alpha, Beta, Pos, Val, NewAlpha, NewBeta), % Refine bounds
 boundedbest(PosList, NewAlpha, NewBeta, Pos1, Val1),
 betterof(Pos, Val, Pos1, Val1, GoodPos, GoodVal).
\end{verbatim}
def alphabeta_full_search(state, game):
 """Search game to determine best action; use alpha-beta pruning.
 As in [Fig. 6.7], this version searches all the way to the leaves.""

 player = game.to_move(state)

 def max_value(state, alpha, beta):
 if game.terminal_test(state):
 return game.utility(state, player)
 v = -infinity
 for (a, s) in game.successors(state):
 v = max(v, min_value(s, alpha, beta))
 if v >= beta:
 return v
 alpha = max(alpha, v)
 return v

 def min_value(state, alpha, beta):
 if game.terminal_test(state):
 return game.utility(state, player)
 v = infinity
 for (a, s) in game.successors(state):
 v = min(v, max_value(s, alpha, beta))
 if v <= alpha:
 return v
 beta = min(beta, v)
 return v

 # Body of alphabeta_search starts here:
 action, state = argmax(game.successors(state),
 lambda ((a, s)): min_value(s, -infinity, infinity))
 return action
Properties of α-β implementation

+ straightforward implementation
- It doesn’t answer the solution tree
- With the depth-first strategy, it is difficult to control
Prolog assignment

- Download AlphaBeta implementation from Bratko: fig22_5.txt
- Replace in your solution minimax for AlphaBeta. Create test-routines to inspect the performance difference

```
alphabeta( Pos, Alpha, Beta, GoodPos, Val, MaxDepth)
```