Teaching a Virtual
Duckietown Agent to Stop

-
e
=

Sebastiaan C. Aflaki

Layout: typeset by the author using IXTEX.
Cover illustration: Gym-Duckietown Simulator (Chevalier-Boisvert, Golemo, Cao, Mehta, & Paull, 2018))

Teaching a Virtual Duckietown
Agent to Stop

Sebastiaan C. Aflaki
11230851

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

X

%)

X

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor

Dr. A. Visser

Informatics Institute
Faculty of Science
University of Amsterdam
Science Park 904
1090 GH Amsterdam

April 15, 2021

Abstract

A fully self-driving car (SDC) is a vehicle that can keep track of its surround-
ings and navigate without human assistance. Although SDC’s are already being
utilized, safety concerns limit public use. One of those concerns lies with the han-
dling of traffic signs. As human drivers ignoring stop-signs often leads to dangerous
situations, it is of the utmost importance that SDC’s handle them correctly. This
study attempts to teach a reinforcement learning agent proper stop-sign behaviour
in order to increase the safety of self-driving cars.

Keywords: Reinforcement Learning, Proximal Policy Optimization, Stop-
Sign Behaviour, Autonomous driving.

Contents

(1.1 Context and topic|.

(1.2 Scope and tocus|

(1.3 Research question| oL

2 Theoretical background|

[2.2 Reinforcement learning|

[2.2.1 Policy Gradient Methods|

3 Method
[3.1 Algorithm| . . .
[3.2 Training|

b Conclusion|

6 i ol

10
10
11
11
11
12

14
14
16
17
19

20
20
20
21
21
21

23

24

25

[A__Reward Function Pseudo-codel
(B Training Datal

Chapter 1

Introduction

1.1 Context and topic

A fully self-driving car (SDC or autonomous car) is a vehicle that can keep track of
its surroundings and navigate without human assistance. For over fifty years, self-
driving vehicles have been a focal point of study in artificial intelligence and it is fair
to assume SDC’s are no longer merely a concept. Although completely autonomous
vehicles are not yet widely available to the public, several applications of fully
driverless vehicles are presently on the road for public usage. Today’s autonomous
cars navigate their environment by utilizing a variety of tools including Lidar,
Radar, GPS and, most critically, computer vision to intpret this data. Google’s
Waymo cars, for example, which currently serve as a driverless taxi service, utilize
Lidar, radar, computer vision and numerous other sensors to map, scan, anticipate
and respond to traffic environments.

SDC development has always been primarily motivated by the need to increase
road safety. Studies show that human error was found to be responsible for 94% of

7

all traffic collisions in the United States (Singh, 2015). As fully autonomous cars
take away all vehicle control from human drivers, they are believed to effectuate
a substantial decrease in traffic accidents involving human drivers(Policy, [2016)).
However, before SDCs are made available to the public, the difficult task of creat-
ing control systems robust to all kinds of traffic situations and unforeseen events
must be perfected. Scenarios such as intersections, can easily create dangerous
situations if navigated wrongly. Due to the wide variety of intersection configu-
rations, this can be an exceptionally difficult subject to generalize. Stop-signs,
which urge vehicles to come to a complete stop regardless of whether or not there
is oncoming traffic, are an important part of traffic regulations. In the United
States the primary method of regulating traffic at intersections is through the use
of stop-signs(Retting, Weinstein, & Solomon, 2003). A study by Retting et al.
collected data on two-way stop-sign-controlled intersection crashes in four U.S.
cities and found that out of 1.788 crashes about 70% consisted of stop-sign viola-
tions. Furthermore, about 48% of all crashes at stop-sign-controlled intersections
were related to drivers ignoring stop-signs. (Retting et al., 2003) To ensure that
autonomous vehicles are beneficial to road safety, they must be capable of correct
stop-sign behaviour.

1.2 Scope and focus

There are several approaches to teaching a self-driving agent to obey stop-signs
using machine learning. One of the more recent and interesting approaches in self-
driving car research is Reinforcement Learning (RL). Reinforcement learning is a
subfield of machine learning which investigates how an agent might acquire the
ability to accomplish goals in a complicated, unpredictable environment. (Kiran
et al., 2021)) In self driving car research, reinforcement learning has been used
to tackle many important tasks such as traffic light control, lane following and
obstacle avoidance. (Li, Xu, & Zhang, 2021) (Kalapos, Goér, Moni, & Harmati,
2021)) (Saavedra-Ruiz, Morin, & Paull, 2022) However, there has been little to no
research into using reinforcement learning to teach an agent stop-sign behaviour
specifically. To achieve this, this thesis utilizes the clipped variant of the proximal
policy optimization reinforcement learning algorithm. (Schulman, Wolski, Dhari-
wal, Radford, & Klimov, 2017) (Proximal Policy Optimization — Spinning Up
documentation, |2018)

1.3 Research question

The purpose of this study is to understand how reinforcement learning can ben-
efit the process of developing safe driver-less cars. This will be accomplished
by addressing the challenge of teaching a reinforcement learning agent stop-sign
behaviour. Therefore the research question is: Can an agent accurately learn stop-
sign behavior using reinforcement learning? With considerable hyper-parameter
adjustment, it is reasonable to expect that a reinforcement learning agent may
be taught to exhibit proper stop-sign behaviour. As is apparent in literature sur-
rounding policy gradient methods. (Paul, Kurin, & Whiteson, 2019) (Khadka &
Tumer|, 2018)

Chapter 2

Theoretical background

2.1 Duckietown

The Duckietown foundation offers a fun and accessible solution for Al and robotics
education and research. (The Duckietown Foundation), 2016) Their small robotic
cars (DuckieBots) are equipped with a camera and a GPU, which offers a relatively
affordable alternative for autonomous vehicle research using real-world cars.

Figure 2.1: The DuckieBot version DB19

Additionally, they offer the resources to build small scale roads with obstacles,
traffic equipment and various sensors creating endless possibilities for simulating
complex problem environments. Along with their physical DuckieBots, they pro-
vide a convenient simulator for further testing and training purposes.

10

2.1.1 AI Driving Olympics

Furthermore, since 2018 Duckietown has hosted the AI Driving Olympics (Al
DO) twice a year at ICRA (International Conference on Robotics and Automa-
tion) (IEEE Robotics and Automation Society, 1984) and NeurIPS (Neural Infor-
mation Processing Systems Conference) (Neural Information Processing Systems
Foundation, |1987). The AI DO challenges range from simple single robot lane
following (LF) tasks to multi-robot lane following with vehicles, pedestrians and
intersections (LFIVP).

2.1.2 Simulator

Gym-Duckietown is a driving simulator based on OpenAI’s gym platform (OpenAl,
2016). While Gym-Duckietown is a low-fidelity simulator, solutions have been
shown to work well on real-world Duckietowns due to their comparable simplic-
ity and in-simulation techniques such as domain randomization, accurate camera
distortion, and differential-drive physics. (Chevalier-Boisvert et al.,[2018) The sim-
ulator is highly customizable with options for various obstacles, road map layouts
and traffic signs.

Figure 2.2: The Duckietown Gym Simulator

2.2 Reinforcement learning

As briefly mentioned in chapter 1, reinforcement learning is a subfield of machine
learning which investigates how an agent might acquire the ability to accomplish
goals in a complicated, unpredictable environment. Contrary to the machine learn-
ing branch of supervised learning, an RL agent learns by the consequences of its
actions rather than through explicit instruction, and it chooses its actions based

on prior experiences (exploitation) as well as on new alternatives (exploration),
which is similar to trial and error learning. The reinforcement signal received by
the reinforcement learning agent is a numerical reward that encodes the success
of an action’s result, and the agent learns to choose behaviours that maximise the
cumulative reward over time. In a variety of tough contexts, reinforcement learn-
ing algorithms have begun to show promise. While reinforcement learning has a
long history, before recent improvements in deep learning, it necessitated extensive
problem-specific engineering. DeepMind’s Atari achievements (Mnih et al., [2013)),
BRETT from Pieter Abbeel’s group (Yang, [2016)), and AlphaGo (Holcomb, Porter,
Ault, Mao, & Wang, |2018) all employed deep reinforcement learning algorithms
that made few assumptions about their environment and are thus applicable in
various contexts. However, two issues impede the progress of RL research:

First off, the requirement for more accurate benchmarking. In supervised learn-
ing, development has been accelerated by the availability of huge labelled datasets
such as ImageNet (Stanford Vision Lab, Stanford University, Princeton Univer-
sity, |2020)). The closest analogy in RL would be a broad and varied selecion of
environments. However, existing open-source collections of RL environments lack
diversity and are sometimes difficult to set up and use. The second issue that hin-
ders advancement in RL is the limited standardization of the environments utilised
in publications. The complexity of a task can be substantially altered by small
changes in the issue formulation, such as the reward function or the definition of
the action space. Therefore, reproducing published research and comparing results
from various research papers is made significantly more complex (OpenAl| 2016]).
To address these concerns, OpenAl, an open source Al research and deployment
business, developed the "Gym" toolkit, a very useful development and comparison
toolkit for reinforcement learn- ing algorithms.

2.2.1 Policy Gradient Methods

Policy gradient methods are at the heart of current state-of-the-art reinforcement
learning models. Policy Gradient methods function by calculating an estimator
and inserting it into a stochastic gradient ascent algorithm. (Schulman et al.,
2017)) Generally speaking, the most widely used gradient estimator is of the form

J= E[Vglogm(at | st)flt]

where 7y is a stochastic policy and A, is an estimator of the advantage function
at time-step . The expectation IE[] denotes the empirical average across a finite
batch of sample data in a sampling-optimization algorithm. In turn, the estimator
g is produced by differentiating the objective (Schulman et al., |2017)

~

LYE(0) = Bllogmp(ay | s:)A]

A smart optimization function is obtained by multiplying the log probabili-
ties of the policy’s output and advantage function. If the advantage is positive,
implying that the agent’s last action during the sample trajectory resulted in a
higher-than-average return, the policy gradient will likewise be positive to improve
the chance of repeating said actions when confronted with a similar situation. In
turn, if the advantage is negative, the policy gradient will be negative in order to
decrease the chance of repeating similar actions.

While it may seem beneficial to continuously optimize loss function L%(),
parameters will regularly update far outside of their range, as a result, policy up-
dates become too large.

Chapter 3

Method

This chapter describes the experiments done and substantiates the research’s con-
clusions. The experiment of teaching a virtual agent stop-sign behaviour was
conducted using a Proximal Policy Optimization (PPO) (Schulman et al., 2017)
reinforcement learning algorithm in a Duckietown simulator environment. A se-
lection of the various trained PPO models were evaluated through testing on new
situations in addition to comparing training data.

3.1 Algorithm

This study utilizes a Proximal Policy Optimization algorithm from OpenAl’s Sta-
ble Baselines 3(Hill et al., |2018). Due to a similar underlying framework, Open
AT’'s PPO method can easily be implemented into the DuckieTown-gym simulation
environment.

To avoid excessively large and damaging policy updates that occur in vanilla
policy gradient methods as described in section 2.2.2, Trust Region Policy Opti-
mization was developed. (Schulman, Levine, Abbeel, Jordan, & Moritz, 2015) The
authors of this study created a method to restrict the policy gradient step so that
it does not deviate too far from its original policy.

maximize Et [Mﬁt}
6 TOo1a (at | s¢)

g =, {Ve log mg(ay | St)At] —_—
subject to E;[KL[mg,, (- | 5¢), mo(: | 5¢)]] < 6.

Figure 3.1: (Schulman et al., [2017)

14

Apart from the log operator being replaced with a probability term based on
the action of the current and the previous policy, TRPO is similar to vanilla policy
gradient methods.

Furthermore, the TRPO method includes a restriction on the KL distance (or
relative entropy), preventing the gradient step from deviating too excessively from
the previous policy. This ensures that the gradient remains in a range where we
can be confident that previous functionality is kept, hence the etymology of the
term "trust-region." On the other hand, KL restrictions are known to add cost to
the optimization process, occasionally resulting in poor training behaviour.

As a way to streamline the optimization process while maintaining the ad-
vantages of TRPO, Proximal Policy Optimization (PPO) (Schulman et al., [2017)
has been developed. PPO presents two main variants to achieve similar if not
better results than TRPO methods: the PPO-Penalty method and the PPO-Clip
method. Much like TRPO methods the PPO-Penalty method works with KL-
constrained policy updates but instead penalizes objective function KL-divergence
rather than imposing a hard restriction while automatically scaling the penalty
parameter throughout training. The PPO-clip method however, does not include
a KL-divergence component or restrictions at all. To deter a new policy from
straying too far from the previous policy the PPO-clip method utilizes a clipped
objective function. (Proximal Policy Optimization — Spinning Up documentation),
2018))

LEHP () = E[min(n(@)ﬁt, clip(ry(0),1 — e, 1+ E)At)]

In this function, the expectation is computed over at least two terms: the con-
ventional policy gradient objective and the clipped policy gradient objective. The
critical component comes from the second term, which truncates a standard PG
objective via a clipping operation between 1-epsilon and 1+epsilon, where epsilon
is the hyper-parameter.

The graph on the left depicts the positive advantage: the circumstance in which
a selected action had a positive effect on the outcome. The loss function flattens
out on the graph when the r becomes too large or when an action is significantly
more likely under the current policy than it was under the previous policy. The
same holds true for the graph on the right under the circumstance the estimated
advantage is negative. When r approaches zero, the loss function flattens out,

JCLIP A>0

— T
1

0 1 1+e LOLIF

Figure 3.2: Plots of a single time-step of the surrogate function L as of function

of probability ratio r, for positive and negative advantages. (Schulman et al., 2017)

indicating that a selected action is significantly less likely under the present policy.

Additionally, the clipping method may also be used to correct policy flaws. For
instance, the red dot in the right graph illustrates where the last gradient update
increased the probability of the selected action significantly while simultaneously
deteriorating the policy, as indicated by a negative advantage. To correct this, the
clipping procedure will revert the gradient exactly the amount that was incorrectly
added. In this instance, the first term in the min() operator is less than the
second term, serving as a fallback. Contrary to PPO-penalty and vanilla policy
gradient methods, PPO-clip does not require calculating additional KL constraints
for gradient correction.

3.2 Training

The PPO agent is placed on a shorter customized version of the straight road map
provided by DuckieTown including a stop-sign. The straight road map consists of
seven 'road’ tiles with a stop-sign at the start of the fourth tile.

The reinforcement learning model trains by getting the simulator image every
time-step and predicting an action for that particular image. The agent has con-
trol over its left and right wheel drive, meaning every time-step, its action space
consists of a continuous two-item array with values between 0 and 1: 0 meaning
no drive and 1 meaning building up to max speed for that particular time-step. To
simplify the problem one of two wheel drive values is used for both wheels reducing
the action space to a throttle and excluding steering. For additional bounding pur-

poses, values beneath 0 were excluded resulting in the car only being able to drive
forwards. Actions start of as random sampling of the action space and gradually
become less random each policy update.

The goal is for the agent to drive up to the stop-sign and stop as close as
possible to a set of coordinates encoding the ideal halting spot next to the stop
sign. Every training episode, the agent controls the throttle for 500 time-steps
which is equivalent to the time it would take an agent to drive to the end of the
road at moderate speed. Each time-step the agent gets closer to the goal it earns
a reward of 1, and vice versa, driving away from the goal earns the agent a reward
of -1. To make sure the rewards are given accordingly every time-step the distance
to the goal halting spot is compared to the distance of the previous step. As the
PPO agent aims to maximize its reward per episode it must learn to avoid driving
past the halting spot and thus, learn to stop in front of stop-signs.

3.2.1 Parameters

Below important parameters and their starting values will be shown. Hyper-
parameters with an asterisk (*) have varied throughout the training process. Fur-
thermore, each parameter will be shortly explained and additional environmental
hyper-parameters will be exemplified.

Parameter Value
Policy CnnPolicy
Environment gym-duckietown
Learning rate 0.0003
Number of Steps* 2.048
Batch size 64
Epochs 10
Clip range 0.2

Table 3.1: The hyper-parameters used for training PPO

Policy
The neural net used to train the policy.

Environment
Environment to learn from.

Learning rate
Determines how much is learned from positive experience each policy update.

Number of steps* (n_ steps or horizon)
Determines the number of time-steps of collecting experience before each new pol-
icy update, and thus lowering this will result in more frequent policy updates.

Epochs
Determines amount of epochs used in stochastic gradient descent update.

Batch size
Size of batch used in stochastic gradient descent updates on all gathered trajecto-
ries for the specified number of epochs.

Clip range
Clip range is the € parameter specified in section 4.1.

Of the models included in the final results, solely the models STEP500 and
STEP1000 were trained using different n_step values, 500 and 1000 steps respec-
tively.

Additional parameters

Early evaluation experiments found that the first few well-performing models
learned to stop in the specified spot by "looking" at the stop-line instead of the
stop-sign. From these first few models PPO4 was included in the results. To make
sure subsequent models would not learn this behaviour, the stop line, which was
previously included in a intersection tile behind the stop-sign, was excluded.

Secondly, both early stop-sign and stop-line models would often either linger
close to the ideal stop spot accelerating at extremely low speed instead of coming
to a complete stop lengthening the episode or continue driving after passing the
halting place accidentally. To deter future models from behaving similarly, an
additional rule was introduced to the environment that resets the environment
anytime the agent’s speed falls below a specified threshold. The disadvantage
of this restriction was that agents began halting prematurely more frequently.
With each subsequent model trained, the threshold was altered to find an optimal
balance between premature stopping and the lingering behaviour. This speed
threshold was first established with the model PPO10 and started at 0.03m/s
and was decreased to 0.01 m/s which improved performance slightly. Afterwards,
the speed threshold was raised to 0.2m/s which resulted in a clear deterioration

of performance. Simultaneously, the stop-sign in the simulator was enlarged to
attempt to increase the "recognizability" and further improve performance. The
stop-sign size was initialized at 0.08 and was later enlarged to a size of 0.12.
Eventually, it was found that a speed threshold of 0.0055m/s reduced the amount
of premature stops while minimizing lingering behaviour and stop-sign violations.

3.3 Evaluation

To evaluate performance, trained models were tested by letting them predict the
best actions for 20.000 time-steps for each of the three different stop-sign scenarios.
As a way of validating training, the first scenario is identical to the training setting
described in section 4.3. The second and third scenario are similar to the first:
the "straight road train" map with seven 'road’ tiles however, the stop-sign is
placed near the end of the road at the start of the sixth road tile in the second
"straight road far test" scenario and at the start of the second tile in the third
"straight road close test" scenario. Performance was measured per episode and
was divided into three categories. Premature stop: in the circumstance that the
agent would stop before the stop-sign but outside a 0.3 meter distance margin from
the ideal halting coordinates. Correct stop: in the circumstance that the agent
would stop before the stop-sign and inside a 0.3 meter distance margin. Stop-sign
violation: in the circumstance that the agent would drive past the ideal halting
coordinates. In addition to experiment testing evaluation, a Tensorboard (Abadi
et al., 2015) log setup was utilized during training allowing for additional training
data of each model trained which can be found in appendix B.

Chapter 4

Results

In this chapter the test results from a selection of notable models (over a total of
50) will be shown through comparison tables. The following models were included
due to their interesting differences in terms of results and parameters: PPO47]

PPO25, PPO30, PPO31, STEP500 and STEP1000.

4.1 Experiment Data

4.1.1 Train Evaluation

| Model | Premature stop (%) | Correct stop (%) | Stop-sign violation (%) |

PPO4* 16.66 83.33 0
PPO25 0 0 100
PPO30 28.43 57.84 13.73
PPO31 61.63 38.37 0
STEP500 63.16 9.47 27.37
STEP1000 23.33 70 6.67

Table 4.1: Evaluation performance of various PPO models on training road (stop-
sign central)

Table 4.1 describes the results of the evaluation of various models on the "straight road train"
map the models were trained on as described in section 3.2 and 3.3.

1* The model PPO4 was trained on a simulator map that included a stop line in addition
to the stop-sign. After evaluation, it was discovered that the model had been trained on the
stop line rather than the stop-sign. While learning to stop in front of the stop line was not the
intended outcome, PPO4’s performance was an intriguing result to demonstrate.

20

4.1.2 Test Evaluation Far

| Model | Premature stop (%) | Correct stop (%) | Stop-sign violation (%) |

PPO4* 20 50 0
PPO25 0 0 100
PPO30 47.3 43.24 9.46
PPO31 100 0 0
STEP500 79.1 10.45 10.45
STEP1000 51.28 44.87 3.85

Table 4.2: Evaluation performance of various PPO models on testing map (stop-
sign far away)

Table 4.2 describes the results of the evaluation of various models on the "straight road far test"
map as described in section 3.3.

4.1.3 Test Evaluation Close

| Model | Premature stop (%) | Correct stop (%) | Stop-sign violation (%) |

PPO4* 0 100 0
PPO25 0 0 100
PPO30 0 72.34 27.66
PPO31 0 100 0
STEP500 0 23.08 76.92
STEP1000 0 85.44 16.02

Table 4.3: Evaluation performance of various PPO models on testing map (stop-
sign close by)

Table 4.3 describes the results of the evaluation of various models on the "straight road close test"
map.

4.1.4 Analysis

Results show that from the models that actually learned to stop for stop-signs, the
model STEP1000 performs best. STEP1000, trained with 1.000 n_ steps, scores
70% on the train map, 44.87% on the far test map and 85.44% on the close test
map. PPO30, trained at the default 2.048 n_steps, comes in at second best scoring

57.84% on the training map, 43.24% on the far test map and 72.34% on the close
test map. And lastly, the STEP500 model, which trained with 500 n_steps and
performed extremely poorly, scoring 9.47% on the training map, 10.45% on the
far test map and 23.08% on the close test map. Another noteworthy outcome is
the model PPO25, which was the only model trained for 75.000 time-steps. As can
be seen from the figures A and B from appendix B.2, PPO25 performed extremely
well until about 45.000 time-steps in, where it seemingly unlearned its policy and
started driving at full speed at every state resulting in 100% stop-sign violations
in all scenarios.

As previously established, PPO4 learned to stop for stop-lines instead of stop-
signs and had the best performance overall, scoring 83.33% on the train map,
50% on the far test map and 100% on the close test map.

Chapter 5

Conclusion

This thesis aims to understand the role of reinforcement learning in the process of
developing safe driver-less cars and thus aimed to answer the question: "Can an
agent accurately learn stop- sign behavior using reinforcement learning?"

The results indicate that the best-performing stop-sign-oriented models (PPO30
and STEP1000) do not perform well enough to qualify as having learnt accurate
stop-sign behaviour. However, although model PPO4 is not a stop-sign oriented
model, it shows great promise in its correct stopping scores in both the train and
close maps. Moreover, as expected and demonstrated by tuning the n_steps pa-
rameter, the stop-sign size and the speed threshold: parameter tuning can have a
considerable effect on model performance. Finally, all models appear to have diffi-
culty anticipating stop-sign behaviour when the stop-sign is a long distance away.
Thus, teaching an agent accurate stop-sign behaviour requires more parameter
tuning in addition to a solution for long distance anticipation tasks.

23

Chapter 6
Discussion

The regularity with which stop-signs violations and premature stops occur would
be deemed hazardous in comparable real life situations. Even though they are not
yet suitable for use in driver-less automobiles, they give an intriguing foundation
upon which to expand.

Although tough to pinpoint, the increased performance stop-line model PPO4
holds over its stop-sign equivalents may be explained by the difference in derivable
information in the simulator image. In case of PPO4, the stop-line is a larger
and more centered object than the stop-sign is, making it more visible even from
a further distance. However, this gap may be bridge in future work by further
tuning the n-steps, additional model parameters and the stop-sign size. Once a
level of safety is established, subsequent study may involve domain randomization
in order to translate this stop-sign research to actual DuckieBots.

24

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Retrieved from https://www.tensorflow.org/| (Software available from
tensorflow.org)

Chevalier-Boisvert, M., Golemo, F., Cao, Y., Mehta, B., & Paull, L. (2018). Duck-
tetown environments for openai gym. https://github.com/duckietown/
gym-duckietown. GitHub.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., ...
Wu, Y. (2018). Stable baselines. https://github.com/hill-a/stable
-baselines. GitHub.

Holcomb, S. D., Porter, W. K., Ault, S. V., Mao, G., & Wang, J. (2018). Overview
on deepmind and its alphago zero ai. In Proceedings of the 2018 international
conference on big data and education (pp. 67-71).

IEEE Robotics and Automation Society. (1984). ICRA - IEEE Robotics
and Automation Society. Retrieved from https://www.ieee-ras.org/
conferences-workshops/fully-sponsored/icra

Kalapos, A., Gor, C., Moni, R., & Harmati, I. (2021). Vision-based reinforcement
learning for lane-tracking control. ACTA IMEKO, 10(3), 7-14.

Khadka, S., & Tumer, K. (2018). Evolution-guided policy gradient in reinforcement
learning. Advances in Neural Information Processing Systems, 31.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S.,
& Pérez, P. (2021). Deep reinforcement learning for autonomous driving: A
survey. IEEE Transactions on Intelligent Transportation Systems, 1-18. doi:
10.1109/TITS.2021.3054625

Li, Z., Xu, C., & Zhang, G. (2021). A deep reinforcement learning approach for
traffic signal control optimization. arXiv. Retrieved from https://arxiv
.org/abs/2107.06115 doi: 10.48550/ARXIV.2107.06115

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiw preprint arXiw:1312.5602.

25

https://www.tensorflow.org/
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.ieee-ras.org/conferences-workshops/fully-sponsored/icra
https://www.ieee-ras.org/conferences-workshops/fully-sponsored/icra
https://arxiv.org/abs/2107.06115
https://arxiv.org/abs/2107.06115

Neural Information Processing Systems Foundation. (1987). Neural Information
Processing Systems Foundation. Retrieved from https://nips.cc/

OpenAl. (2016). Gym: A toolkit for developing and comparing reinforce-
ment learning algorithms. Retrieved from https://gym.openai.com/docs/
#background-why-gym-2016

Paul, S., Kurin, V., & Whiteson, S. (2019). Fast efficient hyperparameter tuning
for policy gradient methods. Advances in Neural Information Processing
Systems, 32.

Policy, F. A. V. (2016). Accelerating the next revolution in roadway safety.(2016,
sep) washington. DC: National Highway Traffic Safety Administration.
Proxzimal Policy Optimization — Spinning Up documentation. (2018). Re-
trieved from https://spinningup.openai.com/en/latest/algorithms/

ppo.html

Retting, R. A., Weinstein, H. B., & Solomon, M. G. (2003). Analysis of motor-
vehicle crashes at stop signs in four u.s. cities. Journal of Safety Re-
search, 34(5), 485-489. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0022437503000689 doi: https://doi.org/10.1016/
j-jsr.2003.05.001

Saavedra-Ruiz, M., Morin, S., & Paull, L. (2022). Monocular robot navigation
with self-supervised pretrained vision transformers. arXiv. Retrieved from
https://arxiv.org/abs/2203.03682 doi: 10.48550/ARXIV.2203.03682

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust
region policy optimization. In International conference on machine learning
(pp. 1889-1897).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
Singh, S. (2015). Critical reasons for crashes investigated in the national motor

vehicle crash causation survey (Tech. Rep.).

Stanford Vision Lab, Stanford University, Princeton University. (2020). ImageNet.
Retrieved from https://image-net.org/

The Duckietown Foundation. (2016). Duckietown Foundation — Ducki-
etown. Retrieved from https://www.duckietown.org/about/duckietown
-foundation

Yang, S. (2016, 01). New ‘deep learning’ technique enables robot mastery of skills
via trial and error. Retrieved from https://news.berkeley.edu/2015/05/
21/deep-learning-robot-masters-skills-via-trial-and-error/

https://nips.cc/
https://gym.openai.com/docs/#background-why-gym-2016
https://gym.openai.com/docs/#background-why-gym-2016
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://www.sciencedirect.com/science/article/pii/S0022437503000689
https://www.sciencedirect.com/science/article/pii/S0022437503000689
https://arxiv.org/abs/2203.03682
https://image-net.org/
https://www.duckietown.org/about/duckietown-foundation
https://www.duckietown.org/about/duckietown-foundation
https://news.berkeley.edu/2015/05/21/deep-learning-robot-masters-skills-via-trial-and-error/
https://news.berkeley.edu/2015/05/21/deep-learning-robot-masters-skills-via-trial-and-error/

Appendix A

Reward Function Pseudo-code

if episode has started and speed > "stop" threshold
and if current distance to goal is < previous distance to goal
reward = 1
else if current distance to goal > previous distance to goal
reward = -1
else if the episode has started (for at least 10 timesteps) and speed <= "stop" th
set done flag
give final reward of 1
else (meaning episode is at the start frame)
set distance to goal to a high number
reward = 0

27

28

Appendix B

Data

Ining

Tra

B.1 PPO4

(b) Episode reward mean

(a) Episode length mean
0

d) Entropy loss "PPO4"

~—

(c) Value loss "PPO4"

0.035

VA Do ot =

AN ———— S

0.03
0.025

0.02
0.015

0.01
5e-3

(f) Loss "PPO4"

(e) Policy gradient loss

HPPO4H

B.2 PPO25

250
200
150
100

50
0

950
500
450

400
350
300
250

%b Episode reward mean

ié
%

3
%
2

(a) Episode length mean

(d) Entropy loss
}3

98765432104

N1ZN1Q
UK UKO

(e) Policy gradient loss

(c) Train value loss

0.25
0.2
0.15
0.1
0.05
0
-0.05

(f) Loss

B.3 PPO30

200
150

100

50

-90
-100
-150

(b) Episode reward mean

) Episode length mean

Soooccoococoocoooo

OO~ OLO<HOOAI—
—t—

—
I

(d) Entropy loss
}S:IL

3.5
3
2.5
2
1.5
1
0.5
0

IOKIUK I KUK IROUKRIKUKEIRNURIK

Elo-nld-mloalarlonlorlidialdmisanlsel

(c) Train value loss

(f) Entropy loss

(e) Train value loss

200
150
100
20
-50
-100
-150

B.4 PPO31

=
= B
ice]
=) =
ice]
= D
=4
= =
Mﬂ Al
= c2
& =) mm
Q o an
5 N3 y
S o 9 o)
—
o [aN
W LD W
5 = IS -
= o 2 D
2 2 2 T
1% LD &9
A > D
o A
& n ny
— ! ﬂU
D SHON-00C00—ICYTD =
& DI 0000000000 !
o R CewTease
-]
LD .rk.u
L2 Yo
() e — .IU
12 P
LD =
= =
) mU
=# =2
) IS
=] o] [
b =) =)
O o @ o2
m LD o) o)
= S o =)
&D - a9
a ¥s) < LD
< rd > b
o S o =)
e} _._m = Y,
o i < -
0 LD TT. Yow)
[€a) < ©
= T TERYesTeTEss
—OOILIOOLODLOODLODOLOD SOsoaE Boos
LOLO<H<HDD AN — ST TS
1

(f) Entropy loss

(e) Train value loss

B.5 STEP500

a) Episode length mean
45%) p g

400
350
300
250
200
150
100

20

0

(c) Train value loss

0.35
0.3
0.25
0.2
0.15
0.1
0.05

N ETL TN A ETONTOETONTAOET ANT ATT =N
U IK 1UKILIKZUKZIKIUKIIKAUKEIKIOUK

(e) Train value loss

80
60
40
20
0
-20
-40
-60
-80

(b) Episode reward mean

-2.75
-2.8
-2.85
-2.9
-2.95
-3
-3.05

1N 9Nl 9Nl ANl ENl. pnk
U 1UK ZUK oUK 4UK oUK QU

(d) Entropy loss

(f) Entropy loss

B.6 STEP1000

Y = =
2 3 Z
L I
= i s
A_M =] (=]
™ 2 i,
a L L
22 e)
mm =) =)
X o] i2e]
mu) 1D
mm oy o
o) 1)
= & &
I O)
d o2 nd
D (<=} mU

(d) Entropy loss

%b()) Episode reward mean
5]

SO0
O<HFANO0OFAN A
i !

-40
-60

O<FANO0OHFANON
— e —f !

-2.78
-2.8
-2.82
-2.84
-2.86
-2.88
-2.9
-2.92
18

-2.

e
J
YT AT
UKtIkIUK
1=
)

14
s
-

>] (==}

g
h
LD
Q2
=
= o S
=2
5]
&2
(Ep]
Jur
(€5)
b
—<
LD

TSI OMILOANOHMIOMI—LO

SCSCSEOS 163
STSTS TS

=
J
= =

-

I

M I TN T ToONTOTTONTO T AT
U JOK1IUKLIIKZUKZI KUK I KE

c¢) Train value loss

k
{)a) Episode length mean

200
450
400
350
300
250
200
150

18
160
140
120
100
80
60
40
20
0

(f) Entropy loss

(e) Train value loss

	Introduction
	Context and topic
	Scope and focus
	Research question

	Theoretical background
	Duckietown
	AI Driving Olympics
	Simulator

	Reinforcement learning
	Policy Gradient Methods

	Method
	Algorithm
	Training
	Parameters

	Evaluation

	Results
	Experiment Data
	Train Evaluation
	Test Evaluation Far
	Test Evaluation Close
	Analysis

	Conclusion
	Discussion
	References
	Reward Function Pseudo-code
	Training Data
	PPO4
	PPO25
	PPO30
	PPO31
	STEP500
	STEP1000

