Search the action space of 2 players

Russell & Norvig Chapter 5
Bratko Chapter 24
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Game Playing

* ‘Games contribute to Al like _—
Formula 1 racing contributes to
automobile design.’

‘Games, like the real world,
require the ability to make some
decision, even when the
optimal decision 1s infeasible.’

‘Games penalize inefficiency
severely’.
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(Games vs. search problems

Arnoud Visser

"Unpredictable" opponent = specifying a
move for every possible opponent reply

Time limits = unlikely to find tAe solution,
must approximate a solution
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x
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Game tree of tic-tac-toe
(2-player, deterministic, turn-taking, zero sum)

MIN {O)

MIN {O)

TERMINAL

Utility University of Amsterdam
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Perfect play for deterministic games

Idea: choose move to position with highest
minimax value = best achievable payoff against
perfect playing opponent

E.g., 2-ply game: h

| A
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function MINIMAX-DECISION(state) returns an action

v MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U= —00
for a,sin SUCCESSORS(state) do
v MAaX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U4— 00
for a,sin SUCCESSORS(state) do
v MIN(v, MAX-VALUE(s))
return v
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minimax ( Pos, BestSucc, Val)
moves ( Pos, PosList), !, Legal moves in Pos
best ( PosList, BestSucc, Val)

4

staticval ( Pos, Val). Terminal Pos has no successors

best ( [ Pos], Pos, Val)
minimax ( Pos, , Val), !.

best ( [Posl | PosList], BestPos, BestVal)
minimax ( Posl, , Vall),
best ( PosList, Pos2, Val2),
betterof ( Posl, Vall, Pos2, Val2, BestPos, BestVal).

betterof ( PosO, Val0O, Posl, Vall, Pos0O, ValO) P
min to move ( PosO), ValO > Vall, ! % MAX prefers the greater value

max to move( PosO0), ValO < Vvall, !. % MIN prefers the lesser value

betterof ( PosO, ValO, Posl, Vall, Posl, Vall).
% Otherwise Posl better than PosO
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def minimax decision(state, game):
"""Given a state in a game,
forward all the way to the terminal states.
player = game.to move (state)
def max value (state):

if game.terminal test (state):
return game.utility(state,
-infinity
(a, s)
v =

player)
v =
for in game.successors (state) :
max (v, min value(s))

return v

def min value (state):

if game.terminal test (state):
return game.utility (state,
infinity
(a, s) in game.successors(state):
min (v, max value(s))

player)
v =
for
v =
return v

# Body of minimax decision starts here:
action, state = argmax (game.successors (state),
lambda ((a, s)):

return action

Arnoud Visser

calculate the best move by searching
[Fig.

6.4] mwmoan

This pseudo code 1s provided by
Russell & Norvig

min value(s))
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http://aima.cs.berkeley.edu/python/games.html
http://aima.cs.berkeley.edu/python/games.html

Bratko’s implementation: fig22 3.t

The tic-tac-toe game interface is based on 4 relations:

moves ( Pos, PosList) % Legal moves in Pos, fails when Pos is terminal
staticval ( Pos, Val). % value of a Terminal node (utility function)
min to move( Pos ) % the opponents turn

max to move( Pos ) $ our turn

Bratko’s terminal position are win (+1) or loose (-1),
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http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

Russell & Norovig implementation:
The game 1nterface 1s based on 4 functions:

.successors (state)
.utility(state, player)
.to move (state)
.terminal test (state)
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Properties of minimax

Complete? Yes (if tree 1s finite)

Optimal? Yes (against an optimal opponent)

Time complexity? O(b™)
Space complexity? O(bm) (depth-first exploration)

For chess, b= 35, m =100 for "reasonable" games
—> exact solution completely infeasible

University of Amsterdam
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Efficient minimaxing

Idea: once a move is clearly inferior to a previous move, it is
not necessary to know exactly how much inferior.

Introduce two bounds:

Alpha = minimal value the MAX is guaranteed to achieve

Beta = maximal value the MAX can hope to achieve

Example: e >

University of Amsterdam
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Example:

3
MAX # MAX MAX

IR MIM £14

hAIM

Alpha =3 Val < Alpha, Val > Alpha
! Newbound(p)

X

el

x
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Arnoud Visser

Val > a
Newbound(p)
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Properties of a-f3

Pruning does not affect final result

Good move ordering improves effectiveness of
pruning

With "perfect ordering," time complexity = O(b™?)
—> doubles depth of search

A simple example of the value of reasoning
about which computations are relevant
(a form of meta-reasoning)
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alphabeta ( Pos, Alpha, Beta, GoodPos, Val) :-

[e)

moves ( Pos, PosList), !, % Legal moves in Pos

boundedbest ( PosList, Alpha, Beta, GoodPos, Val)

.
4

staticval ( Pos, Val). % Terminal Pos has no successors

boundedbest ( [Pos | PosList], Alpha, Beta, GoodPos,
alphabeta ( Pos, Alpha, Beta, , Val),

GoodVal)

GoodVal) .

goodenough ( PosList, Alpha, Beta, Pos, Val, GoodPos,

goodenough( , Alpha, Beta, Pos, Val, Pos, Val) :-
min to move ( Pos), Val > Beta, ! MAX prefers the greater value

.
4

max to move( Pos), Val < Alpha, !. MIN prefers the lesser value

goodenough ( PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal)

newbounds ( Alpha, Beta, Pos, Val, NewAlpha, NewBeta),
boundedbest ( PosList, NewAlpha, NewBeta, Posl, Vall),
betterof ( Pos, Val, Posl, Vall, GoodPos, GoodVal).
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def alphabeta full search(state, game):
"""Search game to determine best action; use alpha-beta pruning.
As in [Fig. 6.7], this version searches all the way to the leaves."""

player = game.to move (state)

def max value(state, alpha, beta):
if game.terminal test(state):
return game.utility(state, player)
v = —-infinity
for (a, s) in game.successors (state):
v = max (v, min value(s, alpha, beta))
if v >= beta:
return v
alpha = max(alpha, V)
return v

def minivalue(state, alpha, beta):
if game.terminal test(state):
return game.utility(state, player)
v = infinity
for (a, s) in game.successors (state):
v = min(v, max value(s, alpha, beta))
if v <= alpha:
return v
beta = min (beta, V)
return v

# Body of alphabeta search starts here:
action, state = argmax (game.successors (state),
lambda ((a, s)): min value(s, -infinity, infinity))

return action
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_|_

straightforward implementation

It doesn’t answer the solution tree

With the depth-first strategy, it 1s difficult to control
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Download AlphaBeta implementation from Bratko:
fig22 5.txt

Replace 1n your solution minimax for AlphaBeta.

Create test-routines to inspect the performance
difference

alphabeta( Pos, Alpha, Beta, GoodPos, Val, MaxDepth)
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http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

