Search the action space of 2 players

Russell & Norvig Chapter 5
Bratko Chapter 24

University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

Game Playing

* ‘Games contribute to Al like _—
Formula 1 racing contributes to
automobile design.’

‘Games, like the real world,
require the ability to make some
decision, even when the
optimal decision 1s infeasible.’

‘Games penalize inefficiency
severely’.

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

(Games vs. search problems

Arnoud Visser

"Unpredictable" opponent = specifying a
move for every possible opponent reply

Time limits = unlikely to find tAe solution,
must approximate a solution

6‘
x
University of Amsterdam

Search, Navigate, and Actuate — Search through Game Trees

Game tree of tic-tac-toe
(2-player, deterministic, turn-taking, zero sum)

MIN {O)

MIN {O)

TERMINAL

Utility University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

Perfect play for deterministic games

Idea: choose move to position with highest
minimax value = best achievable payoff against
perfect playing opponent

E.g., 2-ply game: h

| A

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

function MINIMAX-DECISION(state) returns an action

v MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U= —00
for a,sin SUCCESSORS(state) do
v MAaX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U4— 00
for a,sin SUCCESSORS(state) do
v MIN(v, MAX-VALUE(s))
return v

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

minimax (Pos, BestSucc, Val)
moves (Pos, PosList), !, Legal moves in Pos
best (PosList, BestSucc, Val)

4

staticval (Pos, Val). Terminal Pos has no successors

best ([Pos], Pos, Val)
minimax (Pos, , Val), !.

best ([Posl | PosList], BestPos, BestVal)
minimax (Posl, , Vall),
best (PosList, Pos2, Val2),
betterof (Posl, Vall, Pos2, Val2, BestPos, BestVal).

betterof (PosO, Val0O, Posl, Vall, Pos0O, ValO) P
min to move (PosO), ValO > Vall, ! % MAX prefers the greater value

max to move(PosO0), ValO < Vvall, !. % MIN prefers the lesser value

betterof (PosO, ValO, Posl, Vall, Posl, Vall).
% Otherwise Posl better than PosO

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

def minimax decision(state, game):
"""Given a state in a game,
forward all the way to the terminal states.
player = game.to move (state)
def max value (state):

if game.terminal test (state):
return game.utility(state,
-infinity
(a, s)
v =

player)
v =
for in game.successors (state) :
max (v, min value(s))

return v

def min value (state):

if game.terminal test (state):
return game.utility (state,
infinity
(a, s) in game.successors(state):
min (v, max value(s))

player)
v =
for
v =
return v

Body of minimax decision starts here:
action, state = argmax (game.successors (state),
lambda ((a, s)):

return action

Arnoud Visser

calculate the best move by searching
[Fig.

6.4] mwmoan

This pseudo code 1s provided by
Russell & Norvig

min value(s))

Search, Navigate, and Actuate — Search through Game Trees

http://aima.cs.berkeley.edu/python/games.html
http://aima.cs.berkeley.edu/python/games.html

Bratko’s implementation: fig22 3.t

The tic-tac-toe game interface is based on 4 relations:

moves (Pos, PosList) % Legal moves in Pos, fails when Pos is terminal
staticval (Pos, Val). % value of a Terminal node (utility function)
min to move(Pos) % the opponents turn

max to move(Pos) $ our turn

Bratko’s terminal position are win (+1) or loose (-1),

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees 10

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

Russell & Norovig implementation:
The game 1nterface 1s based on 4 functions:

.successors (state)
.utility(state, player)
.to move (state)
.terminal test (state)

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees 1

Properties of minimax

Complete? Yes (if tree 1s finite)

Optimal? Yes (against an optimal opponent)

Time complexity? O(b™)
Space complexity? O(bm) (depth-first exploration)

For chess, b= 35, m =100 for "reasonable" games
—> exact solution completely infeasible

University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

13

Efficient minimaxing

Idea: once a move is clearly inferior to a previous move, it is
not necessary to know exactly how much inferior.

Introduce two bounds:

Alpha = minimal value the MAX is guaranteed to achieve

Beta = maximal value the MAX can hope to achieve

Example: e >

University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

14

Example:

3
MAX # MAX MAX

IR MIM £14

hAIM

Alpha =3 Val < Alpha, Val > Alpha
! Newbound(p)

X

el

x

University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees 15

Arnoud Visser

Val > a
Newbound(p)

Search, Navigate, and Actuate — Search through Game Trees

University of Amsterdam

16

Properties of a-f3

Pruning does not affect final result

Good move ordering improves effectiveness of
pruning

With "perfect ordering," time complexity = O(b™?)
—> doubles depth of search

A simple example of the value of reasoning
about which computations are relevant
(a form of meta-reasoning)

University of Amsterdam

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

17

alphabeta (Pos, Alpha, Beta, GoodPos, Val) :-

[e)

moves (Pos, PosList), !, % Legal moves in Pos

boundedbest (PosList, Alpha, Beta, GoodPos, Val)

.
4

staticval (Pos, Val). % Terminal Pos has no successors

boundedbest ([Pos | PosList], Alpha, Beta, GoodPos,
alphabeta (Pos, Alpha, Beta, , Val),

GoodVal)

GoodVal) .

goodenough (PosList, Alpha, Beta, Pos, Val, GoodPos,

goodenough(, Alpha, Beta, Pos, Val, Pos, Val) :-
min to move (Pos), Val > Beta, ! MAX prefers the greater value

.
4

max to move(Pos), Val < Alpha, !. MIN prefers the lesser value

goodenough (PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal)

newbounds (Alpha, Beta, Pos, Val, NewAlpha, NewBeta),
boundedbest (PosList, NewAlpha, NewBeta, Posl, Vall),
betterof (Pos, Val, Posl, Vall, GoodPos, GoodVal).

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

Refine bounds

def alphabeta full search(state, game):
"""Search game to determine best action; use alpha-beta pruning.
As in [Fig. 6.7], this version searches all the way to the leaves."""

player = game.to move (state)

def max value(state, alpha, beta):
if game.terminal test(state):
return game.utility(state, player)
v = —-infinity
for (a, s) in game.successors (state):
v = max (v, min value(s, alpha, beta))
if v >= beta:
return v
alpha = max(alpha, V)
return v

def minivalue(state, alpha, beta):
if game.terminal test(state):
return game.utility(state, player)
v = infinity
for (a, s) in game.successors (state):
v = min(v, max value(s, alpha, beta))
if v <= alpha:
return v
beta = min (beta, V)
return v

Body of alphabeta search starts here:
action, state = argmax (game.successors (state),
lambda ((a, s)): min value(s, -infinity, infinity))

return action

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

19

|

straightforward implementation

It doesn’t answer the solution tree

With the depth-first strategy, it 1s difficult to control

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

Download AlphaBeta implementation from Bratko:
fig22 5.txt

Replace 1n your solution minimax for AlphaBeta.

Create test-routines to inspect the performance
difference

alphabeta(Pos, Alpha, Beta, GoodPos, Val, MaxDepth)

Arnoud Visser Search, Navigate, and Actuate — Search through Game Trees

http://media.pearsoncmg.com/intl/ema/ema_uk_he_bratko_prolog_3/prolog/ch22/fig22_3.txt

